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Abstract: Increasing efforts to reduce frictional losses and the associated use of low-viscosity lubricants
lead to machine elements being operated under mixed lubrication. Consequently, wear effects are
also gaining relevance. Appropriate numerical modeling and predicting wear in a reliable manner
offers new possibilities for identifying harmful operating conditions or for designing running-in
procedures. However, most previous investigations focused on simplified model contacts and the
wear behavior of application-oriented contacts is relatively underexplored. Therefore, the contribution
of this paper was to provide a numerical procedure for studying the wear evolution in the mixed
elastohydrodynamically lubricated (EHL) roller/raceway contact by coupling a finite element method
(FEM)-based 3D EHL model with surface topography changes following a local Archard-type wear
model, a Greenwood–Williamson-based load-sharing approach and the Sugimura surface adaption
model. This study applied the operating conditions of an 81212 thrust roller bearing, considering
realistic geometry and locally varying velocities. The calculated wear profiles in the raceway featured
asymmetries, which were in good agreement with the experimental results reported in the literature
and could be correlated with the velocity and slip distribution. In addition, the effects of speed,
load and oil viscosity were investigated by means of four load cases and two lubricants, demonstrating
the broad range of applying the numerical approach.

Keywords: multi-scale tribo-simulation; wear modeling; mixed lubrication; elastohydrodynamic
lubrication; machine elements; thrust roller bearing

1. Introduction

According to Holmberg and Erdemir [1], tribological contacts account for about 23% of the world’s
total energy consumption, whereas overcoming friction contributes to about 20% and remanufacturing
worn parts and spare equipment due to wear and wear-related failures amount to 3%. By utilizing new
surface, material and lubrication technologies for friction reduction and wear protection in vehicles,
machines and other equipment, energy losses could be reduced by up to 40% [1]. However, wear gets
increasingly promoted by the expanding use of low-viscosity lubricants and the tendency of operating
in the friction optima in the mixed lubrication regime [2]. Moreover, wear can be considered critical as
it can lead to catastrophic failures and breakdowns, thus having a negative impact on productivity
and costs. Therefore, appropriate numerical modeling over different scales and predicting wear in
a reliable manner offers new possibilities for understanding and redesigning tribological systems
in machine elements or engine components. Consequently, the comprehension and simulation of
wear in tribo-contacts were the subject of several studies ranging from boundary to hydro-(HL) or
elastohydrodynamically lubricated (EHL) contacts.
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Thereby, Podra et al. [3,4] numerically investigated the wear of a dry pin-on-disc and a conical
spinning contact based upon the Archard [5] wear model. The calculation of the contact pressure was
accomplished using the finite element method (FEM) and by means of the Winkler surface model [6].
Hegadekatte et al. [7,8] also examined the wear of a pin-on-disc contact based upon the FEM and the
Archard model, however considered local wear by shifting the nodes of an adaptive mesh in the normal
direction. Andersson et al. [9] investigated the wear of a dry sphere on flat contact. The contact pressure
was calculated by a discrete convolution and fast Fourier transformation (DC-FFT) method utilizing
the half-space theory and assuming linear elastic–perfectly plastic material behavior as described
by Liu et al. [10]. Ashraf et al. [11] implemented a FEM-based wear simulation for a dry composite
alloy contact using a free-mesh. Sfantos et al. [12] suggested a boundary element formulation for
three-dimensional dry sliding wear based on Archard’s model, which was applied to a pin-on-disc
contact as well as to a hip arthroplasty wear problem. As aforementioned approaches did not take
deterministic surface topography into account, Terwey et al. [13,14] implemented a contact and wear
model based upon the half-space theory for boundary lubricated thrust roller bearings, considering
surface roughness. Thereby, the wear coefficient of Archard’s law was determined using continuum
damage mechanics (CDM). A comparison with test rig experiments revealed that the severe wear
regime could not be satisfactorily described, whereas the good agreement of numerical prediction and
test results was achieved for mild wear.

