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Abstract: A finite element model of a static seal assembled in its housing has been built and is utilized
to study how the seal deforms under varying loading conditions. The total contact load on the sealing
surface is balanced by the sealed fluid pressure and the friction between the seal and the housing
sidewall perpendicular to the sealing surface. The effect of the sealed fluid pressure between the
sealing surfaces was investigated and the simulation showed that the surface profile is distorted due
to the hydrostatic pressure. We study the distorted contact profile with varying sealed fluid pressure
and propose five parameters to describe the corresponding contact pressure profile. One of these
parameters, overshoot pressure, a measure of the difference between maximum contact pressure
and the sealed fluid pressure, is an indicator of sealing performance. The simulations performed
show different behaviors of the overshoot pressure with sealed fluid pressure for cosinusoidal and
parabolic surfaces with the same peak to valley (PV) value.

Keywords: static seal; contact mechanics; hydrostatic load

1. Introduction

A static seal is an important machine element. By definition, a static seal remains
stationary and is subjected to no movement under operation. The installation of a static
seal requires a pre-tension to creates a tight fit on the sealing surface between the seal and
shaft [1]. During operation, the sealed fluid fills the space at the high-pressure side of
the seal, and if no leakage occurs, the fluid is in a hydrostatic state and the pressure equals
the pump pressure everywhere. Considering the ease of seal installation, the pre-tension is
limited and it is typically much smaller than the required load for fluid sealing. To provide
sufficient contact force at the sealing surface, it is common practice to utilize the sealed
fluid pressure itself as a source of contact force to ensure the tightness of the seal.

Seals lose their function when the contact between the sealing surfaces is lost. Misalign-
ment of the mating parts, material extrusion, elastic leak, thermal expansion/shrinkage,
and wear damage are examples of common failure modes ([2–4]). The research interest in
this study focuses on the sealing performance of the static seal under standard temperature
and pressure (STP) condition (Since 1982, STP is defined as a temperature of 273.15 K (0 ◦C,
320 ◦F) and an absolute pressure of 105 Pa (100 kPa, 1 bar)). Seal leakage can significantly
increases when the sealed fluid pressure surpasses the contact pressure without material
failure [4]. Results have shown, see Reference [5], that the planar sealing surface with long
contact length is prone to both extrusion damage and leakage. Therefore, anti-extrusion
seal design utilizes non-planar geometry both before and after the contacting part of the
surface [6]. A non-planar geometry of the contacting surface has multiple benefits besides
decreasing extrusion. For instance, by concentrating the total load on a smaller area, the
higher contact pressure is achieved under the same total load condition. However, the
non-planar surface profile allows pressured fluid to penetrate between the sealing surfaces
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and the contact state changes with the sealed fluid pressure, therefore, increase the risk of
leakage.

The seal assembly and the loading condition are closely related to the performance
of the seal, and they determine the contact area and leakage paths. The contact between
deformable solids has been extensively studied and, for dry conditions, there are analytical
solutions available. See for example References [7–9], for analytical solutions for regular
sinusoidal surface patterns in 1D and 2D. Numerical solutions also exist for random-surface
patterns based on the statistical properties of the surface roughness, see References [10–13].
When the sealed fluid pressure interacts with the housing, as a source of contact load, it can
affect the global contact length [14]. In addition, the increased sealed fluid pressure can
propagate the fluid front within the contact interface, as observed in both the experiment
and finite element simulation [15]. This phenomenon can be explained by the linear elastic
fracture mechanics (LEFM) theory [16]. So the fluid load must be considered for the cases
where the fluid is present between the sealing surfaces [17,18]. In Reference [18], it was
shown that a fully coupled approach considering the two-way fluid-structure interaction,
between the sealing surfaces, is preferred compared with a sequential solution procedure,
in which the equations are solved independently and the solution is obtained through
iteration until convergence is reached.

Unlike the rubber seal, which is easy to deform and allows an installation with large
overfitting, the non-elastomer seal made out of a much stiffer polymer or metal is difficult
to compress. A typical static non-elastomer seal assembly is shown in Figure 1. In the
current configuration a gap exists, between the seal ring and the housing, so that the sealed
fluid pressure at all times contributes to the contact force. It is of particular interest to know
the effect of the sealed fluid pressure on leakage performance. However, according to the
authors’ knowledge, very few studies have been attempted to address this practical sealing
challenge.

