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Abstract: Machine learning (ML) and artificial intelligence (AI) are rising stars in many scientific
disciplines and industries, and high hopes are being pinned upon them. Likewise, ML and AI
approaches have also found their way into tribology, where they can support sorting through the
complexity of patterns and identifying trends within the multiple interacting features and processes.
Published research extends across many fields of tribology from composite materials and drive
technology to manufacturing, surface engineering, and lubricants. Accordingly, the intended usages
and numerical algorithms are manifold, ranging from artificial neural networks (ANN), decision
trees over random forest and rule-based learners to support vector machines. Therefore, this review
is aimed to introduce and discuss the current trends and applications of ML and AI in tribology. Thus,
researchers and R&D engineers shall be inspired and supported in the identification and selection of
suitable and promising ML approaches and strategies.

Keywords: tribology; machine learning; artificial intelligence; triboinformatics; databases; data
mining; meta-modeling; artificial neural networks; monitoring; analysis; prediction; optimization

1. Introduction

Tribology has been and continuous to be one of the most relevant fields in today’s
society, being present in almost aspects of our lives. The importance of friction, lubrication
and wear is also reflected by the significant share of today’s world energy consumption [1].
The understanding of tribology can pave the way for novel solutions for future technical
challenges. At the root of all advances are multitudes of precise experiments and advanced
computer simulations across different scales and multiple physical disciplines [2]. In the
context of tribology 4.0 [3] or triboinformatics [4], advanced data handling, analysis, and
learning methods can be developed based upon this sound and data-rich foundation and
employed to expand existing knowledge. Moreover, tribology is characterized by the fact
that it is not yet possible to fully describe underlying processes with mathematical terms,
e.g., by differential equations. Therefore, modern Machine Learning (ML) or Artificial Intel-
ligence (AI) methods provide opportunities to explore the complex processes in tribological
systems and to classify or quantify their behavior in an efficient or even real-time way [5].
Thus, their potential also goes beyond purely academic aspects into actual industrial ap-
plications. The advantages and the potential of ML and AI techniques are seen especially
in their ability to handle high dimensional problems and data sets as well as to adapt to
changing conditions with reasonable effort and cost [6]. They allow for the identification
of relevant relations and/or causality, thus expand the existing knowledge with already
available data. Ultimately, through analyses, predictions, and optimizations, transparent
and precise recommendations for action could be derived for the engineer, practitioner, or
even the potentially smart and adaptive tribological system itself. Nevertheless, compared
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to other disciplines or domains, e. g. economics and finances [7], health care [8], or manu-
facturing processes [6], the applicability of ML and AI techniques for tribological issues is
still surprisingly underexplored. This is certainly also due to the interdisciplinarity and the
quantity of heterogenous data from simulations on different scales or manyfold measure-
ment devices with individual uncertainties. Furthermore, friction and wear characteristics
do not represent hard data, but irreversible loss quantities with a dependence on time and
test conditions [9].

To help pave the way, a more detailed analysis of the available ML/AI techniques
as well as their applicability, strengths and limitations with regard to the requirements of
the respective tribological application scenario with its specific, theoretical foundations
is essential. Therefore, this contribution aims to introduce the trends and applications
of ML algorithms with relevance to the domain of tribology. While other reviews were
more generic [10], had a more concise scope [5], or focused on a specific technique (i.e.,
artificial neural networks [11]), this review article is also intended to cover a wider range
of techniques and in particular to shed light on the broad applicability to various fields
with tribological issues. Thus, the interested reader shall be provided with a high-level
understanding of the capabilities of certain methods with respect to the tribological applica-
tions ranging from composite materials over drive technology or manufacturing to surface
engineering and lubricant formulations. This article is therefore structured in such a way
that first the theoretical background is introduced, and the results of a quantitative meta-
literature analysis are presented (Section 2). Thereby, the published work on ML in the field
of tribology is clustered according to the level or intention, the scale under consideration,
the nature of the database and the area of application. Organized according to the latter,
the work and progress reported in literature is then discussed in detail (Sections 3.1–3.6)
before the main trends are summarized and concluded (Section 4).

2. Background and a Quantitative Survey on Machine Learning in Tribology

ML is part of AI [12] and thus originally a sub-domain of computer science. AI and
ML are formed by logic, probability theory, algorithm theory, and computing [13]. In
a first step, ML involves designing computing systems for a special task that can learn
from training data over time and develop and refine experience-based models that predict
outcomes. The system can thus be used to answer questions in the given field [12]. There
are a number of different algorithms that can be used for ML, whereby the suitability
is strongly task-dependent. Generally, algorithms can be categorized as “supervised
learning” or “unsupervised learning” [12]. For the former, algorithms learn a relation from
a given set of input and output data vectors. During learning, a “teacher” (e.g., an expert)
provides the correct inputs and outputs. In unsupervised learning, the algorithm generates
a statistical model that describes a given data set without the model being evaluated by a
“teacher”. Furthermore, reinforcement learning features different characteristics, although
it is sometimes classified as supervised learning. Instead of induction from pre-classified
examples, an “agent” “experiments” with the system and the system responds to the
experiments with reward or punishment. The agent thus optimizes the behavior with
the goal of maximizing reward and minimizing punishment. While the classification
of the three learning types mentioned above is common and widely accepted, there is
no consensus on which algorithms should be assigned to which category. One possible
allocation following [6] is illustrated in Figure 1.
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[14]. To account for nonlinear boundaries, kernel functions are an essential part of SVM. 
By using the kernel trick, the vector space is transformed into an arbitrarily higher-dimen-
sional space, so that arbitrarily nested vector sets are linearly separable [15]. Decision trees 
(DT) are ordered, directed trees that illustrate hierarchically successive decisions [12]. A 
decision tree always consists of a root node and any number of inner nodes as well as at 
least two leaves. Each node represents a logical rule, and each leaf represents an answer 
to the decision problem. The complexity and semantics of the rules are not restricted, alt-
hough all decision trees can be reduced to binary decision trees. In this case, each rule 
expression can take only one of two values [16]. A possibility to increase the classification 
quality of decision trees is the use of sets of decision trees instead of single trees, this is 
called decision forests [17]. If decision trees are uncorrelated, they are called random forest 
(RF) [18]. The idea behind decision forests is that while a single, weak decision tree may 
not provide optimal classification, a large number of such decision trees are able to do so. 
A widely used method for generating decision forests is boosting [19]. In rule-based learn-
ers, the output results from composing individual rules, which are typically expressed in 
the form “If–Then”. Rule-based ML methods typically comprise a set of rules, that collec-
tively make up the prediction model. K-Nearest-Neighbor algorithms (kNN) are classifica-
tion methods in which class assignment is performed considering k nearest neighbors, 
which were classified before. The choice of k is crucial for the quality of the classification 
[16]. In addition, different distance measures can be considered [20]. Artificial neural net-
works (ANN) are essentially modeled on the architecture of natural brains [21]. They are 
‘a computing system made up of a number of quite simple but highly interconnected pro-
cessing elements (neurons), which process information by their dynamic state response to 
external inputs’ [12]. The so-called transfer function calculates the neuron’s network input 
based on the weighting of the inputs [22]. Calculating the output value is done by the so-
called activation function considering a threshold value [12,22]. Weightings and thresh-
olds for each neuron can be modified in a training process [16]. The overall structure of 
neurons and interconnections, in particular how many neurons are arranged in a layer 
and how many neurons are arranged in parallel per layer, is called topology or architec-
ture. The last layer is called the output layer and there can be several hidden layers be-
tween the input and the output layer (multilayer ANN) [21]. While single-layer networks 
can only be used to solve linear problems, multi-layer networks also allow the solution of 
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The basic idea of support vector machines (SVM) is that a known set of objects is repre-
sented by a vector in a vector space. Hyperplanes are introduced into this space to separate
the data points. In most cases, only the subset of the training data that lies on the boundaries
of two planes is relevant. These vectors are the name-giving support vectors [14]. To ac-
count for nonlinear boundaries, kernel functions are an essential part of SVM. By using the
kernel trick, the vector space is transformed into an arbitrarily higher-dimensional space, so
that arbitrarily nested vector sets are linearly separable [15]. Decision trees (DT) are ordered,
directed trees that illustrate hierarchically successive decisions [12]. A decision tree always
consists of a root node and any number of inner nodes as well as at least two leaves. Each
node represents a logical rule, and each leaf represents an answer to the decision problem.
The complexity and semantics of the rules are not restricted, although all decision trees can
be reduced to binary decision trees. In this case, each rule expression can take only one of
two values [16]. A possibility to increase the classification quality of decision trees is the use
of sets of decision trees instead of single trees, this is called decision forests [17]. If decision
trees are uncorrelated, they are called random forest (RF) [18]. The idea behind decision
forests is that while a single, weak decision tree may not provide optimal classification, a
large number of such decision trees are able to do so. A widely used method for generating
decision forests is boosting [19]. In rule-based learners, the output results from composing
individual rules, which are typically expressed in the form “If–Then”. Rule-based ML
methods typically comprise a set of rules, that collectively make up the prediction model.
K-Nearest-Neighbor algorithms (kNN) are classification methods in which class assignment is
performed considering k nearest neighbors, which were classified before. The choice of k
is crucial for the quality of the classification [16]. In addition, different distance measures
can be considered [20]. Artificial neural networks (ANN) are essentially modeled on the
architecture of natural brains [21]. They are ‘a computing system made up of a number
of quite simple but highly interconnected processing elements (neurons), which process
information by their dynamic state response to external inputs’ [12]. The so-called transfer
function calculates the neuron’s network input based on the weighting of the inputs [22].
Calculating the output value is done by the so-called activation function considering a
threshold value [12,22]. Weightings and thresholds for each neuron can be modified in a
training process [16]. The overall structure of neurons and interconnections, in particular
how many neurons are arranged in a layer and how many neurons are arranged in parallel
per layer, is called topology or architecture. The last layer is called the output layer and
there can be several hidden layers between the input and the output layer (multilayer
ANN) [21]. While single-layer networks can only be used to solve linear problems, multi-
layer networks also allow the solution of nonlinear problems [12]. Feedforward means, that
neuron outputs are routed in processing direction only. Recurrent networks, in contrast,
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also have feedback loops. Commonly, ANNs are represented in graph theory notation,
with nodes representing neurons and edges representing their interconnections.

