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Abstract: This paper presents a formulation of point contact elastohydrodynamic lubrication analysis
for an isothermal, non-Newtonian flow. A coordinate system of the pressure gradient was employed
herein. A Couette flow and a Poiseuille flow were considered along the directions of the zero and non-
zero pressure gradients, respectively. The Poiseuille flow velocity was assumed to be represented by a
4th-order polynomial of z along the film thickness direction. The Couette flow velocity was assumed
to be represented by a linear function of z. Subsequently, the modified Reynolds equation, which
contains an equivalent viscosity, was obtained. Using Bauer’s rheological model, the formulation
presented in this study was applied to a grease that has been previously experimented upon. The
results of previous studies were compared with those of the present study and a reasonable agreement
was noted. The distribution of the equivalent viscosity showed a notable difference from that of
Newtonian flow. The formulation can be incorporated easily to the usual elastohydrodynamic
lubrication calculation procedure for Newtonian flow. The method can be easily applied to other non-
Newtonian rheological models. The equivalent viscosity can be calculated using the one-parameter
Newton-Raphson’s method; as a result, the calculation can be performed within a reasonable time.

Keywords: elastohydrodynamic lubrication; isothermal; non-Newtonian; point contact; grease
lubrication; Bauer’s model; pressure gradient; equivalent viscosity

1. Introduction

Performing experiments on non-Newtonian flows, including grease flows, is con-
siderably time-consuming and costly. Therefore, it is important to numerically analyze
the phenomena corresponding to non-Newtonian flows. Numerical approaches can help
obtain a variety of data that cannot be determined experimentally. Grease flows can be
well defined using Bauer’s model; however, owing to the extreme complexity of this
model, it is difficult to determine the exact solution as well as approximate solutions for
point contact, isothermal, non-Newtonian elastohydrodynamic lubrication (EHL) analyses.
Therefore, it is convenient that the non-Newtonian EHL calculation can be executed within
a reasonable calculation time and without large modification to the usual Newtonian EHL
calculation procedure. Kochi et al. [1] performed experiments on grease under soft EHL
conditions and measured the film thickness and traction forces. The method proposed in
the present study can be applied to the grease considered in Kochi et al. [1] to validate this
theoretical approach.

1.1. Classification of Calculation Methods

As shown in Figure 1, the Z-direction is considered to be the film thickness direction.
The flow velocities along the X- and Y-directions are denoted by u and v, respectively, which
are functions of x, y, and z; however, when considering only z dependency, the velocities
can be expressed as u(z) and v(z), respectively. The numerical methods for isothermal,
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non-Newtonian EHL analyses can be classified in terms of the accuracy of u(z) and v(z),
as follows:

Method 1: Exact solution of u(z) and v(z) is obtained.
Method 2: Approximate solution of u(z) and v(z) is obtained.
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Method 2 can be further classified in terms of the employed coordinate system.

Method 2-A: Local X-direction is the sliding direction.
Method 2-B: Local X-direction is the direction of the pressure gradient.

1.2. Previous Works

Several methods have been proposed to solve isothermal, non-Newtonian EHL prob-
lems. Kauzlarich and Greenwood [2] obtained the exact solution of line contact EHL
problems considering the Herschel–Bulkley model. Conry et al. [3] obtained an exact
solution of line contact EHL problems by considering Eyring’s model. Specifically, the
velocity u(z) was represented by a function containing cosh, indicating that, in general,
u(z) and v(z) cannot be precisely represented using polynomials of z. Dong and Qian [4]
obtained an approximate solution of line contact EHL problems considering Bauer’s model
and using the weighted residual method. Peiran and Shizhu [5] proposed a method to
obtain an exact solution of point contact EHL problems for general rheological models by
using an equally divided Z-direction mesh. Subsequently, the authors applied the method
to a line contact EHL problem. Kim et al. [6] attempted to obtain an exact solution of
point contact EHL problems by considering Eyring’s model. Ehret et al. [7] considered the
X-direction to align with the sliding direction and obtained an approximate solution of u(z)
and v(z) represented by the 2nd order polynomial of z by using the perturbation method.
Thus, researchers have obtained two effective viscosities: one along the sliding direction
and another along the perpendicular direction.