In this paper, we study the contact state for a widely used seal assembly, and its
configuration is depicted in Figure 1. In this configuration, the total contact load increases
with the sealed fluid pressure. Meanwhile, the fluid can fill the space at the high-pressure
side and provide a hydrostatic lift on the bottom surface of the seal. To this end, a new,
finite-element based, contact-mechanics framework was developed. The model includes
the fluid load acting on the seal ring at the high-pressure side wall, the top wall and inside
the interface between the contacting surfaces. Numerical simulations for varying sealed
fluid pressure and friction conditions are conducted, and five parameters that describe the
contact profile are presented and discussed.

Figure 1. Cross-section schematics of a static seal in its housing.

2. Problem Set-Up

Figure 1, shows the cross-section schematics of a static seal in its housing. The seal has
a square-shaped cross-section with a side length of λ and a non-planar bottom. The origin
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of the coordinate system for the finite element analysis is defined at the midpoint of the
bottom surface and the y-axis is parallel with the housing sidewall, see Figure 2. The pre-
tension with a line load density of P0 in the y-direction provides the initial sealing force
against the shaft. The sealed fluid acts on the top and the left side as well as on the
bottom side, via the interface between the sealing surfaces. The bottom surface can be
separated into three regions based on their contacting states. At the high-pressure side,
before solid-solid contact happens, the interface is filled with the sealed fluid. Following
the fluid penetrated region ∂Ωb, solid-solid contact happens, and this region is defined as
∂Ωc. After the contact region, at the low-pressure side, the seal and the shaft are separated.
The roughness on the contacting interface is ignored in the current analysis, because its
length scale is much smaller than the non-planar curvature.

Figure 2. Details of the problem set-up and FE -model, where ∂Ωb is the part of the boundary, of the
bottom surface, on which the sealed fluid pressure p f acts, ∂Ωc is the contact zone where the contact
pressure pc acts, x f is the location of fluid front, that is, the boundary between the sealed fluid and the
solid contact zone, and xm is the location where the maximum contact pressure occurs. The friction
coefficient between the seal and the vertical sidewall is µ. The total load at vertical direction is Pt and
sealed fluid pressure p f is acting at the left vertical side of the seal.

For the sake of simplicity, we consider the problem under plane strain conditions.
Two different surface profiles of the non-planar bottom surface, cosinusoidal and parabolic,
which exhibit the same peak to valley value (PV) are of interest for this study. More precisely,
these are cosinusoidal

y(x, z) = ∆ cos(2πx/λ), (1)

and parabolic

y(x, z) = 8∆x2/λ2, (2)

profiles, where ∆ is the amplitude of the non-planar form. The contacting surface between
the vertical wall of the seal and the housing is assumed to be leak-tight, and is modeled
with a static friction coefficient µ. Bottom contact surface is assumed to be frictionless.
A linear elastic material is assigned to the seal, and the shaft and housing which have
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higher elastic modulus than the seal, is modeled as rigid bodies. Under the plane strain
condition, we have

εz = 0, σz = ν
(
σx + σy

)
, (3)

and Hooke’s law can be formulated as

εx =
1
E

((
1− ν2

)
σx − ν(1 + ν)σy

)
, (4)

εy =
1
E

((
1− ν2

)
σy − ν(1 + ν)σx

)
, (5)

γxy =
2(1 + ν)

E
τxy, (6)

where E is the elastic modulus of the seal and ν is Poisson’s ratio. The system to be solved
is described by the following equations:

∂σx

∂x
+

∂τxy

∂y
= 0 in Ω, (7)

∂σy

∂y
+

∂τxy

∂x
= 0 in Ω, (8)

∂2εx

∂y2 +
∂2εy

∂x2 =
∂2γxy

∂x∂y
in Ω, (9)

∫ λ
2

− λ
2

σy|y=λdx = −(P0 + p f λ), (10)

σx|x=− λ
2
= −p f , (11)

∫ λ
2

− λ
2

τxy|x= λ
2

dy = −µ
∫ λ

2

− λ
2

σx|x= λ
2

dy, (12)

ux|x= λ
2
= 0, (13)

(σ · n)|x≤x f = −p f on ∂Ωb, (14)

|σ · n| > p f on ∂Ωc if x < xm. (15)