In addition to previously mentioned methods for the numerical wear calculation of dry and
boundary lubricated contacts, several approaches for the mixed hydro-or elastohydrodynamically
lubricated regime can be found in the literature. Zhu et al. [15] suggested an approach for the
numerical wear calculation in lubricated contacts based upon a deterministic mixed elastohydrodynamic
lubrication model [16,17]. Thereby, the surface topography was directly incorporated into the film
thickness equation and the wear volume was determined by means of Archard’s wear model.
Lorentz et al. [18] developed a deterministic mixed lubrication micro-scale model considering two
rough rubbing bodies, an adhesion model, heat generation as well as a lubrication domain.
Reichert et al. [19] extended the model by a wear calculation, whereas the wear coefficient for an Archard
type wear model was determined based upon the Johnson–Cook damage law [20]. An stochastic
approach for wear calculation in lubricated EHL line contacts based upon a load-sharing concept
and a CDM-based Archard type wear model [21], considering simplified thermo-elastohydrodynamic
analysis [22], was introduced by Beheshti and Khonsari [23]. Hao et al. [24] proposed a computational
fluid dynamics (CFD)-based wear calculation of a cylinder sliding over a ring in the mixed lubrication
regime. Thereby, hydrodynamics was stochastically coupled with the asperity contact pressure,
which was calculated according to an elastic–plastic contact model [25]. The cylinder geometry profile
was updated stepwise following Archard’s wear law. Zhang et al. [26] investigated the wear and
roughness evolution in a mixed lubricated line contact based upon a stochastic approach. The finite
difference method (FDM) was used for the EHL simulation and micro-hydrodynamics were considered
by flow factors according to Patir and Cheng [27,28]. The asperity contact pressure was determined
by means of the Kogut–Etsion model [29–31]. Moreover, the change in surface height probability
density function (PDF) was calculated in accordance to Sugimura and Kimura [32–34]. Local wear
was computed by Archard’s wear law using the asperity contact pressure. Moreover, Zhang et al. [35]
analyzed the profile modification of a cylindrical roller in the mixed lubrication regime while taking
thermal effects into account.

In brief, a wide range of approaches for the numerical calculation of wear processes have been
developed in recent decades. Some were limited to dry contacts while others considered mixed HL
or EHL contacts. Moreover, deterministic [16,17,36] and stochastic [37] lubrication models could be
distinguished. The latter featured advantages regarding the computational effort due to a reduced
required discretization. However, the wear behavior of application-oriented contacts with realistic
geometries and locally varying velocities as encountered in actual machine elements is relatively
underexplored due to the numerical complexity. Thus, most investigations focused on simplified
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model contacts. Furthermore, only a few selected load cases and lubricants were usually considered.
For these reasons, this paper aims at providing a numerical procedure to predict the wear evolution in
the mixed EHL roller/raceway contact of a thrust roller bearing. Moreover, the influence of different
load-cases and lubricants on the wear behavior was studied in detail.

2. Numerical Modeling

For the numerical wear calculation of a rolling element and raceway in a thrust roller bearing,
a full-system finite element modeling (FEM) approach for EHL contacts was expanded by a mixed
lubrication model as well as a local Archard type wear model to describe the surface topography
evolution. The calculation model was part of the computation software TriboFEM. The investigated
tribo-system as well as the main physical and numerical characteristics are thoroughly described and
reasoned below.

2.1. Load Cases, Material and Lubricant Properties

In order to allow qualitative comparability with the experimental results from literature, the wear
calculations were carried out by means of a thrust roller bearing 81212. Four load cases with the
speeds, simulated test durations, axial loads and initial Hertzian pressures in the roller/raceway
contact (assuming a pure line contact, i.e., without profiling) according to Table 1 were studied. Thus,
each washer surface element experienced a constant number of 2,850,000 overrollings.

Table 1. Load cases.

Operating Parameters Load Case 1 Load Case 2 Load Case 3 Load Case 4

load F 7.5 kN 7.5 kN 15.0 kN 15.0 kN
initial Hertzian pressure pHertz 0.5 GPa 0.5 GPa 0.7 GPa 0.7 GPa

rotational speed n 250 min−1 500 min−1 250 min−1 500 min−1

test duration t 20 h 10 h 20 h 10 h

Moreover, a realistic velocity distribution was taken into account, whereby u1 was considered as
the relative velocity of the washer in the rolling x direction:

u1 =
(
ωwasher −ωcage

)
· r · sin(ϕ). (1)

The roller maintained a constant peripheral speed of:

u2 = ωroller ·
Droller

2
. (2)

Perpendicular to the rolling direction, the washer had a relative velocity of:

v1 = −
(
ωwasher −ωcage

)
· r · cos(ϕ), (3)

whereas the roller had no velocity component in the y direction:

v2 = 0. (4)

Underlying geometry and coordinates are illustrated in Figure 1.
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Figure 1. (a) Definition and location of the coordinate systems and (b) the schematic illustration of the 
velocity distribution in the contact area of the roller element and the raceway in a thrust roller bearing. 
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mineral reference oil types with rather low viscosities were studied, for which the relevant lubricant 
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Shear-thinning and thermal effects were neglected within the scope of this study and are subject 
of on-going research work. 