Greenwood [8] focused on the considerable amount of computation time required
to obtain an exact solution and compared two approximation methods. Sharif et al. [9]
considered the X-direction to align with the sliding direction and developed a method
to obtain an exact solution of point contact EHL problems for an arbitrary rheological
model. Using this approach, the authors obtained two effective viscosities along the X- and
Y-directions. Liu et al. [10] formulated a method to obtain an exact solution of point contact
thermal EHL problems considering Eyring’s model. Yang et al. [11] formulated a general
Reynolds equation for point contact EHL problems by dividing the flow into Couette and
Poiseuille flows. Subsequently, the authors obtained an exact solution of line contact EHL
problems considering the power law model and demonstrated the effectiveness of their
proposed method. Furthermore, Bordenet et al. [12] obtained an exact solution of pure
rolling point contact EHL problems considering Bauer’s model for n = 1/2 and applied
the approach to grease.

2. Overview of the Proposed Method

In this work, an isothermal, non-Newtonian EHL formulation considering Method
2-B was developed. Although this approach does not yield the exact solution of u(z) and
v(z), the calculation is simple and fast. As shown in Figure 2, the local Xc-direction is
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considered as the direction of the pressure gradient d, and the Yc-direction is considered to
be perpendicular to Xc. The flow velocities in the Xc- and Yc-directions are denoted as uc
and vc, respectively. As the pressure gradient toward Yc is zero, the flow vc is assumed to
be a Couette flow, which can be represented using a linear function of z. As the pressure
gradient toward Xc is generally non-zero, the flow uc is assumed to be a Poiseuille flow,
which can be represented using a 4th-order polynomial of z. As uc and vc cannot be
precisely represented by polynomials of z, they are expanded using polynomials of z. In
such cases, the 6th-order or even higher order polynomials can be considered; however,
in this work, a lower 4th-order polynomial was employed. A viscosity corresponding to
the Newtonian flow was obtained and termed as the equivalent viscosity. To replace the
viscosity of the Newtonian flow with the equivalent viscosity, which is a typical process
when evaluating EHL problems, the method proposed by Venner and Lubrecht [13] can
be used without any change for the isothermal, non-Newtonian EHL calculation. Given
a rheological model, any non-Newtonian isothermal point contact EHL problem can be
solved using the proposed method.
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The calculation procedure consists of two steps. First, the Newtonian EHL calculation
is executed for the base oil that yields the Newtonian pressure distribution. Second,
using the pressure distribution as the initial value, the non-Newtonian EHL calculation is
executed for the non-Newtonian flow. The local coordinate system, Oc, Xc, and Yc, at a
particular point, depends on the pressure gradient and it is determined simultaneously in
the process to obtain the pressure distribution. The equivalent viscosity is calculated based
on the local coordinate system in each iteration loop to obtain the pressure distribution.
Here, the method was applied to an experimental grease characterized by Bauer’s model.

3. Calculation of Velocity Distribution as a Function of z

Figure 1 presents the XYZ coordinate system. The force balance of a fluid can be
expressed as follows [10]:

∂τx

∂z
=

∂P
∂x

(1)

∂τy

∂z
=

∂P
∂y

(2)

where P is the pressure of the fluid, and τx and τy are the shear stresses in the X- and
Y-directions, respectively. The parameters τ and

.
γ are defined as follows:

τ =
√

τx2 + τy2 (3)

.
γ =

√
∂u
∂z

2
+

∂v
∂z

2
(4)
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In Bauer’s model, τ is assumed to be represented as a function of
.
γ, as follows [1,14,15]:

τ =
(

τ0 + k1·
.
γ + k2·

.
γ

n
)
·ηn

η0
(5)

Here, τ0, k1, k2, and n are Bauer’s rheological parameters, and ηn and η0 represent
the P dependent viscosity and ambient viscosity of the base oil, respectively. In this work,
according to Dong and Qian [4], the parameters τ0, k1, k2, and n were assumed to be
P-independent known values determined from the τ-