Equations (10)–(15) summarize the boundary conditions. The total applied load along
the y-direction is given by Equation (10), and the load balance between sealed fluid pres-
sure, on the left vertical sidewall and the horizontal normal stress on the seal ring, is given
by Equation (11). Equations (12) and (13) define the boundary conditions for the stresses
and displacements for the vertical interface between the seal and the housing. The seal dis-
placement in the x-direction is ux. Equation (14) defines the hydrostatic loading condition
on the boundary ∂Ωb, which is separated from ∂Ωc at x f , which is the location of the fluid
front. Equation (15) defines the contact load constraint such that the solid-solid contact
pressure for all the points x < xm are required to be higher than the sealed fluid pressure
p f , with xm as the position where the contact pressure reaches its maximum value. The
difficulty in solving the above system lays in that the location of the fluid front, x f is not
known beforehand. In the present work, the system of equations, comprised by Equations
(3)–(15), is set up and solved in COMSOL 5.4, and the penalty method is utilized for the
contact constraint with a contact tolerance of 10−6λ.

The solution domain is initially discretized using triangular quadratic-order elements,
as shown in Figure 3. Numerical solutions for three sets of meshes, with decreasing
maximum element size, are computed for the case with p f = 0 and µ = 0. The bottom
contacting surface is meshed with maximum element sizes equal to 2× 10−3λ, 1× 10−3λ
and 5× 10−4λ, with an element growth rate of 1.05. This resulted in meshes with 8367,
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16,467 and 32,253 regular- and 682, 1210 and 2236 edge elements, respectively. Westergaard
gave an analytical solution for a periodic cosinusoidal surface contact with a rigid flat
surface, for linear elastic material under the half-space assumption . The minimum pressure
required to flatten the periodic consinousoidal surface is [7]:

ps =
πE

1− ν2

(
∆
λ

)
, (16)

where E is the elastic modulus for the seal and ν is the Poisson’s ratio. The Westergaard
solution can be reproduced by the current model with µ = 0, p f = 0, if the boundary
condition in (13) is replaced by the periodic condition

ux|(x= λ
2 )

= ux|(x=− λ
2 )

. (17)

Figure 3. Finite element mesh with 16,467 regular elements and 1210 edge elements at the bottom
surface.

As a benchmark, the contact length and the maximum contact pressure using these
settings, for 3 different meshes, are compared with the corresponding Westergaard solu-
tion. The solution is considered converged when the residual is smaller than 10−6. For the
mesh with 16,467 regular elements and 1210 edge elements, the maximum relative error
is less than 1% for the maximum contact pressure and 2.5% for the half contact length.
To validate the effect of the sealed fluid pressure, the numerical solution, for the cosinu-
soidal bottom surface profile given by Equation (1) and 2∆/λ = 1/50, with uniform
fluid pressure penetrated from both sides of the contacting surfaces is compared with
the analytical solution presented in Reference [19]. In this case, the numerical solution is
acquired using the boundary condition (17), and changing the boundary condition (15) to

|σ · n| > p f on ∂Ωc. (18)

The contact mechanics problem with load control boundary condition is non-linear,
therefore, the convergence of the solution procedure is highly dependent on the initial
guess. A good strategy to increase the stability of the solution procedure is to increase the
force and pressure load from zero to the target value gradually. To this end, a ramping-up
function is added to both the boundary conditions and the loads

framp =
1
2
(1− cos(πθ)), θ ∈ [0, 1], (19)

and the boundary conditions (10), (11), (14) and (15) become

∫ λ
2

− λ
2

σy|y=λdx = −(P0 + p f λ) framp(θ), (20)
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σx|x=− λ
2
= −p f framp(θ), (21)

(σ · n)|x≤x f = −p f framp(θ) on ∂Ωb, (22)

|σ · n| > p f framp(θ) on ∂Ωc if x < xm. (23)

Meanwhile, a spring foundation is applied on the top surface, with a total spring
constant ktot = k0(1 − framp(θ))2−10 framp(θ), to provide extra damping on the loading
boundary condition. The spring parameter k0, when normalized with the material elastic
modulus, is chosen as 0.01 to optimize the convergence speed. The simulation is performed
by starting from θ = 0, which gives 0 boundary load, 0 fluid load, and maximum spring
constant, and it is then gradually increased to 1, so that the loadings and constraints equal
to the target.

3. Results

Figure 4 depicts the normal stress and the gap height between the contacting surfaces
for the cases with the total line load density in the vertical direction equals

Pt(p f ) = P0 + p f λ, (24)

for the cosinusoidal profile with 2∆/λ = 1/50. The sidewall friction is ignored, that is,
µ = 0, and the Poisson ratio of the material is ν = 0.33. The results are depicted in non-
dimensional form. The scaling factor for the contact length is λ and the gap height between
the contacting surfaces is scaled with ∆. The displacement and strain for the current
problem are independent of the elastic modulus [20]. By Hooke’s law, the stress is linearly
dependent of E, meaning that scaling the stress with E makes it independent of the elastic
modulus. To this end, the stress is normalized with ps, defined in Equation (16).