Already rather early works in the field of tribology from the 1980s can be assigned to
the current understanding of ML. For example, Tallian [23,24] introduced computerized
databases and expert systems to support tribological design decisions or failure diagnosis.
Other initial studies were concerned, for example, with the prediction of tribological
properties [25–27] or classification of wear particles [28,29]. Between 1985 and today,
almost 130 publications related to ML in tribology were identified within a systematic
literature review (see Prisma flow chart in Figure 2a), whereas the number of papers
initially increased slowly and more rapidly within the last decade (Figure 2b). During the
latter period, the number of publications has more than tripled, which represents a faster
growth than the general increase in the number of publications in the field of tribology
(the numbers of Scopus-listed publications related to tribology grew by a factor of 2.3
between 2010 and today). It can therefore be highly expected that this trend will continue
and that ML techniques will also become increasingly prominent in the field of tribology
due to technological advances and decreasing barriers and preconceptions. Therefore, the
analysis of the publications with respect to the fields of application is of particular interest,
which is illustrated in Figure 2c. Especially in the areas of composite materials, drive
technology, and manufacturing, numerous successful implementations of ML algorithms
can already be found. Yet, some studies can also be found for surface engineering, lubricant
formulation or manufacturing. As depicted in Figure 2d, ML techniques are applied for
monitoring tribo-systems or for pure analytical/diagnostic purposes, but especially for
predicting and optimizing the tribological behavior with respect to the friction and wear
behavior. The scales under consideration are mainly on the macro and/or micro level,
see Figure 2e. However, a few works also show the applicability down to the nano scale.
Finally, it could be observed that the database for training the ML algorithms can also be
generated based on numerical or theoretical fundamentals from simulation models or on
information from the literature. However, the vast majority (roughly three quarters) of the
published work is based upon experimentally generated data sets (Figure 2f).
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3. Results

As illustrated in the previous section, there is a wide variety of implementations of
different ML/AI approaches. In order to give a more detailed overview of applications for
ML to solve tribological issues, various cases are presented and discussed in the following.
Since the aim is to address interested readers from the field of tribology and to show how
ML can be used effectively in their respective fields, this is organized according to the area
of application in descending order of the number of published works.

3.1. Composite Materials

ML and AI algorithms are already widely used in the field of composite materials for
tribological applications. Generally, there has been a remarkable growth in the large-scale
use of materials made from two or more constituent materials with different physical or
chemical properties, for example a fiber and/or filler reinforced polymer (PMC), ceramic
(CMC) or metal (MMC) matrix composites. The advantages of these materials lie especially
in the high strength-to-weight as well as stiffness-to-weight ratios [30]. For a general
overview of tribological properties of different composites in dependency of contact and/or
environmental conditions, the interested reader is referred to various review articles [31–33].
A major field which already exploited ML approaches to a greater extent have been
wear-resistant composites with polymer matrix, for example thermosets such as epoxy
or polyester [34] as well as thermoplastics [35], e.g., polyamide (PA), polyphenylene
sulfide (PPS), polytetrafluoroethylene (PTFE), polyethylene (PE), polyether ether ketone
(PEEK) [36,37], or polypropylene (PP) [38].

3.1.1. Thermoset Matrix Composites

In this way, Padhi and Satapathy [39] applied a Taguchi experimental design of ex-
periments (DoE, 16 data points) in combination with a back propagation ANN to train
multi-layered feed-forward networks, predicting the tribological behavior of epoxy com-
posites with short glass fibers (SGF) and/or micro-sized blast furnaces slag (BFS) particles.
Based on data obtained from tests in a pin-on-disk setup under dry sliding conditions
against a hardened ground steel counter-body and divided into training, test and validation
categories and operational and material parameters with significance for the resulting wear
rate were thus identified. Thereby, the ANN was able to predict the specific wear rate
with low errors between 2.5% and 6.9% for composites without BFS and between 0.9%
and 5.1% for composites with BFS. Epoxy composites were also investigated recently by
Egala et al. [40] with newly developed natural short castor oil fibers (ricinus communis)
as unidirectional reinforcements of different lengths and at a constant volume fraction of
40%. The database consisting of 36 data points was acquired from experiments utilizing
a flat pin-on-disk tribometer under dry sliding conditions against a hardened steel disk
as a counter-body. Besides fiber lengths, the normal force as well as the sliding distance
were varied and the influence on gravimetric wear, interfacial heat, and COF were studied
within a full factorial DoE. The experiments were carried out in duplicate and averaged
values were used in further data processing. Thereby, the relationships between variation
parameters and target values were expressed by linear regression as well as by hidden
layer ANNs. For the training of the latter, the data set was randomly split into training
(60%), validation (20%), and test (20%) data. To find the best prediction, 73 different ANNs
(cascade forward back propagation, feed forward back propagation and layer recurrent)
with Levenberg-Marquardt (LM) training function and a varying number of hidden layers
(1–4), number of neurons (7–15), and different transfer functions (Logsig, Purelin) were
tested stepwise (see Figure 3a–d). It was found that the linear regressions were able to
describe the results within errors of ±8%. The best predictions however were provided
by a cascade forward back propagation network as well as a feed forward back propa-
gation ANN with architectures as illustrated in Figure 3e,f using Trainlm and Purelin as
training and transfer functions. Thereby, the errors were ±5% and ±4.5%, respectively,
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indicating higher efficiency and reliability in predicting the tribological behavior of studied
composites than common regression models.
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Nirmal [41] attempted to predict the friction coefficient of treated betelnut fiber re-
inforced polyester composites by an ANN trained with data from 492 experimental sets
of a block-on-disk tribometer against stainless steel under dry sliding conditions with
varying normal loads, sliding distances and three different fiber orientations (parallel, anti-
parallel and normal). In trial-and-error variations of neuron, layer, and transfer function,
an ANN consisting of two hidden layers with 30 and 20 neurons, respectively, trained
by LM function and utilizing logsig transfer functions between the hidden layers and a
pure linear transfer function to the output layer was found as most capable of predicting
the COF based upon the inputs. Albeit other training algorithms (gradient descent back
propagation, with momentum and adaptive learning rate, with adaptive learning rate and
conjugate gradient back propagation with Powell-Beale restarts) resulted in significantly
faster convergence, the LM function featured the lowest errors compared to the test data,
especially after repeated training. Thus, sum squared errors (SSE) of less than 10−2 were
obtained. Similarly, Nasir et al. [42] identified the LM function as most suitable compared to
others when training ANNs to predict the COF from 7389 data sets attained in experiments
on multi-layered glass fiber reinforced polyester resin rubbing against stainless steel using
a disk-on-flat tribometer under different fiber orientations, loads, sliding speeds, and test
durations. The prediction model was able to reproduce the trends of the experiments
well and accuracies up to 90% were achieved. It was stated, however, that performance
was lower compared to other studies due to the large amount of input data as well as
larger deviations and fluctuations in the experimental results, especially during running-in
periods. Furthermore, it was emphasized that the number of layers as well as neurons have
a decisive influence on the results. While multi-hidden layer ANNs mapped partial areas
of the input data (e.g., only one fiber orientation) very well, the entire data area was best
represented by a single-hidden layer ANN with comparatively many neurons.

3.1.2. Thermoplastic Matrix Composites

Already in the early 2000s, Velten et al. [43,44] evaluated the ability of ANNs to predict
tribological properties of short fiber thermoplastic matrix (PA) composites and aid in the



Lubricants 2021, 9, 86 7 of 32

material design. Here, the decisive role of the data sets as well as the ANN architecture
was emphasized as well. Later, Gyurova et al. [45] modeled the tribological behavior
of PPS composites with short carbon fibers (SCF), graphite, PTFE, and titanium dioxide
(TiO2) fillers with over 90 data sets obtained from dry-running pin-on-disk tribometer tests
at constant test duration and varied loads and sliding speeds. The data were split into
80% training and 20% testing data and included the material composition (matrix volume
fraction, filler, reinforcing agents and lubricants), testing conditions (pressure and sliding
speed), as well as characteristic thermo-mechanical properties (tensile and compressive
properties) as inputs and the specific wear and the friction coefficient as outputs. For the
latter, separate ANNs were trained by a gradient descent back propagation algorithm with
momentum and adaptive learning rate to minimize the mean relative error (MRE). These
consisted of two hidden layers with 9 and 3 (wear rate) as well as 3 and 1 (COF) neurons,
respectively. Thus, most significant inputs could be identified, and it was observed that
the MRE for the wear rate (0.60–0.78) was higher than for the sliding friction (0.10–0.12),
which was attributed to the rather small database. Furthermore, a so-called optimal brain
surgeon (OBS) method was used to prune the ANN through the identification and removal
of irrelevant nodes (weight elimination). The architectures as well as exemplary 3D profiles
for predicting the wear rate in dependency of the SCF and the TiO2 content before and
after pruning are illustrated in Figure 4. Apparently, both cases matched adequately
with the experimental data. Besides higher computational efficiency, the pruned network
featured superior prediction accuracy in some areas of the parameter space. Finally,
optimal compositions with higher SCF and lower TiO2 concentrations around 10–15%
as well as 3–5%, respectively, could be derived with considerably reduced experimental
efforts, which corresponded well to the observations from Jiang et al. [46]. Gyurova and
Friedrich [47] evaluated the influence of the data set size on the prediction capabilities
of trained ANNs. Utilizing a newly measured database consisting of 124 independent
pin-on-disk dry sliding wear tests on PPS matrix composites, the mean relative errors
were reduced from above 0.72 to below 0.55 (specific wear rate) and from above 0.11 to
beneath 0.10 (COF) compared to previous studies [45,48]. Later, the approach was further
enhanced by Busse and Schlarb [49] using the same data, most notably by utilizing a
LM training algorithm with mean squared error regularization as performance function,
which significantly improved the computational efficiency and, in particular, the accuracy.
Independently of the inputs, the wear rate prediction quality was found to be six times
higher compared to the comparative studies [45,47].