.
γ curve measured at the ambient

pressure. In Eyring’s model, according to Conry et al. [3] and Johnson and Tevaarwerk [16],
the relationship between τ and

.
γ can be expressed as follows:

.
γ =

τ0
′

ηn
sin h

(
τ

τ0′

)
Here, τ0

′ is Eyring’s rheological parameter. Therefore, the relationship between τ and
.
γ can be rewritten as follows:

τ = τ0
′·sin h−1

(
ηn

.
γ

τ0′

)
The effective viscosity η∗ can be defined as follows:

η∗ =
τ
.
γ

(6)

The effective viscosity η∗ is a function of
.
γ, which in turn is a function of z. The shear

stresses τx and τy are assumed to be represented as

τx = η∗
∂u
∂z

(7)

τy = η∗
∂v
∂z

(8)

Substituting Equations (7) and (8) into Equations (1) and (2), respectively, yields

∂

∂z

(
η∗

∂u
∂z

)
=

∂P
∂x

(9)

∂

∂z

(
η∗

∂v
∂z

)
=

∂P
∂y

(10)

The pressure gradient vector d is defined as follows:

d =

(
∂P
∂x

,
∂P
∂y

)
(11)

Similar to the method employed by Yang et al. [11], this method involves the flow
being divided into Couette and Poiseuille flows. As shown in Figure 2, the Xc-direction is
considered to be along d, and its direction vector is n1. The Yc-direction is perpendicular
to d, and its direction vector is n2. The local coordinate system, Oc, Xc, and Yc, at a given
point depends on the pressure gradient and is determined simultaneously in the process to
obtain the pressure distribution. In the Xc and Yc coordinate system, Equations (9) and (10)
can be rewritten as follows:

∂

∂z

(
η∗

∂uc

∂z

)
= d (12)

∂

∂z

(
η∗

∂vc

∂z

)
= 0 (13)
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d =
√

d·d (14)

Furthermore, the velocities uc(z) and vc(z) satisfy the following boundary conditions:

uc(0) = U−, uc(h) = U+, vc(0) = V−, vc(h) = V+ (15)

Here, U+ and U− denote the velocities of the upper and lower surfaces in the Xc-
direction, respectively; V+ and V− denote the velocities of the upper and lower surfaces in
the Yc-direction, respectively. Although the velocities uc(z) and vc(z) cannot be represented
by polynomials exactly [3], here they are approximated and expanded using polynomials
of z so that the velocities satisfy Equation (15), as follows. In this case, the variables a1 and
a2 are unknown.

uc(z) =
∆U
h
·z + U− − a1·z(h− z)− a2·z2(h− z)2 (16)

vc(z) =
∆V
h
·z + V− (17)

Here, h is the fluid film thickness, and ∆U and ∆V denote the velocity differences;
specifically, ∆U= U+ −U− and ∆V= V+ − V−. A higher order term of z, for example,
z3(h− z)3, can also be considered; however, in this work, the lower-order approximation
was chosen. As the pressure gradient toward the Yc direction is zero, vc was assumed to be
a Couette flow and approximated considering a linear equation of z. Furthermore, as the
pressure gradient toward the Xc-direction is generally non-zero, uc was assumed to be a
Poiseuille flow and approximated using a 4th-order polynomial of z. If d = 0, then uc is
also a Couette flow, and Equation (16) can be replaced with the following equation:

uc(z) =
∆U
h
·z + U− (18)

The following equations are derived from Equations (16) and (17):

∂uc

∂z
= u′(z) =

∆U
h
− a1·(h− 2z)− a2·2z(h− z)(h− 2z) (19)

∂vc

∂z
= v′(z) =

∆V
h

(20)

The following equations are derived from Equation (19):

u′(0) =
∆U
h
− a1h (21)

u′(h) =
∆U
h

+ a1h (22)

u′
(

h
4

)
=

∆U
h
− a1

h
2
− a2

3h3

16
(23)

u′
(

3h
4

)
=

∆U
h

+ a1
h
2
+ a2

3h3

16
(24)

If rheological constitutive equations are given, the effective viscosity η∗(z) can be
calculated using Equations (4)–(6), (16) and (17). The integration of Equation (12) from
z = 0 to z = h yields Equation (25), and the integration of Equation (12) from z = h/4
to z = 3h/4 yields Equation (26). These equations are used to determine the values of a1
and a2.