The solid lines in Figure 4 represent the stress and the gap height between the con-
tacting surfaces for the cases with the sealed fluid pressure on ∂Ωb. On the other hand,
the dashed lines in Figure 4 represent the cases when there is no fluid between the con-
tacting surfaces and the total line load density along y-direction equals Pt. The difference
between the solid and dashed profiles with the same Pt value reveals multiple effects of
the hydrostatic pressure between the contacting surfaces, some of which are discussed in
the following. For instance, the presence of the sealed fluid pressure tends to push the seal
towards the low-pressure side. This causes the reduction of maximum contact pressure
and contact length compared with the dry contact cases when Pt values are identical,
as seen in Figure 4a,b. The points defining the boundaries of the contact are both moving
away from their initial positions (Pt = P0), where the initial pre-tension P0, for the results
presented in Figure 5, is chosen such that the coordinate of the first solid-solid contact point
at the high-pressure side x0 is −0.054λ when p f = 0. The total contact length is initially
increasing when the sealed fluid pressure is increased. In the gap, between the seal and
the shaft at the high-pressure side in front of the fluid front x f , the normal stress equals
the hydrostatic pressure (σy/ps = p f /ps). The interfacial fluid at the high-pressure side
provides load support in the vertical direction and suppresses the seal deformation at the
high-pressure side. Meanwhile, there is no fluid support between the contacting surfaces
at the low-pressure side, the deformation here is close to the dry contact cases, as seen
in the dashed lines in Figure 4b. Therefore, the change of the fluid front location, x f , is
not as large as the change of the last contact point at the low-pressure side. The location
of the maximum contact pressure shifts from the origin of the defined coordinate system
and moves towards the low-pressure side, because of the fluid load acting from the high-
pressure side. For the dry contact cases, the horizontal reaction force from the vertical
sidewall at x = λ/2 forces the contacting surface to tilt towards the high-pressure side,
which results in smaller gap height there.
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Figure 4. The stress of the contacting surface and gap height between the contacting surfaces.
(a) Normalized y-direction stress at the contacting surfaces as a function of the sealed fluid pressure
p f . The continuous lines represent y-direction stress σy = σy(p f ) for the situation when there is fluid
inside the interface between sealing surfaces, and the total line load density in the vertical direction
is Pt(p f ) = P0 + p f λ. The dashed lines represent the y-direction stress for the dry contact case
under the total line load density Pt(p f ), for which the y-direction stress is σδ

y = σδ
y (p f ). (b) The gap

height between the contacting surfaces. The continuous lines represent the gap height between the
contacting surfaces u = u(p f ) for the situation when there is fluid between the sealing surfaces. The
dashed lines represent the gap height between the contacting surfaces for the dry contact case under
the total line load density Pt(p f ) = P0 + p f λ along y-direction, for which the gap height between the
contacting surfaces is uδ = uδ(p f ).

Figure 5. An overview and definition of the five performance parameters used in the analysis.

Five performance parameters, as shown in Figure 5, are defined to describe the contact
profile of the current one-sided fluid penetration case.

• pm: the maximum contact pressure.

• xm: the maximum contact pressure location.

• lh: length of contact at the high-pressure side, that is, from the location of the fluid
front x f to xm.

• ll : length of contact at the low-pressure side, that is, from xm to the last contact point.
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• pover: overshoot pressure, that is, the difference between the maximum contact pres-
sure and the sealed fluid pressure; pover = pm − p f . The overshoot pressure pover
equals to the maximum contact pressure, pm, when the sealed fluid pressure, p f , is 0.
As p f increases, pover decreases and when pover reaches to 0, leakage occurs.