Zhu et al. [50] also emphasized the crucial role of data set size and reported better
agreement of experimental data with the prediction of the friction coefficient than with the
volumetric wear losses when applying an ANN to carbon fiber and TiO2 reinforced PTFE.
12 Different compositions were therefore investigated in block-on-disk dry sliding tests
under varying sliding velocities and normal loads. A network trained by gradient search
and consisting of three hidden layers (15, 10, and 5 neurons) and tan-sigmoid transfer
functions between the input and the hidden layers as well as pure linear transfer functions
to the output layer was found to deliver the least mean square errors. Li et al. [51] applied
a Monte Carlo-based ANN to predict the tribological behavior of PTFE resin with aramid
pulp, potassium titanate whisker (PTW), mica, copper (Cu) as well as silicon dioxide
(SiO2) for ultrasonic motors and compared the performance to a back propagation ANN.
The database, an orthogonal table by variation of the composition, was generated from
experiments conducted in triplicate on a quasi-static test rig where the specimens were
fixed on a dynamic rotor and slid against a phosphor bronze stator at constant speed and
load. In combination with a grey relational analysis, it was shown that especially mica and
SiO2 exerted significant roles for friction and wear improvements. The Monte Carlo-based
ANN was particularly suitable for predictions with more limited amount of data due
to repeated random sampling and the utilization of combinations of different transfer
functions (sigmoid, polynomial, tanh, and gauss functions). The authors reported that, in
the context of the variation and volatility of the underlying data, the Monte Carlo ANN
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performed better than the conventional back propagation ANN with root mean squared
errors of 0.97 (specific wear rate) and 0.007 (COF) compared to 2.08 and 0.019.
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Kurt and Oduncuoglu [52] utilized 125 data sets extracted from established literature
sources to study the effects of normal load and sliding speed in dry sliding experiments
as well as the type and weight fraction of various reinforcements in ultrahigh molecular
weight PE (UHMWPE) composites by a feed forward back propagation ANN. This in-
volved zinc oxide (ZnO), zeolite, carbon nanotubes (CNT), carbon fibers (CF), graphene
oxide (GO), and wollastonite additives, leading to a total number of 11 inputs, whereas
the volumetric wear loss was considered as target/output value. In a trial-and-error
search, an ANN with a single-hidden layer consisting of 12 neurons and logistic sigmoid
transfer functions trained by a LM algorithm was selected. With R2 values for training
and testing above 0.8 as well as mean absolute errors not exceeding 4.1%, it was thus
shown that sliding speed and load determined the wear losses more significantly than the
particle types and fractions. Recently, Vinoth and Datta [53] also used 153 experimental
data sets from literature to predict mechanical properties of UHMWPE composites with
multi-walled carbon nanotubes (MWCNT) and graphene reinforcements in dependency of
seven input variables comprising composite composition, particle size, and mechanical
bulk properties. A feed forward ANN with scaled conjugate gradient back propagation,
hyperbolic tangent transfer functions and 3 (for Young’s modulus) or 5 (for the ultimate
tensile strength) hidden layers were utilized, achieving correlation coefficients for the
outputs of 0.93 and 0.97, respectively. Subsequently, a multi-objective (pareto) optimization
of the input variables was performed with a non-dominated sorting genetic algorithm.
On this basis, samples (pins) of UHMWPE composites with MWCNT and graphene filler
ratios considered as optimal were fabricated accordingly and characterized mechanically
as well as in tribological tests under dry sliding conditions against cobalt chromium alloy
disks. It was actually possible to demonstrate improved properties compared to references
and, in particular, excellent wear behavior due to the formation of wear-protecting transfer
films on the counter-body.

3.1.3. Metal Matrix Composites

Some successful studies using ML and AI can also be found for composites with
soft metals as matrix [54], for example aluminum, copper or zinc and their alloys [55–59].
As such, Stojanović et al. [60] investigated the friction and wear behavior of aluminum
hybrid composites with Al-Si alloy matrix and 10 wt.% silicon carbide (SiC) as well as 0, 1,
and 3 wt.% graphite. The data sets were generated in lubricated block-on-disk tribometer
tests at three sliding speeds, the normal loads and at constant sliding distance with the
application of Taguchi’s robust orthogonal array design method (27 data points). This was
reported to be a simple and efficient methodology. Besides performing ANOVA factor vari-
ance analysis and the fitting of a linear regression model, a feed forward back propagation
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ANN was developed. Therefore, 70% of the data were used for training, 15% for testing
and 15% for validation. The model was trained by LM optimization and consisted of two
hidden layers of 20 and 30 neurons, respectively, as well as logarithmic sigmoid and pure
linear transfer functions. The values predicted by the ANN provided sufficient agreement
with the experiments and were more precise than those provided by the statistical meth-
ods used. Similarly, Thankachan et al. [61] compared the performance of a feed forward
back propagation ANN with statistical regression analysis when investigating the wear
behavior of hybrid copper composites with aluminum nitride and boron nitride particles
in dry-running pin-on-disk tribometer tests at different volumetric fractions, loads, sliding
speeds and sliding distances by applying Taguchi’s orthogonal array. The ANN featured
the 4 inputs, one hidden layer with 7 neurons, the specific wear rate as output and was
trained by the LM function to optimize the mean absolute error. Thus, the neural network
reached higher accuracy than the reference regression model.

Gangwar and Pathak [62] introduced a novel improved bat algorithm (IBA) to train
an ANN for predicting the wear behavior of marble dust reinforced zinc-aluminum (Zn-Al)
alloy by optimizing the weights, biases and neurons as well as finding minimum mean
squared errors, see Figure 5a). The main advantage of the IBA compared to other training
algorithms (e.g., back propagation, genetic algorithms or particle swarm optimization) was
in the flexibility and stable training through the introduction of a new velocity, position
search equation and sugeno inertia weights. This overcame local optima stagnation and
enhanced the convergence speed. The evaluation of the specific wear rate was based on data
from pin-on-disk experiments with varied filler content, normal load, sliding velocity and
distance, as well as ambient temperature (5 levels each) by means of a Taguchi orthogonal
array (25 data sets). Thereby, an ANN with 7 neurons in the single-hidden layer was found
to be optimal, with a mean squared error of 0.26 and an average prediction accuracy of
97%. Exemplary 3D plots of the wear rate as a function of the variation parameters are
shown in Figure 5b). Obtained results and the suggested IBA-ANN approach can thus
help to save resources when searching for beneficial stress or material combinations with
limited experimental database.
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Very recently, Hasan et al. [63,64] compared five different ML techniques when predict-
ing the friction and wear behavior of aluminum base alloys and graphite composites: ANN,
kNN, SVM, gradient boosting machine (GBM), and RF. The 852 data sets were obtained
from experimental studies in literature. It was shown that basically all ML approaches
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were able to adequately describe the tribological behavior from material and tribological
test data. Thereby, RF outperformed the other algorithms in predicting the wear behavior,
while GBM and KNN had the highest accuracy for the friction behavior for the base alloy
and the composite, respectively. This underlines that the right choice of the ML approach
is highly dependent on the respective problem formulation.

The works in the area of composite materials are summarized in Table 1 according to
the subject, the database, the inputs and outputs, and the ML approach.

3.2. Drive Technology

In the field of drive technology, there are several areas of application for using ML for
rolling and sliding bearings, seals, brakes, and clutches, which are involved in systems for
motion generation and power transmission.

3.2.1. Rolling Bearings

Rolling bearings are among the most important machine elements, locally transmitting
large forces via several rolling contacts. The bearing components are also exposed to
complex dynamics and friction occurs in numerous contacts influencing the operation.
Bearing failures can be of very different nature. Mostly, they are longer lasting processes
between first occurrence of damage and fatal failure. However, damage to rolling bearing
components can be quickly observed in the operating behavior of machines and systems,
for example in the form of increasing friction, heat, vibration, and noise. Therefore, one
possible application for ML is condition monitoring and damage detection [65,66]. Most
published work was related to vibration theory rather than tribology [67,68], which is why
only some representative examples shall be introduced.

Table 1. Overview of ML approaches successfully applied in the area of composite materials.