η∗(h)·
(

∆U
h

+ a1h
)
− η∗(0)·

(
∆U
h
− a1h

)
= dh (25)
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η∗
(

3h
4

)
·
(

∆U
h

+ a1
h
2
+ a2

3h3

16

)
− η∗

(
h
4

)
·
(

∆U
h
− a1

h
2
− a2

3h3

16

)
=

dh
2

(26)

Equations (21) and (22) show that both η∗(h) and η∗(0) do not contain a2. Therefore,
Equation (25) does not contain a2 and contains only the unknown variable a1. The equation
can be solved using the one-variable Newton–Raphson method. Although Equation (26)
contains both a1 and a2, a1 has been determined using Equation (25). Consequently,
Equation (26) can be considered as an equation involving only the unknown variable
a2. Thus, it can also be solved using the one-variable Newton–Raphson method. To
determine a1, a non-dimensional variable b1 defined using Equation (27) and a function
f1(b1) defined using Equation (28) are introduced. The value of b1 can be calculated
considering f1(b1) = 0.

b1 = log
(

2a1ηn

d

)
(27)

f1(b1) = η∗(h)·
(

∆U
h

+ eb1
dh
2ηn

)
− η∗(0)·

(
∆U
h
− eb1

dh
2ηn

)
− d·h (28)

When b1 is near the solution, ∆b1 can be calculated using the following equation:

0 = f1(b1 + ∆b1) ; f1(b1) +
d f1

db1
·∆b1 ; f1(b1) + eb1

dh
2ηn

[η∗(h) + η∗(0)]·∆b1 (29)

In other words, the new candidate b1new of b1 is calculated using the iterative process
of Newton–Raphson’s method, as follows:

b1new = b1 + ∆b1 = b1 −
f1(b1)

a1h [η∗(h) + η∗(0)]
(30)

As η∗(h) and η∗(0) are originally functions of b1, d f1/db1 includes dη∗/db1; however,
in this work, the dependency was ignored, and ∆b1 was approximated as in Equation (30).
To determine a2, a non-dimensional variable b2 defined using Equation (31) and a function
f2(b2) defined using Equation (32) are introduced. The value of b2 can be calculated
considering f2(b2) = 0.

b2 =
2a2h2ηn

5d
(31)

f2(b2) = η∗
(

3h
4

)
·
(

∆U
h

+ a1
h
2
+ a2

3h3

16

)
− η∗

(
h
4

)
·
(

∆U
h
− a1

h
2
− a2

3h3

16

)
− dh

2
(32)

When b2 is near the solution, ∆b2 can be calculated using the following equation:

0 = f2(b2 + ∆b2) ; f2(b2) +
d f2

db2
·∆b2 ; f2(b2) +

15dh
32ηn

[
η∗
(

3h
4

)
+ η∗

(
h
4

)]
·∆b2 (33)

In other words, the new candidate b2new of b2 is calculated using the iterative process
of Newton–Raphson’s method, as follows:

b2new = b2 + ∆b2 = b2 −
f2(b2)

[η∗(3h/4) + η∗(h/4)]
·32ηn

15dh
(34)

As η∗(3h/4) and η∗(h/4) are originally functions of b2, d f2/db2 includes dη∗/db2;
however, in this work, the dependency was ignored, and ∆b2 was approximated as in
Equation (34). Subsequently, in the iteration process of Newton–Raphson’s method, only
η∗ depends on the rheological characteristics. Therefore, if the rheological equation corre-
sponding to Equation (5) is incorporated, any isothermal, non-Newtonian EHL calculation
can be performed. As per the Newton–Raphson method, the initial value for both b1 and b2
can be zero. As both variables a1 and a2 are solved using the one-variable Newton–Raphson
method, the calculation can be performed within a reasonable time.
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4. Calculation of Equivalent Viscosity, Flow, and Surface Force

