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Abstract: Surveillance for detection of the brown marmorated stink bug, Halyomorpha halys, is reliant
on sticky panels with aggregation pheromone, which are low cost, but very inefficient (est. 3%).
Trapping for adults was conducted in Italy with novel live (or lethal) traps consisting of aggregation
pheromone-baited cylinders with a wind vane, with the upwind end covered by mesh and the
downwind end sealed by a removable entry-only mesh cone, admitting the attracted bugs. The novel
traps caught up to 15-times more adult H. halys than identically-baited sticky panels in two weeks
of daily checking (n = 6 replicates) (the new live traps were, in Run 1, 5-, 9-, 15-, 13-, 4-, 12-, 2-fold;
and in Run 2, 7-, 1-, 3-, 7-, 6-, 6-, and 5-fold better than sticky traps, daily). The maximum catch
of the new traps was 96 live adults in one trap in 24 h and the average improvement was ~7-fold
compared with sticky panels. The rotating live traps, which exploit a mesh funnel facing the plume
downwind that proved useful for collecting adults, could also be used to kill bugs. We expect that
commercially-available traps could replace the crude prototypes we constructed quickly from local
materials, at low cost, as long as the principles of a suitable plume structure were observed, as we
discuss. The traps could be useful for the sterile insect technique, supporting rearing colonies, or to
kill bugs.

Keywords: aggregation pheromone; Halyomorpha halys; trap; lure and kill; sterile insect technique;
wild harvest

1. Introduction

Halyomorpha halys (Stål, 1855), the brown marmorated stink bug (BMSB), is a highly invasive species
from Southeast Asia, which feeds on field crops, vegetables, tree fruits, and nuts and ornamentals.
Both nymphs and adults feed on developing and ripe fruits and seeds and can cause severe damage to
crops [1,2]. In climate conditions such as Northern Italy or much of USA [3], BMSB is predicated to
have two or more generations per year [4]. Pre-reproductive adults over-winter inside houses and
release an unpleasant odor when disturbed [5]. The BMSB is increasingly widespread in Europe [1,6].
In Northern Italy alone, the local associations of fruit production have estimated about €150 million/year
losses in 2016–2018. Interceptions of this species have been reported in other countries [7] including
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New Zealand [8]. No successful eradication attempts of established populations have been reported
thus far.

A two-part aggregation pheromone ((3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and (3R,6S,7R,10S)-
10,11-epoxy-1-bisabolen-3-ol) [9] has been synergized with the addition of methyl (E,E,Z)-2,4,6-decatrienoate
(MDT) [10]. Various trapping systems have been investigated for integrated pest management (IPM) [11]
and, based on these lure surveillance systems, have been tested for border protection, because of high
interception rates in New Zealand [8]. For jurisdictions such as New Zealand that conduct surveillance,
new and effective methods for both surveillance and suppression are important. Sticky panels are low
cost, but could suffer from poor bug retention and loss of trap efficiency owing to the accumulation
of dust, leaves and detritus. Other trap types have been investigated [12], although clear sticky
panels were recently reported as suitable for BMSB monitoring and detection, by a New Zealand
government-supported study in the USA [13]. Most of the traps reported so far appear generally
similar in functional concept as variations on a theme, and produce fairly similar results [14]. Simply
hanging pyramid traps in trees did not result in an improvement, although placing the lures in such
a way to increase airflow (outside the trap) did improve results about two-fold [12], which is fairly
unsurprising. None of the treatments were particularly successful improvements.

Live traps for harvesting wild insects can support research in various ways, by offering efficient
field collection [15]. A cylindrical trap design originally designed for live trapping tortricid moths in
a mark-release recapture study [16] was physically enlarged to take account of observations on BMSB
behavior in Italy, and a prototype was built and tested. This proved successful (with a catch of 50 adult
BMSB in the first 24 h), so a replicated trial was established to compare these traps with the proposed
surveillance system for New Zealand, and this communication was produced to widen the debate
about surveillance efficiency as well as suppression of this unwanted organism.