Subject

Database, Number of
Data Sets (If

Applicable Divided
in

Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

SGF and
BFS

reinforced
epoxy

experimental
(pin-on-disk) Taguchi

DoE, 16

BFS content, sliding
velocity, normal load,

sliding distance

spec.
wear
rate

back
propagation
ANN (4:7:1)

Errors < 6.9% [39]

unidirectional
short castor

oil fiber
reinforced

epoxy

experimental
(pin-on-disk) full
factorial DoE, 36
(60%/20%/20%)

fiber length, normal
load, sliding distance

wear,
temper-
ature,
COF

various ANNs,
best results for

back
propagation

ANN (3:9:3 &
3:9:12:9:3)

averaged total
errors < 5% [40]

treated
betelnut

fiber
reinforced
polyester

experimental
(block-on-disk), 492

fiber orientation,
normal load, sliding

distance
COF ANN

(3:30:20:1) SSE < 1% [41]

glass fiber
reinforced
polyester

experimental
(disk-on-flat), 7389

fiber orientation,
rotational speed,
normal load, test

duration

COF ANN (4:40:1) SSE < 15% [42]

SCF,
graphite,

PTFE, and
TiO2

reinforced
PPS

experimental
(pin-on-disk), 90

(80%/20%)
matrix vol. fraction,

filler, reinforcing agent
and lubricant, contact

pressure, sliding
speed, tensile strength,
compressive strength

spec.
wear
rate,
COF

various
gradient

descent back
propagation

ANNs (7:9:3:1
for wear, 7:3:1:1

for COF)

MRE < 0.78 (wear),
MRE < 0.12 (COF) [45]

experimental
(pin-on-disk), 124

(80%/20%)

MRE < 0.55 (wear),
MRE < 0.10 (COF) [47]

MRE < 0.14 (wear),
MRE < 0.03 (COF) [49]
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Table 1. Cont.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

CF and
TiO2

reinforced
PTFE

experimental
(block-on-ring), 30–105
(10–98%/2–90%), best

results for largest
database

PTFE content, carbon
fiber content, TiO2

content, sliding speed,
normal load, hardness,
compressive strength

vol.
wear
loss,
COF

various ANNs,
best results for
gradient search

ANN
(7:15:10:5:1)

CoD > 90% [50]

aramid
pulp, PTW,
mica, Cu,
and SiO2

reinforced
PTFE

experimental
(rotor/stator test-rig)
in orthogonal table
DoE, 18 (80%/20%)

aramid pulp content,
PTW content, mica
content, Cu content,

SiO2 content

spec.
wear
rate,
COF

back
propagation

ANN

RMSE < 2.08
(wear),

RMSE < 0.019
(COF)

[51]

Monte
Carlo-based

ANN

RMSE < 0.97
(wear),

RMSE < 0.007
(COF)

ZnO,
zeolite,

CNT, CF,
GO, and

wollastonite
reinforced
UHMWPE

experiments from
literature, 125

UHMWPE content,
ZnO content, Zeolite
content, CNT content,

CF content, GO
content, wollastonite
content, normal load,

sliding speed

vol.
wear
loss

back
propagation

ANN (11:12:1)

R2 > 0.8, mean total
error < 4.1%

[52]

MWCNT
and

graphene
reinforced
UHMWPE

experiments from
literature, 153

MWCNT fiber
diameter, MWCNT

fiber length, MWCNT
content, graphene

sheet length, graphene
sheet thickness,

graphene content,
UHMWPE molecular

weight, UHMWPE
tensile strength,

UHMWPE Young’s
modulus

Young’s
modu-

lus,
tensile

strength

scaled
conjugate

gradient back
propagation

ANN (7:3:1 for
Young’s

modulus and
7:5:1 for tensile

strength)

R2 > 0.93 (Young’s
modulus), R2 > 0.97

(tensile strength)
[53]

graphite
reinforced
Al-Si alloy

experimental
(block-on-disk) in

Taguchi’s orthogonal
array DoE, 27

(70%/15%/15%)

graphene content,
normal load,

sliding speed

vol.
wear
rate,
COF

back
propagation

ANN (3:20:30:2)
R2 > 0.98 [60]

aluminum
nitride and

boron
nitride

reinforced
copper

experimental
(pin-on-disk) in

Taguchi’s orthogonal
array DoE, 27

(90%/10%)

volume fraction,
normal load, sliding

velocity, sliding
distance

spec.
wear
rate

back
propagation
ANN (4:7:1)

errors < 3.4% [61]

marble dust
reinforced

Zn-Al alloy

experimental
(pin-on-disk) in

Taguchi’s orthogonal
array DoE, 25

(60%/20%/20%)

filler content, normal
load, sliding velocity,
sliding distance, amb.

temperature

spec.
wear
rate

IBA trained
ANN (5:7:1)

MSE < 0.26,
accuracy > 97% [62]
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Table 1. Cont.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

Graphite
reinforced
aluminum

alloy

experiments from
literature, 852

graphite content,
hardness, ductility,

processing procedure,
heat treatment, SiC

content, yield strength,
tensile strength,

normal load, sliding
velocity, sliding

distance,

vol.
wear
rate,
COF

back
propagation

ANN
(11:10:10:10:2)

MSE < 0.003 wear)
RMSE < 0.06 (wear)

R2 > 0.74 (wear)
MSE < 0.004 (COF)
RMSE < 0.06 (COF)

R2 > 0.86 (COF)

[63,64]

kNN

MSE < 0.002 wear)
RMSE < 0.04 (wear)

R2 > 0.85 (wear)
MSE < 0.007 (COF)
RMSE < 0.08 (COF)

R2 > 0.76 (COF)

RF

MSE < 0.001 wear)
RMSE < 0.04 (wear)

R2 > 0.88 (wear)
MSE < 0.004 (COF)
RMSE < 0.06 (COF)

R2 > 0.86 (COF)

SVM
MSE < 0.006 (COF)
RMSE < 0.08 (COF)

R2 > 0.76 (COF)

GBM

MSE < 0.002 wear)
RMSE < 0.04 (wear)

R2 > 0.86 (wear)
MSE < 0.003 (COF)
RMSE < 0.05 (COF)

R2 > 0.89 (COF)

As such, Subrahmanyam and Sujatha [69] investigated the suitability of two differ-
ent ANNs, namely multilayered feed forward neural network trained with supervised
error back propagation (EBP) technique and an unsupervised adaptive resonance theory-2
(ART2) based neural network, for the diagnosis of local defects in deep groove ball bearings.
The input vector consisted of eight parameters that were used to describe the vibration
signal and the output was a condition rating for the bearing (good/bad) and, if the con-
dition was classified bad, the defect was pinpointed. The authors concluded from their
work that the performance of the ANN with EBP was excellent for recognizing ball bearing
states. They reported that defective bearings were distinguished from good ones with 100%
confidence, while the ANN had a success rate of over 95% in diagnosing localized defects.
The results of the ANN with ART2 were ambivalent: The learning process was about
100 times faster than that of the ANN with EBP and defective bearings also were distin-
guished from good ones with 100% reliability. Yet, the estimation of localized defects was
not satisfactory. Furthermore, Kanai et al. [70] presented a condition monitoring method for
ball bearings using both, model-based estimation (MBE) and ANN, to guess the vibration
velocity and the defect frequency of the rotor-bearing-system. The authors based their
study on a three-layered feed forward neural network trained with EBP, where the input
vector consisted of 5 parameters (speed, load, defect volume, radial clearance, number of
balls) obtained from rig tests on a self-aligning deep groove ball bearing. According to the
authors, the ANN shows satisfactory results compared to MBE and experimental tests.

Apart from condition monitoring, ML approaches have recently been utilized for
designing rolling bearing components. Schwarz et al. [71] used different ML methods to
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classify possible cage motion modes of rolling bearings and to predict application-related
undesired cage instabilities, see Figure 6. The data set was generated from sophisticated
rolling bearing dynamics simulations, which were confirmed by means of experimental
investigations on a test rig. Based on the simulations, the authors determined metrics
that, in combination, reliably characterize the state of the cage condensed in three classes
“stable”, “unstable” and “circling”. They used these metrics to classify cage motion us-
ing quadratic discriminant analysis (QDA). QDA is a method of multivariate statistics to
separate different classes on the basis of characteristics [16]. It is interesting to note that
we could not discover this method in any other article within our literature survey. To
predict the class of cage motion, Schwarz et al. applied decision trees as weak learners
within an ensemble classification model based on AdaBoostM1 [72] to achieve good results.
Furthermore, Wirsching et al. [73] aimed at tailoring the roller face/rib contact in tapered
roller bearings. Geometric parameters were sampled by a Latin hypercube sampling (LHS)
and the tribological behavior was predicted by means of elastohydrodynamic lubrication
(EHL) contact simulations. Key target variables such as pressure, lubricant gap and fric-
tion were approximated by a so-called metamodel of optimal prognosis (MOP) [74] and
optimization was carried out using an evolutionary algorithm (EA). The MOP fully auto-
matically filtered non-significant variables and various approaches (polynomial regression,
moving least squares, isotropic or anisotropic kriging) were trained to derive the most
suitable approximation. The applied ML approach provided very good prediction for most
geometries and target values, which was reflected in the high prediction coefficients (CoP)
in most cases above 90% and the low errors in mostly below 2% of the optimized pairing
between the prediction and verification calculations.
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3.2.2. Sliding Bearings