The flow q1 along the n1 direction can be defined using Equation (16), as follows. The
density ρ is assumed to be independent of z.

q1 =
∫ h

0 ρuc dz =
∫ h

0 ρ
[

∆U
h ·z + U− − a1·z(h− z)− a2·z2(h− z)2

]
dz

= ρUh− ρa1h3

6 − ρa2h5

30

(35)

Here, U is the average velocity in the Xc-direction and can be expressed as follows:

U =
U+ + U−

2
(36)

The equivalent viscosity ηeq is defined as follows:

ηeq =
5d

2(5a1 + a2h2)
(37)

Consequently, q1 can be represented as

q1 = ρUh− ρh3

12ηeq
·d (38)

The flow q2 along the n2 direction can be derived from Equation (17), as follows:

q2 =
∫ h

0
ρvc dz = ρVh (39)

Here, V is the average velocity in the Yc direction and can be expressed as follows:

V =
V+ + V−

2
(40)

Hence, in the XYZ coordinate system, the flow vector q can be expressed as

q =
(

ρUh− ρh3

12ηeq
·d
)
·n1 + ρVh·n2

= ρUh·n1 + ρVh·n2 − ρh3

12ηeq
·d·n1

= ρUh− ρh3

12ηeq
·
(

∂P
∂x , ∂P

∂y

) (41)

Here, U is the average velocity vector of the upper and lower surfaces, defined
as follows:

U = U·n1 + V·n2 =
(
Ux, Uy

)
(42)

Ux and Uy denote the average velocities in the upper and lower surfaces in the XY-
direction, respectively. When the mass conservation law is applied to Equation (41), the
following modified Reynolds equation is obtained.

∂ρUxh
∂x

+
∂ρUyh

∂y
− ∂

∂x

(
ρh3

12ηeq
·∂P
∂x

)
− ∂

∂y

(
ρh3

12ηeq
·∂P
∂y

)
= 0 (43)

The difference in the representation of Equations (41) and (43) and that of Newtonian
flow only pertains to the viscosities ηeq and ηn, respectively. In fact, the equivalent viscosity
ηeq defined by Equation (37) was determined so that Equations (41) and (43) maintain
the same form as that of Newtonian flow. Therefore, the EHL calculation procedure for
Newtonian flows, such as the method proposed by Venner and Lubrecht [13], can be
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applied to the current calculation by simply replacing ηn with ηeq. The shear stress τ1 along
the Xc-direction can be expressed as

τ1(z) = η∗
∂uc

∂z
= η∗

[
∆U
h
− a1·(h− 2z)− a2·2z(h− z)(h− 2z)

]
(44)

Therefore, the surface forces P10 and P1h acting on the lower and upper surfaces along
the Xc-direction, respectively, can be defined as

P10 = τ1(0) = η∗(0)·
(

∆U
h
− a1h

)
(45)

P1h = −τ1(h) = −η∗(h)·
(

∆U
h

+ a1h
)

(46)

The shear stress τ2 along the Yc-direction is expressed as

τ2 = η∗
∂vc

∂z
= η∗

∆V
h

(47)

Therefore, the surface forces P20 and P2h acting on the lower and upper surfaces along
the Yc-direction, respectively, can be defined as

P20 = τ2(0) = η∗(0)·∆V
h

(48)

P2h = −τ2(h) = −η∗(h)·∆V
h

(49)

In the XYZ coordinate system, the surface force vectors P0 and Ph that act on the lower
and upper surfaces, respectively, can be expressed as

P0 = P10·n1 + P20·n2 (50)

Ph = P1h·n1 + P2h·n2 (51)