The variation of the performance parameters pm, xm, lh and ll with p f can be found
in Figure 6. The maximum contact pressure increases with the sealed fluid pressure, as
shown in Figure 6a. A fraction of the total load is supported by the friction at the vertical
sidewall, and with the increased sidewall friction coefficient, the maximum contact pressure
decreases. The location of the maximum contact pressure, moves towards the low-pressure
side with increased sealed fluid pressure, due to the fluid trying to penetrate from the
high-pressure side, see Figure 6b. The variation in the length of contact at the high-pressure
side, lh, depicted in Figure 6c, is showing a non-monotonic increase with the sealed fluid
pressure. As sidewall friction coefficient µ increases, the maximum lh occurs for a lower
sealed fluid pressure. This is indicated by the dashed line in the figure. Since the gap at
the low-pressure side surface is free from hydrostatic pressure, the length of contact at the
low-pressure side, ll , keeps increasing with the sealed fluid pressure for all five values of
the sidewall friction. In the case of zero friction, the length of the low-pressure side of the
contact reaches its global maximum at p f ≈ 1.05ps where it saturates and remain constant
with further increased sealed fluid pressure, as shown in Figure 6d. With increasing
sidewall friction, the length of contact at the low-pressure side shows a monotonic increase
as the sealed pressure increases up to p f = 1.2ps.

Figure 6. Four of the five normalized performance parameters and their variation with the sealed
fluid pressure p f and the sidewall friction coefficient µ. (a) The maximum contact pressure, (b) the
maximum contact pressure location, (c) length of the contact at the high-pressure side. The dashed
line indicating the position of the maximum lh for different friction coefficients, (d) length of the
contact at the low-pressure side.
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The load balance along the vertical direction for the current system is:

Pt = Pc + µλp f + p f (xm +
λ

2
− lh), (25)

where Pc is the total contact load on Ωc. The second term in Equation (25) represents
the sidewall friction and the third term is the contribution from the sealed fluid between
contacting surfaces. By substituting Equation (24) into Equation (25), the dimensionless
contact load, when normalized with λps, can be written as:

Pc

λps
=

P0

λps
+ Kc

p f

ps
, (26)

with

Kc(p f , µ) = 0.5− µ− xm

λ
+

lh
λ

. (27)

For the low friction coefficient µ < 0.5, the contribution of xm and lh to the slope
function Kc(p f , µ) is small compared with the term (0.5− µ). This can be deduced from
Figure 6b,c, which depict xm and lh respectively. In this case, the total contact load, Pc,
increases linearly with the sealed fluid pressure p f , as seen in Figure 7. As µ approaches 0.5,
Kc becomes sensitive to variations in xm and lh, and the total contact load Pc is no longer
following the linear trend. As a function of the sealed fluid pressure, the total contact load
Pc for µ = 0.4 flattens out when p f > 0.6ps, and xm moves towards to the low-pressure
side to generate sufficient counter moment. This results in an increasing rate change of xm
wtih p f , as shown in Figure 6b.

Figure 7. The total contact load as a function of sealed fluid pressure.

The movement of the fluid front x f , starts from its initial position x = x0 when
p f = 0, is shown in Figure 8 for the case x0/λ = −0.054. A negative value of x f − x0
means that it has moved to the left of its initial location x0. For all the cases in the current
study, the location of the fluid front x f first moves towards the high-pressure side, with an
increasing sealed fluid pressure p f . For sidewall friction coefficients µ = 0.4 and µ = 0.3,
there is a change in direction of movement, but for lower values of µ the change of direction
is no longer observed, within the range of p f in the current study. There is a trend, however,
indicating that a change of direction might occur for p f outside this range.

The overshoot pressure, pover, initially increases towards a maximum and then it
decreases with further increase in the sealed fluid pressure, p f , as shown in Figure
9. The maximum contact pressure reduces with increased sidewall friction, and this is
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the reason for the slower decrease in pover. However, when sidewall friction is large, a
significant decrease in pover can be observed, and for µ = 0.4 it becomes 0 at p f /ps ≈
1.05. The simulation is terminated before pover reaches to zero, as the global load balance
condition is violated in this case.

Figure 8. Movement of the fluid front from its initial location, as a function of the sealed fluid
pressure.

Figure 9. The overshoot pressure as a function of the sealed fluid pressure and the sidewall friction
coefficient µ.