Since the operating behavior of sliding bearings is highly non-linear and depending
on numerous parameters, ML methods have been utilized for the analysis and synthesis of
the tribosystem. Canbulut et al. [75] analyzed the frictional losses of a hydrostatic slipper
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bearing using an ANN fed by experimental test data. Input parameters were the average
roughness of the rubbing surfaces, relative velocity, supply pressure, hydrostatic pocket
ratio, and capillary tube diameter. Three-layered feed forward neural networks containing
10 neurons in the hidden layer trained with EBP were to be found as suitable. The predictive
performance of the ANN was evaluated using six operation cases for the bearing, where an
exact match of the ANN predictions with the experimental results was reported. Further,
using ANNs, Ünlü et al. [76] analyzed the friction and wear behavior of a radial journal
bearing (bronze CuSn10/steel SAE 1050 pairing) under dry and lubricated conditions. The
ANN with EBP technique was featured a 3:5:5:3 multilayer architecture for the dry case and
3:4:4:3 for the lubricated case. The input vector was described by time, applied load and
rotational speed and the outputs were coefficient of friction, journal and bearing weight loss.
Input data were collected from previously published experiments. The ANN predictions
show high agreement to the experimental data and the authors stated that such ANNs
can effectively reduce the number of future experiments. Furthermore, Moder et al. [77]
showed that supervised ML algorithms can be used to predict the lubrication regime
of hydrodynamic radial journal bearings based on given torques. Therefore, the torque
time series were first analyzed using Fast Fourier Transformation (FFT) and manually
assigned to lubrication regimes. Two ML algorithms were used for the classification
task: Logistic regression and deep neural networks. Based on their results, the authors
concluded that even shallow neural networks as well as logistic regressions are able
to reach high accuracy for the given problem. It was indicated that data scaling was
essential, while feature scaling, which is often applied in data analysis, was not suitable
for the FFT classification. Prost et al. [78] investigated the feasibility of classifying the
operating condition (running-in, steady, pre-critical, critical) of a translationally oscillating
self-lubricating journal bearing using an ensemble learning algorithm. To this end, the
authors applied a semi-supervised random forest classifier (RFC), which was based on
the aggregation of a large number of independent decision trees. The RFC was trained
with high-resolution force signals from experiments and showed a very high classification
accuracy in validation experiments. The authors pointed out, that labeling the data is
essential and requires expert knowledge. As this step is very tedious and time-consuming,
they suggested a semi-automated process based on principal components analysis and
k-means clustering algorithms. Francisco et al. [79] studied how far ML can be used to
optimize connecting rod big-end bearings. They combined sophisticated finite element
(FE) simulations with a nondominated sorting genetic algorithm, which allowed them to
minimize the frictional losses and functioning severity of the bearing by optimizing 10
parameters. The authors concluded that metamodels based on previous simulations and
including all relevant parameters allow the optimization of a tribological system in a very
time and resource saving way.

3.2.3. Seals

Seals play an important role in mechanical drive technology as they separate lubricants
or operating fluids and the environment of the drive train from each other. Contact seals
frequently affect the friction behavior in the whole drive train, and they are exposed
to wear. Increasing requirements demand more precise descriptions of the tribological
behavior of contact seals in design phases as well as condition monitoring [80,81]. Logozzo
and Valigi [82] suggested ANNs as an alternative for analytical models to predict friction
instabilities and critical angular speeds of face seals during shaft decelerations. The
authors studied different feed forward neural networks with 2:x:1 architecture (x = 6,
8, 10, 12, 15, 16), trained with supervised EBP technique. Thereby, 10 neurons in the
hidden layer showed the best training convergence. Input data were collected from
experimentally validated tribo-dynamics simulations based on a lumped parameter model
with 2 degrees of freedom. The input vector of the ANNs consisted of two parameters
(axial and torsional stiffness). The authors pointed out that unlike deterministic models, the
ANNs were not able to explain the phenomena of frictional instability but provided a smart
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way to define parameters in the design phase for the avoidance of frictional instabilities.
Yin et al. [83] used a SVM regression to monitor the status of a gas face seal based on
acoustic emissions (AE). Input data as well as validation data were collected from rig tests.
To generate the representative vectors with satisfactory experimental agreement, the AE
power concentration in several key bands within certain durations were used.

3.2.4. Brakes and Clutches

Brakes and clutches are safety-relevant components and have to work reliably even
under extreme conditions. They are usually integrated in closed loop control systems,
which makes it necessary to describe and optimize the braking and coupling behavior,
involving complex squealing and wear phenomena. Accordingly, ML approaches have
been applied in this area as well [84,85]. For example, Aleksendrić et al. [86,87] applied
an ANN to model the speed-dependent cold performance of brakes They considered
18 material composition parameters, five manufacturing parameters and three operating
condition parameters as inputs. Friction data was collected from test rig experiments. Since
it is not known a priori which model provides the best prediction quality, the authors
investigated 18 different architectures with five different learning algorithms (LM, Bayesian
regulation, resilient back propagation, scaled conjugate gradient and gradient decent).
The best prediction results were provided by a 26:8:4:1 double-hidden-layer architecture
trained by a Bayesian regulation algorithm. The authors stated that their ANN has shown
sufficient flexibility to generalize the influences of unknown types of friction material on
their cold performance. The methodology was later extended to predict materials recovery
performance [88] and brake wear [89] by the same authors. Basically, the procedure was
similar to the work described above and the best prediction results were attained from
a single hidden layer ANN (25:5:1) trained by a Bayesian regulation algorithm. Timur
and Aydin [90] investigated whether the friction coefficient of brakes can be predicted by
means of ML based upon experimental training data (1050 points). Comparing different
regression methods (linear, least median squared linear, Gaussian processes, pace, simple
linear, isotonic, SVM) and 10-fold cross-validation, they noted that all algorithms showed a
correlation coefficient larger than 0.99 and a root mean squared error below 0.01. However,
isotonic regression allowed the fastest model building.

The prediction of friction coefficient for automobile brake as well as clutch materials
against steel using ML algorithms was also addressed by Senatore et al. [91], who showed
how to obtain a comprehensive view on the influence of the main sliding parameters. Based
upon experimental data from pin-on-disk tests with varying sliding speed, acceleration and
contact pressure (200 data sets), the authors trained two different supervised feed-forward
double-hidden-layer EPB ANNs with a 3:6:3:1 architecture for braking and 3:6:7:1 for the
clutch material, respectively. The authors concluded that ANNs have confirmed suitability
for valid prediction of friction coefficients, with utility being enhanced by significance as
well as sensitivity analysis of input parameters. A possible application could be in more
accurate friction maps for electronic control purpose. However, the authors also discussed
the limitations of the approach, in particular pointing out extrapolation errors. Comparable
findings were obtained by Grzegorzek and Scieszka [92], who used a similar methodology
(in this case feed-forward EPB ANN with 6:12:1 architecture) to investigate the friction
behavior of industrial emergency brakes from 408 data sets. The authors self-described their
work as being at a preliminary stage, yet they were able to demonstrate the performance of
ANN against various models of multiply regression analysis.

The works in the area of drive technology are summarized in Table 2 according to the
subject, the database, the inputs and outputs, and the ML approach.
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Table 2. Overview of ML approaches successfully applied in the area of drive technology.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

groove ball
bearing defect

diagnosis

experimental (bearing
test-rig), 108
(90%/10%)

peak value of
amplitude, average of
top five peak values of
amplitude, peak value

of auto-correlation
function, standard
deviation, kurtosis

bearing
state

EBP ANN success
rate > 95% [69]

ART2 ANN success
rate = 100%

ball bearing
condition

monitoring

experimental (bearing
test-rig), 145
(75%/25%)

speed, load, defect
volume, radial

clearance,
number of balls

vibration
velocity

back
propagation
ANN (5:12:1)

errors < 14% [70]

cage motion
mode

classification in
rolling bearings

numerical (dynamics
simulation)
LHS, 4000

cage mass, cage
bending stiffness,
pocket clearance,

guidance clearance,
bearing type, COF,

axial force, radial force,
bending moment,
rotational speed

CDI QDA and DT accuracy > 91% [71]

TRB roller/face
rib contact
geometry

design

numerical (EHL
simulation) in LHS, 370

(70%/30%)

roller face radius,
eccentricity, rib radius

max.
pressure,
min. film

height,
COF

MOP CoP > 90%,
errors < 2% [73]

frictional power
losses of

hydrostatic
slipper bearings

experimental
(hydrostatic slipper

test-rig)

average roughness,
relative velocity,
supply pressure,

hydrostatic pocket
ratio, capillary
tube diameter

frictional
power

loss

back
propagation

ANN
errors < 1.9% [75]

dry and
lubricated

journal bearing
behavior

experimental (journal
bearing test-rig), 4

time, load,
rotational speed

COF,
bearing
weight

loss,
journal
weight

loss

EBP ANN
(3:5:5:3 for dry
and 3:4:4:3 for

lubricated case)

mean errors < 4%
(dry), mean

errors < 5.3%
(lubricated),

[76]

journal bearing
lubrication

regime
prediction

experimental (journal
bearing test-rig), 888

(80%/20%)
frictional torque lubrication

regime

FFT+ back
propagation

ANN
(1:256:128:64:

32:16:8:1)

accuracy > 99% [77]

journal bearing
operating
condition

classification

experimental (journal
bearing test-rig), 9

(75%/25%)
time, lateral force operating

state RFC (DT) accuracy > 94% [78]
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Table 2. Cont.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

connecting rod
big-end bearing

design

numerical (elastic HL
simulation) in CCF

DoE, 9

oil viscosity at ref.
temperature, oil
viscosity at ref.

pressure, oil
thermo-viscosity

coefficient, oil
piezo-viscosity
coefficient, oil

piezo-viscosity index,
oil supply pressure,

lemon shape, shell bore
relief depth, shell bore

relief length, barrel
shape, radial clearance

pressure
times

velocity
product,
power

loss

nondominated
sorting genetic

algorithm
R2 > 0.99 [79]

face seal friction
instability
prediction

numerical (dynamics
simulation), 40

(90%/10%)

axial stiffness torsional
stiffness

critical
speed

various ANNs,
best results for

EBP ANN
(2:10:1)