5. Application to a Grease

As mentioned previously, Kochi et al. [1] conducted experiments on grease under soft
EHL conditions and measured the film thickness and traction forces. In the present study,
the proposed method was applied to one of the greases considered in the study by Kochi
et al. [1] so as to validate the theoretical approach. Grease A in the literature [1] was chosen
to test the proposed method. The modified Reynolds equation, as expressed in Equation
(43), was solved using a multi-level method, as reported by Venner and Lubrecht [13].
The commercial program Tribology Engineering Dynamics Contact Problem Analyzer
(TED/CPA) V852 was employed. Figure 3 illustrates the calculation conditions. The upper
body was a steel ball, and the lower body was a disk composed of glass or polycarbonate
(PC). The rheological properties of the grease were assumed to be represented by Bauer’s
model, according to existing literature [1]. Detailed properties of the steel, glass, PC, and
grease are described in the previous study [1]. The pressure dependency of the density was
defined using Dowson–Higginson’s formula, as follows:

ρ(P) = ρ0·
p0 + β·P
p0 + P

, ρ0 = 1, p0 = 590 MPa, β = 1.34 (52)



Lubricants 2021, 9, 56 9 of 14

Figure 3. Calculation condition.

The pressure dependency of the base oil viscosity was assumed to be defined using
Barus’ formula:

ηn(P) = η0· exp(αP), η0 : 49.5 mPa·s, α : 14 GPa−1 (53)

In particular, Equation (6) diverges when
.
γ approaches zero. It was assumed that if

.
γ is lower than a certain value cmin=100.0 s−1, then η∗ varies linearly with the gradient
dη∗/d

.
γ at cmin. Bauer’s parameter k1 was assumed to be the base oil ambient viscosity η0.

The values of Bauer’s parameters τ0, k2, and n were determined from the apparent viscosity
curve of grease A, as shown in Figure 9 of Kochi et al. [1]. When P = 0, the curve was
assumed to pass through the following three points: 100 mm/s, 6.46475 Pa·s; 10,000 mm/s,
0.16712 Pa·s; and 1,000,000 mm/s, 0.06573 Pa·s.

The values of τ0, k2, and n were determined to ensure that Bauer’s curve passes
through the abovementioned three points, as follows:

τ0 = 0.000621839 MPa, k2 = 6.99118·10−7, n = 0.7248 (54)

Figure 4 presents the central film thickness of grease A and base oil as a function of
the rolling velocity in the case of pure rolling and Fz = 10 N. The solid lines show the
calculation results and the dotted lines show the experimental results. The experimental
data were read using the caliper from Figure 4 of Kochi et al. [1]. Figure 4a,b shows the
cases of a PC disk and glass disk, respectively. The calculation range was set as follows:
−1.0 ≤ X ≤ 0.4 and −0.6 ≤ Y ≤ 0.6.
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However, in the case of grease A, a glass disk, and a velocity of less than or equal to
300 mm/s, the range was set as follows: −0.35 ≤ X ≤ 0.14 and −0.2 ≤ Y ≤ 0.2.
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In these cases, the oil film was thin and the wide range calculation became hard to
perform. In the case of the PC disk, the calculation results exhibited good agreement with
the experimental results. In the case of the glass disk, the results of the base oil showed some
difference but the other data showed reasonable agreement. Figure 5, which illustrates a
sample calculation, shows the distribution of P, h, and ηeq for the case involving a PC disk,
a pure rolling velocity of 1200 mm/s, and grease A. Typically, in the case of pure rolling
velocity,

.
γ is small and ηeq is large. In addition, only the appearance of the distribution of

ηeq differs from that of the base oil. Figure 5d shows the distribution of ηeq at section Y = 0.
It can be seen that ηeq becomes extremely large at the center, where the pressure gradient is
small and the flow volume is low.
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Figure 6 presents the traction coefficient as a function of the slide roll ratio when
Fz = 20 N. The solid lines show the calculation results and the dotted lines show the
experimental results. The experimental data were read using the caliper from Figure 8 of
Kochi et al. [1]. The slide roll ratio is the difference between the upper and lower velocities
divided by their average value. The traction coefficient was calculated according to the
approaches proposed in the existing literature [1,17]:

TRC =
TX0− TXh

2Fz
(55)