2. Materials and Methods

2.1. Comparing the Live Traps and Sticky Panels

The aim of the research was to compare the catch efficiency of the highly mobile adult BMSB
population from baited sticky panels and novel BMSB live traps, in the limited time available.
Trapping studies for adult (and potentially nymph stages) of BMSB were conducted in late August
2019 at Fondazione Edmund Mach (46◦11′43” N, 11◦8′5” E), San Michele all’Adige, Trentino, Italy.
We evaluated captures with two different kinds of traps, Pherocon sticky panels (Trécé, Adair,
OK, USA), with high dose lures (Trécé, Adair, OK, USA), which contained 200 mg (i.e., 4-fold
loading) of two component aggregation pheromones, (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and
(3R,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol [9], plus methyl (E,E,Z)-2,4,6-decatrienoate [10]. The lures
were positioned on top of the sticky panels, on overhanging branches. This combination of lure and
sticky panel trap has been under investigation for surveillance in New Zealand because of a high rate
of interceptions [8]. The second trap type [16] rotated using a wind vane, while trap cylinders were
constructed from soft plastic plant pots (30 cm diameter × 40 cm high) with the bottoms cut off and the
tops joined and sealed. The upwind end was covered with a flat panel of stainless gauze (1 mm mesh
size) and sealed using hot glue, with the lure hung ~5 cm inside the opening of the center of the trap.
The downwind end was sealed with a removable stainless mesh cone. The wind vane was added to
the top of the downwind end as a vertical pane constructed from corflute (corrugated plastic), and the
trap was suspended and able to pivot balanced on a string suspended from a tree branch (Figure 1).
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the middle, with bases removed and a removable mesh cone for bug entry and removal, an upwind 
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plume from the trap. 
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3. Results 

Both types of traps were successful at catching BMSB adults (Figure 2, Table S1), and the catches 
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but varied day to day without obvious weather influence (see weather data, Supplementary 
Materials). Few nymphs were caught with either trap, so the results presented have been confined to 
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lower level of significance for replicate. Numbers caught reduced on days five to seven during Run 
1. Numbers were lower at the location for the second run, located at about 50 m higher elevation and 
200 m away, with a total of 1061 caught in Run 1 and 555 in Run 2. 

Figure 1. Rotating live trap for Halyomorpha halys consisting of two large black flower pots joined in the
middle, with bases removed and a removable mesh cone for bug entry and removal, an upwind mesh
panel for airflow, and an aggregation pheromone lure, with a wind vane to generate the best plume
from the trap.

We set the traps (n = 6 replicates, alternating trap types at 10 m spacings) at a sloping forest
margin with adjacent vineyards of mixed grape varieties downhill. The experiment was set up on
22 August 2019 and checked daily for seven days (one run), before moving to a similar nearby location,
200 m along and 50 m higher, for a second identical run (traps were re-randomized). Catches in traps
were sexed, counted, and removed daily. The large number of catches of live BMSB in the prototype
live traps (up to 96 adult bugs per 24 h) required the trap contents to be emptied into a large plastic bag
(80 cm × 1 m), and bugs were then individually sexed and removed around 9 am daily onto a second
bag for transport to the laboratory culture. The smooth internal surface of the traps expedited emptying
them. A short YouTube video accompanies this article to illustrate the new trap (Supplementary
Materials).

2.2. Statistical Methods

On the basis of experience with two key factors affecting insect trapping, we balanced our design
with replicates and days about evenly. Summed catches for each trap were log-transformed to generate
an approximately normal distribution, in order to stabilize the variance (p = 0.198 for normality after
transformation) [17]. Catches were then compared for significant differences by type and replicate
using a general linear model in Minitab (v18) [17].

3. Results

Both types of traps were successful at catching BMSB adults (Figure 2, Table S1), and the catches
initially increased daily after installation of the live traps and, to a much lesser extent, in sticky traps,
but varied day to day without obvious weather influence (see weather data, Supplementary Materials).
Few nymphs were caught with either trap, so the results presented have been confined to adults for
brevity. The analysis of variance (ANOVA) was highly significant for trap type, with a lower level of
significance for replicate. Numbers caught reduced on days five to seven during Run 1. Numbers
were lower at the location for the second run, located at about 50 m higher elevation and 200 m away,
with a total of 1061 caught in Run 1 and 555 in Run 2.
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significantly biased (1.6 and 2.2 females per male for the live traps (X2 = 73.5, p < 0.0001) and sticky 
panels (X2 = 55.6, p < 0.0001), respectively). 