R2 > 0.97 [82]

disk brake
performance

experimental (inertial
dynamometer), 275

(70%/10%/20%)

applied pressure,
initial speed, number

of braking events,
phenolic resin, iron

oxide, barites, calcium
carbonate, brass chips,
aramid, mineral fiber,
vermiculite, steel fiber,

glass fiber, brass
powder, copper

powder, graphite,
friction dust,
molybdenum

disulphide, aluminum
oxide, silica,

magnesium oxide, spec.
molding pressure,

molding temperature,
molding time, heat

treatment temperature,
heat treatment time

brake
factor

various ANNs,
best results for
Bayesian ANN

(26:8:4:1)

sufficient (not
quantified)

[86,
87]

brake materials
experimental (inertial
dynamometer), 408

(34%/33%/33%)

sliding speed, contact
pressure, temperature,
binder resin, premix

masterbatch, residuum

COF EPB ANN
(6:12:1) errors < 4% [92]

clutch materials
experimental

(pin-on-disk), 200
(50%/25%/25%)

sliding speed, sliding
acceleration,

contact pressure
COF

EPB ANN
(3:6:3:1) sufficient within

the data range
(not quantified)

[91]

EPB ANN
(3:6:7:1)

3.3. Manufacturing

ML approaches were also employed in the area of manufacturing technology, for
example, for process monitoring or in quality control/image recognition [6]. There are also
some studies related to tribology, particularly regarding friction stir welding [93–95], but
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also for forming or machining [96]. Sathiya et al. [97] modeled the relationship between
friction welding process parameters as heating pressure, heating time, upsetting pressure
as well as upsetting time and output parameters (tensile strength and metal loss) when
joining similar stainless steel by means of a back propagation ANN with 9 neurons in the
single-hidden layers. The database (14 data points) was generated from corresponding
experiments. Subsequently, different optimization strategizes based upon the ANN’s pre-
diction were compared: Genetic algorithm, simulated annealing algorithm, and particle
swarm optimization. Among them, the genetic algorithm was reported to be most suit-
able and good agreement was found between the prediction of tensile strength and metal
loss for optimized process parameters with respective validation experiments. Similarly,
Tansel et al. [98] and Atharifar [99] applied and confirmed the suitability of ANNs for
optimizing friction stir welding processes. However, the latter further introduced an opti-
mization of the back propagation ANNs using a genetic algorithm (genetically optimized
neural network systems) to maximize the prediction quality. Anand et al. [100] com-
pared the performance of an ANN (4:9:2) with a response surface methodology approach
(quadratic polynomial models) when optimizing friction welding with respect to tensile
strength and burn-off length. The data (30 data sets) were generated with experiments
within a five-level, four variable centrale composite DoE (CCD). It was observed that the
ANN featured higher accuracy by a factor of two compared to the response surface. In turn,
Dewan et al. [101] compared back propagation neural networks with adaptive neuro-fuzzy
interference systems (ANFIS) [102] when predicting tensile properties in dependency of
spindle speed, plunge force and welding speed from a rather small database (73 data
points). Here, 1200 different ANFIS models were developed with varying number and type
of membership functions as well as input combinations. It was reported the optimized
ANFIS provided lower prediction errors than the ANN.

In addition to process optimization, ML approaches have also been used for moni-
toring friction stir welding. Baraka et al. [103] made use of process signals (traverse and
downward tool force) to predict the weld quality. This was based upon frequency analysis
by FFT, and an interval type 2 radial base function (RBF) neural network trained by an
adaptive error propagation algorithm that effectively provided continuous feedback to the
operator with an accuracy above 80%. Das et al. [104] also used real-time process signals
(torque) for internal defect identification in friction welding. The experimentally obtained
signals were analyzed by discrete wavelet transformation, statistical features (dispersion,
asymmetry, excess) as well as general regression models and ML methods, namely SVM
and back propagation ANN (3:5:1, log-sigmoid transfer functions) trained by the gradient
descent method to predict tensile strength. It was reported the prediction performance of
the SVM (0.5% error) was superior to regression (13.6%) and the ANN (3.1%).

Regarding other manufacturing processes, Fereshteh-Saniee et al. [105] trained a
feedforward back propagation ANN with 21 neurons in the single hidden-layer (tan-
sigmoid transfer function) from over 700 FE simulations to determine material flow and
friction factors in one-step ring forming. Thereby, obtained load curves showed good
agreement with experimental validation tests, featuring an accuracy of 99% and 97% for
grease lubricated and dry conditions, respectively. The difference was traced back to
higher variations of friction for unlubricated forming. Furthermore, Bustillo et al. [106]
attempted to predict surface roughness and mass loss during turning, grinding, or electric
discharge machining based upon surface isotropy levels and different ML approaches:
Artificial regression trees, multilayer perceptions (MLP), RBF networks, and random forest.
The most accurate approach for predicting the loss of mass was found to be RBF, while
the MLP most precisely predicted the arithmetic mean roughness. However, the model
parameters of both approaches had to be tuned very carefully and even small changes led
to a substantial increase of errors. In contrast, satisfactory accuracy without any tuning
stage could be obtained using the random forest ensembles. It was also reported that the
prediction quality was comparatively sound even outside the training record as well as for
smaller data sets.
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The works in the area of manufacturing technology are summarized in Table 3 accord-
ing to the subject, the database, the inputs and outputs, and the ML approach.

Table 3. Overview of ML approaches successfully applied in the area of manufacturing technology.

Subject

Database, Number of
Data Sets (If Applicable

Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

friction stir
welding

process opti-
mization

experimental (friction
stir welding), 14 heating

pressure,
heating time,

upsetting
pressure,

upsetting time

tensile strength,
metal loss

back
propagation
ANN (4:9:2)

MSE < 0,01% [97]

experimental (friction
stir welding), 30

RMSE < 0.98
(tensile

strength),
RMSE < 0.05

(tensile
strength),

[100]

experimental (friction
stir welding), 73
(60%/20%/20%)

rotational
speed, welding
speed, plunge

force, empirical
force index

tensile strength

various ANNs,
best results for

back
propagation
ANN (3:5:1)

mean absolute
error < 7.7%

[101]

ANFIS mean absolute
error < 10.1%

friction stir
welding
process

monitoring

experimental (friction
stir welding), 25

(80%/20%)

rotational
speed, welding

speed

weld threshold
for downward

force, weld
threshold for
traverse force

RBF trained
ANN

accuracy > 80% [103]

experimental (friction
stir welding), 64
(60%/25%/15%)

rotational
speed, welding
speed, shoulder

diameter
tensile strength

SVM error < 0.5%

[104]
back

propagation
ANN

error < 3%

ring
forming

numerical (FE
simulation), 700

polynomial
regression

factors to fit
load-

displacement
curves

strain
hardening
exponent,
strength

coefficient, COF

ANN (8:21:3:3) accuracy > 97% [105]

3.4. Surface Engineering

Approaches to enhance the tribological behavior of components by modifying their
surfaces can be subsumed under the term surface engineering [107]. This involves ad-
justing the surface topography with and without compositional changes through as well
as the application of coatings. Examples include, among others, tailoring the roughness
and/or statistically distributed or discrete micro-textures, carburizing, nitriding, anodizing,
electroplating, weld hardfacing, thermal spraying, chemical, or physical vapor deposition
(CVD, PVD) [107]. Some studies have also applied ML approaches to better understand or
design the surface modifications.

3.4.1. Coatings

Cetinel [108] used a single-hidden layer feed forward ANN to predict the COF and
wear loss of thermally sprayed aluminum titanium oxide (Al2O3-TiO2) coatings. The
database was created by reciprocal pin-on-block tribometer tests under dry as well as acid
conditions different loads. In the ANN, the test conditions were the inputs and—after
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trial-and-error testing of different configurations—the hidden layer consisted of 80 neurons.
Furthermore, the ANN provided 63 outputs in the form of the COF and linear wear progress
at different times of the experiments. Thus, the tribological behavior over the test period
could be mapped very well. Sahraoui et al. [109] analyzed the friction and wear behavior
of high-velocity oxy-fuel (HVOF) sprayed Cr-C-Ni-Cr and WC-Co coatings as well as
electroplated hard chromium by means of a feed forward ANN. The database consisted
of 180 training and 180 test data sets from dry-running pin-on-disk tribometer tests of
the coated test specimens against brass disks at various normal loads and sliding speeds.
An ANN with sigmoid transfer functions as well as two hidden layers (6 and 4 neurons)
was found to be suitable for predicting the COF within variabilities between 5.8% and
10.8%. The main advantage of the model in this study was that the friction coefficients
could be predicted comparatively well for a range of parameters up to 7 times larger than
those contained in the training data. Upadhyay and Kumaraswamidhas [110,111] applied
a back propagation ANN to optimize multilayer nitride coatings on tool steel deposited
by unbalanced reactive PVD magnetron sputtering. The input parameters comprised bias
voltage and gas flow rate as well as time, velocity and load within pin-on-disk sliding
tests. The data was split into 70% training, 15% validation, and 15% test data. Training
was based on the LM function and the most favorable ANN consisted of 20 neurons in the
hidden layer. Thus, the wear rate as well as the COF could be predicted within errors of
less than 10%.