Here, TX0 and TXh denote the X-direction traction forces acting on the lower and
upper surfaces, respectively; Fz is the load. The calculation range was −0.8 ≤ X ≤ 0.5,
−0.5 ≤ Y ≤ 0.5. The calculation results were in fairly good agreement with the experimen-
tal results.
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Figure 7, which illustrates a sample calculation, shows the distribution of P, h, and
ηeq for the case involving grease A and a slide roll ratio of 10%. Only the appearance
of the distribution of ηeq differs from that of the base oil, exhibiting a figure eight in the
vicinity of the contact point. Figure 7c,d shows the same distribution of ηeq in different
display ranges. It can be observed that ηeq reduces in the rapid flow region. The figure
eight phenomenon is characteristic of non-Newtonian flow, in which the apparent viscosity
becomes large at a low velocity gradient. This phenomenon can be explained as follows.
Let the XY coordinates of points A, B, C, and D be (−0.1, 0), (+0.1, 0), (0,−0.1), and
(0,+0.1), respectively. The velocity gradient vector n1 at these points are approximately
(+1, 0), (−1, 0), (0,+1), and (0,−1), respectively, as shown in Figure 8a. When a2 in
Equation (37) is neglected, ηeq can be expressed as follows:

ηeq =
d

2a1
(56)

Calculating a1 from Equation (25) and substituting it into Equation (56) yields:

ηeq =
[η∗(h) + η∗(0)]

2
· 1
1 + ∆U

dh2 [η∗(0)− η∗(h)]
(57)

At points C and D, the direction of flow and that of n1 is orthogonal, so ∆U = 0.
Consequently, the equivalent viscosity parameters ηeq,C and ηeq,D at points C and D are
given as follows:

ηeq,C = ηeq,D =
[η∗(h) + η∗(0)]

2
(58)

At point A, where n1 directs towards +X and the velocity gradient at Z = h is greater
than that at Z = 0 (as shown in Figure 8b), the following equation is satisfied:

η∗(0) > η∗(h), ∆U = Ux
+ −Ux

− > 0 (59)

At point B, where n1 directs towards −X, and the velocity gradient at Z = h is smaller
than that at Z = 0 (as shown in Figure 8c), the following equation is satisfied:

η∗(0) < η∗(h), ∆U = −
(
Ux

+ −Ux
−) < 0 (60)

In any case, the equivalent viscosity parameters ηeq,A and ηeq,B at points A and B
become smaller than ηeq,C and ηeq,D by the effect of the second term of Equation (57). In the
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pure rolling case, where ∆U is 0, Equation (57) results in Equation (58). It can be understood
that in such a case, no figure-eight-shaped distribution appears as is shown in Figure 5c.
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6. Conclusions

In this study, an isothermal, non-Newtonian EHL formulation of Bauer’s model was
performed using the local coordinate system of the pressure gradient. The flow toward
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the pressure gradient was assumed to be a Poiseuille flow and was approximated using
a 4th-order polynomial of z. The flow along the direction of the zero pressure gradient
was assumed to be a Couette flow and was approximated using a linear function of z. The
following results were obtained.

(1) A modified Reynolds equation, which contains an equivalent viscosity, was obtained.
(2) The EHL calculation procedure for Newtonian flows can be applied to non-Newtonian

flows by simply replacing the Newtonian viscosity with the equivalent viscosity.
(3) If rheological equations are incorporated, any isothermal, non-Newtonian EHL calcu-

lation can be performed easily.
(4) As the equivalent viscosity is calculated using the one-variable Newton–Raphson

method, the EHL calculation can be performed within a reasonable calculation time.
(5) Using Bauer’s model, the formulation was applied to a grease that was evaluated

experimentally by Kochi et al. [1]. The results obtained using the proposed method
and the experimental results were compared, and reasonable agreement was noted.

(6) In the case of sliding velocity, the equivalent viscosity shows a figure-eight-shaped
distribution in the vicinity of the contact point.

However, the proposed method yields an approximate solution. If the Poiseuille flow
and Couette flow cannot be approximated using a 4th-order polynomial of z and a linear
function of z, respectively, the obtained results may be inaccurate. The application limits
of the current formulation are not clear. Therefore, future work should be focused on
determining these limitations.
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