Catch varied by transect position, with the lowest catches in internal traps (Figure 4), suggesting 
trap competition. Trap position appeared to have little effect on the sticky panels. 
  

Figure 2. Mean daily catch per trap of adult Halyomorpha halys in alternating sticky panels and live
traps, on a vineyard–forest margin at Fondazione Edmund Mach, San Michele all’Adige (TN), Italy.
Error bars show one standard error (n = 6 replicates). Runs 1 and 2 were at different locations, 200 m
apart. Labels indicate the mean improvement in catch from the live traps over sticky panels.

The difference in trap efficiency among traps varied daily, but the live trap was better than sticky
panel traps on 13/14 of the days. Low catches or zero catches occurred with both trap types (Figure 3),
and were frequent with the sticky traps, while the live traps caught up to 96 adults per day, with nine
trap counts over 30 BMSB per day. The sex ratio was similar between trap types, and significantly
biased (1.6 and 2.2 females per male for the live traps (X2 = 73.5, p < 0.0001) and sticky panels (X2 = 55.6,
p < 0.0001), respectively).Insects 2019, 10, x 5 of 9 
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Figure 3. Dotplot of catch per trap per day with spatially-alternating live traps (live, upper) and sticky
panels (lower) at the forest–vineyard margin in San Michele all’Adige (TN), Italy (n = 6 reps, operated
daily for two runs of seven days, at 200 m spacings between runs).
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Catch varied by transect position, with the lowest catches in internal traps (Figure 4), suggesting
trap competition. Trap position appeared to have little effect on the sticky panels.
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Figure 4. Effect of transect positions on mean daily catch of Halyomorpha halys by sex and trap type at
the forest–vineyard margin in San Michele all’Adige (TN), Italy (n = 6 replicates, operated for 14 days
(runs combined)).

4. Discussion

Effective pest monitoring is an essential tool for IPM, and pheromones have provided a tremendous
boost to this field by attracting insects directly to traps. Efficient traps can support management decisions,
to restrict the use of insecticides and reduce costs, non-target effects, and secondary pest outbreaks.
The need for understanding the meaning of a stink bug in a trap in IPM generally aligns with the
biosecurity detection needs in countries like New Zealand, where high sensitivity at first detection
will be essential for delimitation in a response [8]. The highly successful lures for BMSB have opened
new opportunities for IPM as well as surveillance, but traps require more than simply attraction to be
effective. Trap efficiency should remain relatively constant over time and, unfortunately, traps based
on sticky panels are likely to eventually suffer from loss of efficacy through the accumulation of dust,
leaves and detritus. Clear sticky panels are reported as suitable for BMSB monitoring and detection [13],
highlighting a lack of better alternatives.

At the forest–vineyard margin, the numbers of bugs sampled (alive and potentially killed or
added to the laboratory culture) were substantially higher for the live traps than for the sticky traps.
Neither trap caught many nymphs, which was in part because of the tendency of walking nymphs
to avoid the sticky glue, although nymphs were observed to walk down the string to the live traps,
and numbers on the outside of the traps apparently increased over time.

Catches of BMSB adults (and nymphs) typically build up over the first three days with the
aggregation pheromone, independent of the trap type (Suckling et al., unpublished results). Catches
in other trials (Suckling et al., unpublished data) have remained relatively steady thereafter, but here,
a mid-week peak was twice followed by a >50% decline for the last three days, suggesting that
an influence of adult removal could be having an effect on the local population, but this would need to
be verified with absolute sampling techniques.