3.4.2. Surface Texturing

Otero et al. [112] attempted to optimize surface micro-textures fabricated by pho-
tolithography and chemical etching processes in order to reduce the COF of EHL contacts
by means of an ANN. The data was obtained from tests on a mini-traction machine (steel
ball-on-micro-textured copper disk) at various loads, total speeds and slip conditions. The
ANN consisted of 7 inputs (average velocity, SRR, load, minor and major axis dimensions,
depth and texturing density), 20 neurons in the hidden layer, and the COF as output. Thus,
load case-dependent ranges for beneficial texture parameters could be derived. Addi-
tionally, referring to tests on samples with pores or micro-textures on a lubricated mini
traction machine at different test conditions, Boidi et al. [113] applied an RBF to predict the
wear behavior of sintered components. The database included 1704 experimental sets with
different sum velocities and slip, as well as geometric or statistical characteristics of the
dimples, grooves and pores, respectively. A Hardy multiquadric RBF was found to provide
an excellent fit with an overall correlation of 0.93, especially with regard to the standard
deviations of the tribological experiments. Mo et al. [114] utilized statistical methods as
well as a back propagation ANN with 60 neurons in the single-hidden layer to investigate
the role of micro-texture shape deviations and dimensional uncertainties on the tribological
performance. The database was founded on physical modeling approaches in the form
of simulations of parallel, hydrodynamically lubricated (HL) contacts and randomly split
into 70% training and 30% validation data. The trained ANN was able to predict the
relationships between geometric micro-texture parameters (e.g., dimple diameter, depth,
area density etc.) and the frictional force as well as the load carrying capacity with an
accuracy of 99.7% and 97.5%, respectively. Thus, the influences of statistical deviations
(e.g., roundness errors, standard deviations of the dimensional parameters, etc.) could
be estimated and optimal, robust optima could be retrieved by means of a genetic algo-
rithm. Similarly, Marian et al. [115,116] utilized a MOP [74] to model the influence of
micro-textures in EHL contacts as well as an EA to optimize the micro-texture geometry
and distribution. Based upon a LHS (70 data sets) and contact simulations, the contact
pressure, lubricant film height, and frictional force were predicted with CoPs larger than
82%, allowing subsequent optimization with an EA. Zambrano et al. [117] used reduced
order modeling (ROM) to predict and optimize the frictional behavior of surface textures
in dynamic rubber applications under different operating conditions. It is noteworthy that
this was based on a limited number of experimental measurements and the ROM was
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fed with microscope-based texture measurements. In this sense, besides nominal texture
parameters, the real geometries as well as their deviations and uncertainties have been
evaluated with good accuracy.

The works in the area of surface engineering are summarized in Table 4 according to
the subject, the database, the inputs and outputs, and the ML approach.

Table 4. Overview of ML approaches successfully applied in the area of surface engineering.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML Approach Prediction Ref.

thermally
sprayed

Al2O3-TiO2
coatings

experimental
(pin-on-disk), 8

load, environment
(dry or acid)

linear wear,
COF at

different
time steps

back
propagation

ANN (2:80:63)

sufficient (not
quantified) [108]

HVOF sprayed
Cr-C-Ni-Cr and

WC-Co
coatings and
electroplated

hard chromium

experimental
(pin-on-disk), 360

(50%/50%)

material type,
normal load,

sliding velocity,
sliding distance

COF
back

propagation
ANN (4:6:4:1)

errors < 11% [109]

multilayer
nitride PVD

coatings

experimental
(pin-on-disk), 246
(70%/15%/15%)

time, normal load,
sliding velocity, lap,

bias voltage, gas
flow rate

spec. wear
rate, COF

back
propagation

ANN (6:5:5:2)
errors < 1% [110,

111]

surface texture
design for EHL

contacts

experimental (mini
traction machine), 2000

(90%/5%/5%)

average velocity,
slide-to-roll ratio,

normal load, minor
axis, major axis,
texture depth,

texture density

COF

various ANNs,
best results for

back
propagation
ANN (7:20:1)

MSE < 0,1%,
R2 > 0.99 [112]

experimental (mini
traction machine), 1704

entrainment speed,
slide-to-roll ratio,

surface feature ball,
surface feature disk

COF
Hardy

multiquadric
RBF

R2 > 0.935 [113]

numerical (EHL
simulation) in LHS, 70

(70%/30%)

texture diameter,
texture depth

texture distance

max.
pressure,
min. film

height, COF

MOP CoP > 83% [115,
116]

surface texture
design for HL

contacts

numerical (HL
simulation)

dimple diameter,
depth, area density,

and various
statistical
deviations

COF, load
carrying
capacity

various ANNs,
best results for

back
propagation

ANN (41:20:2)

accuracy >
99.7% (COF),

accuracy >
97.5% (load

carrying
capacity)

[114]

3.5. Lubricants

ML/AI approaches have also been used in the development and formulation of
lubricants [118] and their additives [119] intended for the use in tribological systems.
As such, Durak et al. [120] analyzed the effects of PTFE-based additives in mineral oil
onto the frictional behavior of hydrodynamic journal bearings (252 data sets) by the aid
of a feed forward back propagation ANN. An architecture with three inputs as studied
in respective experiments (load, velocity, additive concentration), two hidden layers of
5 and 3 neurons, and the COF as output resulted in an accuracy of 98%. Therefore,
optimal concentrations depending on the load case could be identified with rather little
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experimental effort. Humelnicu et al. [121] applied an ANN to investigate the tribological
behavior of vegetable oil-diesel fuel mixtures. The data were generated in pin-on-disk
tests at constant conditions, whereas the concentration of rapeseed and sunflower oil was
varied and the averaged COF values of five repetitions of each combination was used for
further processing. The neural network was trained with a back propagation algorithm and
tangential transfer functions and the architecture considered as most suitable with relative
deviations between 0.2% and 2.3% was built of three hidden layers with 2, 6, and 9 neurons,
respectively. Bhaumik et al. [122,123] also applied a multi-hidden layer feed forward ANN
to design lubricant formulations with vegetable oil blends (coconut, castor and palm
oil) and various friction modifiers (MWCNT and graphene) based upon 80 data sets
obtained from four-ball-tests as well as 120 data sets from pin-on-disk tests as reported
in various literature. The respective material and test conditions were also included as
influencing factors. For building the ANN, hyperbolic tangent transfer functions and
a scaled conjugate gradient back propagation algorithm were used. Good prediction
quality was thus achieved for the 11 and 13 inputs in the four-ball- and pin-on-disk tests,
respectively, with accuracies over 92%. In addition to the influences of the lubricant and
material properties, significant differences were also revealed due to the test setup. In
an optimization based on the ANN using a genetic algorithm, it was also possible to
derive ideal lubricant formulations, the suitability of which was actually demonstrated
by subsequent preparation and corresponding experimental validation. Lately, Mujtaba
et al. [124] utilized a Cuckoo search algorithm to optimize an extreme learning machine
(ELM) and a response surface methodology (RSM) in predicting the tribological behavior
of biodiesel from palm-sesame oil in dependency of ultrasound-assisted transesterification
process variables. Based on a Box-Behnken experimental design, the biodiesel yield was
predicted, whereby the ELM featured a better performance than RSM, and optimized.
In tribological experiments on a four-ball-tester, improved friction and wear behavior
compared to reference lubricants was also demonstrated with the derived blend.

In addition to these more macro-tribological approaches, some studies can also be found
that tend to target even smaller scales [125]. For example, Sattari Baboukani et al. [126] em-
ployed a Bayesian modeling and transfer learning approach to predict maximum energy
barriers of the potential surface energy, which corresponds to intrinsic friction, of various
2D materials from the graphene and the transition metal dichalcogenide (TMDC) families
when sliding against a similar material with the aim of application as lubricant additives.
The input variables for the model in the form of different descriptors (structural, elec-
tronic, thermal, electron-phonon coupling, mechanical and chemical effects) were extracted
from density function theory (DFT) and molecular dynamics (MD) simulation studies
in literature. The applied Bayesian model accommodated the sparse and noisy data set
and estimated the maximum energy barrier as target variable as well as its uncertainty
and potentially missing data. The predictions were validated against MD simulations,
whereas excellent agreement with mean squared errors mostly below 0.25 were found.
Thus, the application of the ML approach not only allowed for the prediction estimation of
the applicability for tribological purposes of ten previously underexplored 2D materials,
but also initiated discussion on novel empirical correlations and physical mechanisms.

The works in the area of lubricant formulation are summarized in Table 5 according
to the subject, the database, the inputs and outputs, and the ML approach.
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Table 5. Overview of ML approaches successfully applied in the area of lubricant formulation.

Subject

Database, Number of
Data Sets (If

Applicable Divided in
Train/Test/Validation)

Inputs Outputs ML
Approach Prediction Ref.