Since the overshoot pressure is critical to determine the sealing performance and it
is closely related to the total line load density Pt = P0 + λp f , it is of particular interest
to study the variation of overshoot pressure, pover, with the pre-tension line load density
P0. It can also be studied from the perspective of the first solid-solid contact point on the
left side under dry contact condition x0, for intuitive understanding. The relationship of
the overshoot pressure with pre-tension, for the side-wall friction coefficient µ = 0.4, is
depicted in Figure 10. It can be observed that the limiting case x0 = 0 also shows a positive
overshoot pressure. This suggests that by keeping the spacing between the seal ring top
surface and the housing, during the fluid pressurization process, the seal’s functionality
is not compromised when there is no pre-tension apparent. However, in reality, there is
surface roughness also on the vertical sidewall, and fluid can either be trapped or leak
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through this interface. In turn, this would lead to a decreased sidewall friction coefficient,
resulting in a higher load on the bottom sealing surface. With the increased load on the
bottom surface, the seal would leak less there, and the leakage, if any, would be fluid
percolating through the roughness, of either the bottom- or the side-wall interface or both.
In this situation, the leakage may be estimated by means of the two-scale model presented
in Reference [21].

Figure 10. The overshoot pressure and its variation with the sealed fluid pressure and the pre-tension,
for the side-wall friction coefficient µ = 0.4.

The profile may have various other shapes than the cosinusoidal seal ring bottom
profile given in Equation (1), which the results presented until now have been based on.
It is also realized that the shape of the profile will have a rather large impact on the seal
performance. To gain a better understanding and to widen the scope of the present study, a
parabolic sealing surface with the same peak to valley (PV) value, that is, (1/50)λ, as the
cosinusoidal profile studied before is, therefore, included in the analysis. The overshoot
pressure’s relationship with the sealed fluid pressure under the condition x0 = 0, µ = 0.4
is shown in Figure 11. For a total vertical line load density of Pt = (1− µ)p f λ, the half
contact length lc for the cosinusoidal profile [7] is

πlc
λ

= sin

(√
Pt

λps

)
=

√
(1− µ)

p f

ps
, (28)

and the maximum contact pressure for the cosinusoidal profile pmw [7] is

pmw

ps
=

2Pt

psλ

1

sin πlc
λ

= 2

√
(1− µ)

p f

ps
. (29)

For the parabolic profile given by Equation (2), the (maximum) Hertzian contact pressure
pmh [22] is

pmh
ps

=
1
ps

(
16∆PtE

πλ2(1− ν2)

) 1
2
=

4
π

√
(1− µ)

p f

ps
, (30)

and we notice that the maximum contact pressure, for both profiles, follows a square root
increase with the sealed fluid pressure. Moreover, the relationship pmw/pmh = π/2, is
valid for the case when there is no fluid present, that is, the dry contact case. Initially, as
the sealed fluid pressure increases, the overshoot pressure for both profiles increases, and
the ratio of pover between the two profiles is approximately π/2 up to p f = 0.05ps, due to
the small contribution of the sealed fluid pressure. At the value of p f = 0.05, the overshoot
pressure for the parabolic profile is almost at its highest value, and thereafter it decreases. A
significantly smaller sealed fluid pressure is required for the overshoot pressure to vanish
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for the parabolic profile, than for the cosinusoidal profile. This suggests that a seal with
a parabolic profile is prone to lose its functionality at an earlier stage than if the profile
would be cosinusoidal, with the same PV value.

Figure 11. Dimensionless overshoot pressure as a function of non-dimensional fluid pressure, for a
cosinusoidal (blue line) and a parabolic (orange line) bottom surface profile.

4. Concluding Remarks

We have presented a finite element based model that resembles the static seal assembly
and we have studied its functionality under various conditions. The seal assembly is
modeled as a contact mechanics problem including the hydrostatic load at the contacting
interface, caused by the sealed fluid pressure. The model is verified against available results
for cosinusoidal wavy surfaces with and without fluid entrapment inside the undulating
gap between the contacting surfaces.

Five sealing performance parameters to describe the contact between sealing surfaces
and the shape of the corresponding pressure distribution were defined. These are (i) the
value of the maximum normal stress, (ii) the location of the maximum normal stress, (iii)
the length of contact at the high-pressure side, (iv) the length of contact at the low-pressure
side, and (v) the overshoot pressure, that is, the difference between maximum contact
pressure and the sealed fluid pressure.

The sealing performance of seal rings with both cosinusoidal and parabolic profiles
was studied, and the results show for example, that there is a π/2-relationship between
the overshoot pressures, for the two profiles, in the lower range of sealed fluid pressures.
The results also suggest that the functionality of the seal is compromised at a significantly
much lower sealed fluid pressure for the parabolic profile, than for the cosinusoidal one.

The movement of the fluid front has also been studied, and the results suggest that
the functionality of seal will only be compromised if the sidewall friction is large enough.
For lower values of the sidewall friction coefficient, the sealed fluid pressure must be
unrealistically much higher.
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