Our very short trial was resource-limited, but the results are sufficient to encourage further
examination of this concept of live trapping, which avoids the need for a beating tray and other
physical collection methods. This method of live collection has already added hundreds of insects to
the colony at Fondazione Edmund Mach, and plans have been developed to test the approach further
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using commercially-available materials. There was a sex bias towards female BMSB in both traps,
which is a useful finding because it is unlikely that both traps are biased and fail to represent the actual
sex ratio. The live traps showed evidence of trap competition, as higher catches were generally made
towards the ends of the transects, which is equivalent to the corner trap in an array, which faces less
competition than central traps [18]. The sticky panels did not show this effect, suggesting that the
lower catch efficiency could be masking the effect. While U.S. researchers have preferred to use 50 m
trap spacings, their objectives were different, such as seeking calibration in absolute values of trap
efficiency. Here, we sought to compare two trap types and to demonstrate the potential of live capture,
rather than pursue the theoretical active space [19]. Leskey et al. [20] and Rice et al. [12] categorically
state that “A killing agent is necessary for successful trapping of H. halys using pyramid traps with
collection jars”, but perhaps the current work creates new options through design.

Live catches in this type of trap could be used for collection of insects aggregating pre-winter,
as well as for irradiation and release of males for the sterile insect technique (SIT) [21], and it may even
be possible to generate overwintering behavior if suitable substrates are provided within the traps in
late autumn. Males in particular are needed for SIT, so physical sorting by sex would still be necessary.

Such traps could also readily be converted into killing stations through the addition of long-life
insecticide netting into the body of the trap, especially at the upwind panel where we observed the
highest numbers of adults caught inside the traps (Figure 1). This type of technology could prove
useful in an eradication of a delimited population. Sticky panels are currently preferred for surveillance
in New Zealand [8], but proactively established killing stations could complement this in high-risk
sites. While our study of the new traps did not directly investigate the full potential for killing BMSB
adults, we can conclude that this trap concept could be compatible with the needs of an eradication
to reduce the numbers of a known and delimited population, while avoiding broadcast insecticide
use. This type of mass trapping approach has the benefits of limiting broadcast insecticide usage and
compatibility with biological control, but has material costs and ongoing labor costs [22], although
these costs could be sustained for the duration of an eradication [23]. Identification of a suitable
commercially-available low-cost fish trap or similar trap is proposed, now that the principle of this trap
type has been demonstrated. Solid cylindrical walls, a mesh funnel opening downwind with a small
non-return opening, a wind vane, and pivotal suspension are expected to be critical design features.

Reported observations of BMSB behavior around traps have focused on a range of attributes
including walking [11], but have apparently failed to consider the possibility that the plume can
(hypothetically) be delivered from inside a cylinder, and apparently reach the population more
successfully by extending the plume further than with lures that are fully exposed in the open
air, for example, around a sticky trap. The mechanistic role of plume structure warrants further
investigation, as the principle is general and may well enable improvement in catches to other lures
and insects. Once in vogue for moth pheromones [24–26], the literature on plume structure and insect
behavior in and around pheromone-baited traps has reduced in recent decades, but perhaps the field
needs review for other orders, as previous extensive research on BMSB trapping has apparently failed
to discover how to greatly improve catches, as reported here.

The new trap concept may have considerable relevance to IPM, where its potential to help growers
can now be evaluated within invaded jurisdictions. Recent approaches such as aggregating insects to
sacrificial killing trees [27] could be potentially be replaced with more effective “lure and kill” traps
to reduce environmental exposure from insecticides, if the initial promise of our new traps can be
confirmed. An average improvement of ~7-fold and up to 15-fold over the recommended sticky panels
appears to warrant further investigation for detection and surveillance, as well as for IPM, but needs
to be placed in the context of overall insect population suppression.

5. Conclusions

The new traps were surprisingly effective at live trapping BMSB given extensive research on
trapping this insect since the aggregation pheromone was identified. The new trap concept could
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represent a useful tool with a range of applications, although as yet there is limited understanding of
why the trap design is working so well. More work on aspects of the trapping system (size, design,
plume structure) would be useful to extract the essentials for development of even more effective traps
in future. The immediately obvious applications of live capture include wild harvest for supporting
rearing colonies, as well as supporting our objective of the sterile insect technique, because mass
rearing is a currently a limitation to that approach. Equally, the traps could provide the basis for a more
sensitive surveillance system in biosecurity, given the much-improved catch rates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/10/11/376/s1,
Table S1: Analysis of variance of log-transformed catch of Halyomorpha halys by trap type and replicate at the
forest–vineyard margin in San Michele all’Adige (TN), Italy, from 22/8/19 to 5/9/2019, Video S1: Live Traps for
Adult Brown Marmorated Stink Bugs.
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