PTFE-based
additives in
mineral oil

experimental (journal
bearing test-rig), 252

(80%/20%)

load, velocity, additive
concentration COF

back
propagation

ANN (3:5:3:1)
accuracy > 98% [120]

vegetable oil-
diesel fuel
mixtures

experimental
(pin-on-disk), 135

sunflower
concentration,

rapeseed concentration
COF

back
propagation

ANN
(2:2:6:9:1)

RMSE < 0,1% [121]

lubricant
formulations

with vegetable
oil blends and

friction
modifiers
(MWCNT,
graphene)

literature (pin-on-disk,
four-ball-tests), 200

speed, normal load,
temperature,

ball/pin/disk
hardness, coconut oil

content, castor oil
content, palm oil
content, MWCNT

content, MWCNT size,
graphene content,

graphene dimensions

COF

scaled
conjugate

gradient back
propagation

ANN

accuracy > 92% [122,
123]

biodiesel
formulation

experimental
(transesterification), 30

time, catalyst
concentration,

methanol-to-oil ratio,
duty cycle

biodiesel
yield

RSM
R2 > 0.994,

MSE < 0.023,
RMSE < 0.151

[124]

Cuckoo ELM
R2 > 0.996,

MSE < 0.024,
RMSE < 0.117

lubricant
additives

literature and
numerical (DFT and

MD simulation)

lattice constant, c/a
ratio, bond angle,

interlayer space, M-X
length, X-X length,
M-radii, hexagonal

width, in-plane
stiffness, cohesive

energy, binding energy,
bandgap energy,

thermal conductivity,
average mass

maximum
energy
barrier

Bayesian
model MSE < 0.25 [126]

3.6. Others/General

Apart from aforementioned areas, a wide variety of studies can be found in fields
which also related to tribology, but that were not assigned to the traditional core and
are therefore not included in more detail in this review. The tribology of driven piles
in clay [127], plate tectonics and earthquakes [128], or motion control [129,130] can be
mentioned as examples. Nevertheless, some selected research shall be presented that
did not necessarily fit into one of the upper categories but had a rather general scope.
As such, already in 2002, Ao et al. [131] introduced an ANN to predict the evolution
of surface topography during the wear process. The proposed approach utilized sur-
face measurements at a finite number of time intervals during tribological experiments
in a conformal block-on-ring configuration. The back-propagation ANN with sigmoid
transfer functions was trained with the LM algorithm and statistical surface parameters
(RMS roughness, skewness, kurtosis, and autocorrelation). Together with initial surface
parameters, the corresponding 3D topography in worn conditions could be estimated
by surface synthesis. Thereby, good prediction quality could be achieved, especially if
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the autocorrelation function did not experience stronger changes. So, this was not just
about predicting and optimizing target variables but was rather already a step towards
semi-physical modeling. Thereby, the usage of ML/AI in the field of tribology may not
be limited to forward approaches, which predict the tribological behavior based on some
input data sets in the context of an experimental design. Accordingly, Haviez et al. [132]
later developed a modified ANN model, which was used to solve actual physical equations
describing the phenomena of fretting wear. Interestingly, this eliminated the necessity for
iterative learning, e.g., by back propagation, or other regularization techniques. Thus, the
fretting wear damage could be predicted with higher efficiency and accuracy than by a
conventional back propagation ANN trained with experimental data, highlighting the
ability of generalization albeit the rather low level of complexity. Similarly, Argatov and
Chai [133] suggested an ANN-based modeling framework for analyzing the dry sliding
wear during running-in from pin-on-disk tribometer tests. The authors attempted to de-
rive the true wear coefficient instead of the specific wear rate at given conditions, contact
pressures and sliding velocities. This was based upon the integral and differential forms of
the Archard’s wear equation as well as single-hidden layer ANN with sigmoid transfer
functions. They applied their approach to various data from the literature ranging from
cermet coatings, zirconia reinforced aluminum hybrid composites to nickel–chromium
alloys and reported good efficiency and agreement. Very recently, Almqvist [134] derived a
physics informed neural network (PINN) to solve the initial and boundary value problems
described by linear ordinary differential equations and to solve the second order Reynolds
differential equation. Thereby, comparable results to analytical solutions were obtained.
The advantage of the present approach is not in accuracy or efficiency, but in the fact that it
is a mesh-free method that is not data-driven. The author hypothesized that this concept
could be generalized in the future and lead to a more accurate and efficient solution of
related but nonlinear problems than the currently available routines.

Finally, two papers shall be highlighted that addressed other approaches than ANNs
and/or other scales as well. Bucholz et al. [135] used a dataset from dry sliding pin-on-disk
tests with different ceramic pairings having different intrinsic properties and inorganic
minerals to develop a predictive model. The latter was generated by the recursive parti-
tioning method, resulting in a graphical expression of the classification of observations
according to similarities determined by variable importance in projection and the error
some of squares. The obtained regression tree as illustrated in Figure 7a) demonstrated a
satisfactory coefficient of determination above 0.89 when comparing prediction and experi-
ment (Figure 7b). Finally, Perčic et al. [136] recently trained various ML/AI approaches
to predict the nanoscale friction of alumina (Al2O3), titanium dioxide (TiO2), molybde-
num disulphide (MoS2), and aluminum (Al) thin films in dependency of several process
parameters, including normal forces, sliding velocities, and temperature. The data were
acquired by lateral force microscopy (LFM) within a centroidal Voronoi tessellation (CVT)
design of experiments, whereas 2/3 of the data were generally used for training and 1/3 for
validation. The study employed MLP ANN, random DT and RF, support vector regression
(SVR), age-layered population structure (ALPS), grammatical evolution (GE), and symbolic
regression multi-gene programming (SRMG). The suitability for predicting the frictional
force for these approaches was further evaluated with respect to the mean absolute error,
the root mean squared error and the coefficient of determination. Thereby, the SRMG
model showed the best performance with prediction accuracies (determination coefficient)
between 72% and 91%, depending on the sample type. This allowed to derive simple
functional descriptions of the nanoscale friction for studied variable process parameters.
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4. Summary and Concluding Remarks

Tribology naturally involves multiple interacting features and processes, where ma-
chine learning and artificial intelligence approaches are feasible to support sorting through
the complexity of patterns and identifying trends on a much larger scale than the human
brain is capable of. Computers are able to fit thousands of properties, which enables
for a much wider search of the available solution space and allows quantitative fits to a
broad range of properties. Predictions do not have to be limited to averaged or global
values/outputs but could also cover locally and timely resolved evolutions and bridge
the gap between different scales. Therefore, ML and AI might change the landscape of
what is possible going beyond the mere understanding of mechanisms towards designing
novel and/or potentially smart tribological systems. As is also evident from the quantified
survey, ML has hence already been employed in many fields of tribology, from composite
materials and drive technology to manufacturing, surface engineering, and lubricants. The
intent of ML might not necessarily be to create conclusive predictive models but can be
seen as complementary tool to efficiently achieve optimum designs for problems, which
elude other physically motivated mathematical and numerical formulations. We assume
that, besides the availability of larger amounts of experimental data, this is the reason for
the comparatively large number of investigations on composite materials.

The challenge is that a ML approach does not necessarily guide towards the specific
problem solution and the selection as well as optimization of a qualified algorithm is
of decisive importance. Accordingly, there is a wide variety of approaches that have
already been successfully applied to answer tribological research questions. A summary is
provided in Table 6, which is—together with Tables 1–5—intended to support researchers
in identifying initial selections.
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Table 6. Overview of ML approaches successfully applied in various areas of tribology.
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ANN [39–42] [43–53] [60–64] [69,70] [75–77] [82] [86–89,
91,92]

[97–
101,103,104] [105] [106] [108–

111]
[112,
114]

[120–
123]

[131–
134,
136]

ANFIS [101]

Bayesian [126]

DT [63,64] [60] [106] [135,
136]

KNN [63,64]

MOP [73] [115,
116]

QDA [71]

RF [63,64] [78] [106] [136]

RBF [106] [113]

SVM [63,64] [83] [90] [104] [136]

Apparently, a large share of the research discussed in this article (roughly three quar-
ters) was based on ANNs. However, even still, there are manifold possibilities concerning
architecture, training algorithms, or transfer functions. Other ML approaches are still less
commonly used for tribological issues but are justifiably coming more into focus and can be
more effective for some problems. The reproducibility and comparability of the prediction
quality from the various approaches and studies is frequently hampered by the sometimes
ambiguous underlying database and the lack of information on the implementation of ML
approaches withing publications as well as the use of different error/accuracy measures.
Most of the works also comprised forward ML models, which were developed to predict
the tribological behavior as output based on various input parameters such as material or
test conditions. In principle, however, inverse models to characterize the materials and
surfaces [54] or physics-informed ML approaches [134] can also be applied. With a closer
assessment of the intentions and objectives of the studies, as well as the overrepresentation
of ANNs, one might get the impression that ML is in many cases being used to serve its
own ends. The added value compared to physical modeling or statistical evaluation based
on more classical regressions is not always evident. A few studies, however, manage to
extract real insights and thus additional knowledge from a large and broad database. The
comprehensive works in the field of composite materials from Kurt and Oduncuoglu [52],
Vinoth and Datta [53], and Hasan et al. [63,64] utilizing literature-extracted databases
may be highlighted here and can serve as excellent examples. The current showstopper
is still the availability of sufficient and comparable datasets as well as the handling of
uncertainties regarding test conditions and deviations. In this respect, we would like
to encourage authors to also publish the underlying databases and the corresponding
models in appendices or data repositories. Moreover, there is great potential to automatize
and optimize the data acquisition and processing, which is presently still very manual
in the field of tribology, in order to unfold the knowledge already available in institutes,
enterprises or in the literature by means of machine learning.
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Abbreviations

AE acoustic emission
AI artificial intelligence
ALPS age-layered population structure
ANFIS adaptive neuro-fuzzy interference system
ANN artificial neural network
ART adaptive resonance theory
BFS blast furnaces slag
CCD centrale composite design
CDI cage dynamics indicator
CF carbon fiber
CMC ceramic matrix composite
CNT carbon nanotube
CoD coefficient of determination
COF coefficient of friction
CoP coefficient of prognosis
CVT centroidal voronoi tessellation
DFT density function theory
DoE design of experiments
DT decision tree
EA evolutionary algorithm
EBP error back propagation
EHL elastohydrodynamic lubrication
ELM extreme learning machine
FE finite element
FFT fast fourier transformation
GBM gradient boosting machine
GE grammatical evolution
GO graphene oxide
HL hydrodynamic lubrication
HVOF high-velocity oxy-fuel
IBA improved bat algorithm
kNN k-nearest neighbor
LFM lateral force microscopy
LHS latin hypercube sampling
LM levenberg-marquardt
MBE model-based estimation
MD molecular dynamics
ML machine learning
MLP multilayer perception
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