2.2. Asperity Contact Model 

An approach to calculate the real contact area and the load between an elastic rough surface and 
a rigid smooth plane based upon Hertzian-like deformations of asperities was first suggested by 
Greenwood and Williamson [40]. Since then, the model has been expanded, for example to take into 
account curved surfaces [41], two rough surfaces with misaligned asperities [42], elliptic paraboloid 
asperities [43] and anisotropic surfaces [44]. In addition, Chang et al. [25], Halling and Nuri [45], Zhao 
et al. [46] as well as Jamari and Schipper [47] developed analytical asperity contact models that 
allowed the consideration of elastic–plastic material properties. Moreover, Kogut and Etsion [29–31] 
as well as Jackson and Green [48,49] introduced FEM-based asperity contact models also taking into 

Figure 1. (a) Definition and location of the coordinate systems and (b) the schematic illustration of the
velocity distribution in the contact area of the roller element and the raceway in a thrust roller bearing.

It should be noted that the Cartesian coordinate system depicted in Figure 1 was rotated with the
center of the considered rolling element. Thus, the resulting sliding velocity could be written as

vslip =

√
(u1 − u2)

2 + (v1 − v2)
2. (5)

A Young’s modulus of 210,000 MPa and a Poisson’s ratio of 0.3 were considered as the mechanical
properties of the rollers and washers. Moreover, the surface height probability density function was
assumed to be Gaussian with an equivalent standard deviation of σeq = 0.15 µm. Two mineral reference
oil types with rather low viscosities were studied, for which the relevant lubricant properties are
summed up in Table 2.

Table 2. Lubricant properties.

Lubricant Properties FVA 1 FVA 2

base density ρ0 843 kg/m3 852 kg/m3

base viscosity η0 0.014 Pa·s 0.026 Pa·s
pressure-viscosity coefficient αp 16.7 GPa−1 17.7 GPa−1

Density and viscosity were considered to be pressure-dependent following the equations from
Dowson and Higginson [38] and Roelands [39], respectively:

ρ(ph) = ρ0 ·
0.59 · 109Pa + 1.35 · ph

0.59 · 109Pa + ph
, (6)

η(ph) = η0 · exp

[ln(η0) + 9.67] ·

−1 +
(
1 +

ph

1.96 · 108Pa

) αp ·1.96·108Pa
ln (η0)+9.67


. (7)

Shear-thinning and thermal effects were neglected within the scope of this study and are subject
of on-going research work.

2.2. Asperity Contact Model

An approach to calculate the real contact area and the load between an elastic rough surface
and a rigid smooth plane based upon Hertzian-like deformations of asperities was first suggested
by Greenwood and Williamson [40]. Since then, the model has been expanded, for example to
take into account curved surfaces [41], two rough surfaces with misaligned asperities [42], elliptic
paraboloid asperities [43] and anisotropic surfaces [44]. In addition, Chang et al. [25], Halling and
Nuri [45], Zhao et al. [46] as well as Jamari and Schipper [47] developed analytical asperity contact
models that allowed the consideration of elastic–plastic material properties. Moreover, Kogut and
Etsion [29–31] as well as Jackson and Green [48,49] introduced FEM-based asperity contact models
also taking into account elastic–plastic material behavior. Due to its broad applicability and simplicity,



Lubricants 2020, 8, 58 5 of 21

the Greenwood–Williamson model was used within the present study. It should be noted that all
dimensionless values denoted by * were normalized by σ.

The asperity contact pressure in the dimensional form was given by

pa =
4
3
· ηs · E′ · β 0,5

·

∞∫
d

(zs − d) 1,5 φs(zs )dzs, (8)

where E′ is referred to as the reduced Young’s modulus:

E′ =

1− ν2
1

E1
+

1− ν2
2

E2

−1

. (9)

Furthermore, φs denotes the probability density function of the asperity heights. Assuming
a Gaussian distribution, the PDF normalized by the standard deviation of the surface heights σ
resulted in:

φs ∗ (zs ∗) =
1
√

2π
·
σ
σs
· exp

(
−0.5 ·

[
σ
σs
· zs ∗

]2
)
. (10)

Since the Greenwood–Williamson model used the mean of the summit heights as a reference and
the mean of the surface heights was usually considered in EHL and by the applied Sugimura model,
a transformation of the derived parameters was required. According to Nayak [50], Bush et al. [51] and
McCool [44], the following relation between the standard deviation of asperity heights and surface
heights applied:

σ2
s =

(
1−

0.8968
α

)
·m0, (11)

whereas the bandwidth parameter α was defined by

α =
m0 ·m4

m2
2

. (12)

The parameters m0 = σ2, m2 and m4 denote the zeroth, second and fourth spectral moments of a
surface profile. Considering the density of summits:

ηs =
m4/m2

6π ·
√

3
(13)

and the mean summit radius:

β =
8
3

√
m4

π
(14)

led to the following relation between the standard deviation of the surface heights and the
asperity heights:

σ2 = σ2
s +

3.717 · 10−4

ηs2 · β2 . (15)

The distance between the mean height of the asperities and the mean height of the surface
according to Bush et al. [51] was:

ys = 4 ·
σ
√
π · α

. (16)

Finally, the relation between the separation of a rough surface and a flat surface based on the
asperity heights and surface heights reads:

h = d + ys. (17)
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The relation between the PDF of the summit heights and the PDF of the surface heights followed:

φs ∗ (zs ∗) =
σ
σs
φ ∗

(
σ
σs

zs ∗

)
. (18)

Taking into account two rough surfaces by the Greenwood–Williamson model is possible by
calculating equivalent values for the standard deviation, the asperity radius and the asperity density
according to Beheshti and Khonsari [52]:

σeq =
√
σ2

1 + σ2
2 ,

1
βeq

=
√

1
β2

1
+ 1

β2
2

,

1
ηs,eq

= 1
ηs,1

(
βeq
β1

)2
+ 1

ηs,2

(
βeq
β2

)2
.

(19)

2.3. EHL Modeling

In the context of higher loaded non-conformal contacts, CFD-based approaches, as suggested
by Hartinger et al. [53,54], usually lead to high computational effort and instabilities at high
loads. Consequently, numerical EHL modeling has frequently been done by applying the Reynolds
equation [55] for hydrodynamics coupled with the solution of the elastic deformation. Therefore,
iterative finite difference and half-space-based multilevel and multi-integration (MLMI) solvers,
detailed in Venner and Lubrecht [56], are well established. Furthermore, Habchi et al. [57] introduced
the full-system FEM-based approach to solve the system of fully coupled equations. This offered
advantages in terms of computational effort and convergence behavior and most notably, enabled
the use of commercially available software. Hence, the latter approach was used within the scope of
this study.

Therefore, the Reynolds equation in a slightly modified form:
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is solved in its weak form on the upper surface Ωc of the elastically deformed equivalent body (Figure 

2) to describe the lubricant’s hydrodynamics. The first term describes the influence of the pressure 

gradient, while the second one accounts for the boundary velocities of the contacting bodies and the 
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Therefore, the lubricant’s density and viscosity were multiplied with the fractional film content. The 

latter was defined as the ratio of the lubricant layer to the gap height: 

is solved in its weak form on the upper surface Ωc of the elastically deformed equivalent body (Figure 2)
to describe the lubricant’s hydrodynamics. The first term describes the influence of the pressure
gradient, while the second one accounts for the boundary velocities of the contacting bodies and
the wedge-shape of the lubricant gap. Zero pressure boundary conditions were applied at the in-
and outlet. A mass-conserving algorithm, as introduced by Marian et al. [58], dealt with cavitation
effects. Therefore, the lubricant’s density and viscosity were multiplied with the fractional film content.
The latter was defined as the ratio of the lubricant layer to the gap height:

θ(p) =
hliq

h
= e−γ(ph)·ph

2
, (21)

with the penalty factor γ(ph), which is zero if ph < 0, otherwise γ(ph) = ξ, where ξ is a sufficiently high
algebraic number. The Galerkin least squares (GLS) method (Hughes et al. [59]) and isotropic diffusion
(Zienkiewicz et al. [60]) were utilized for the numerical stabilization.
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Based upon the FEM, the elastic problem was calculated for one body Ω with the equivalent
Young’s modulus:
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2 · E1 · (1 + υ1)
2

[E1 · (1 + υ2) + E2 · (1 + υ1)]
2 (22)

and Poisson’s ratio:

υeq =
E1 · υ2 · (1 + υ2) + E2 · υ1 · (1 + υ1)

E1 · (1 + υ2) + E2 · (1 + υ1)
, (23)

by applying the linear elasticity equation:

∇ · σelastic = 0, with σelastic = C · ε(U), δelastic(x, y) =
∣∣∣ Uz(x, y)

∣∣∣. (24)

A free triangular mesh with a refinement in the contact center of the upper surface was applied
and the body was provided with a zero-displacement boundary condition on the bottom and free
boundary conditions on the sides. The dimensions of the cuboid were chosen large enough to exclude
any effects on the calculation results [57]. Furthermore, a free triangular mesh with a refinement in the
contact center of the upper surface was applied. Geometry and meshing are schematically illustrated
in Figure 2.

The lubricant film thickness equation:

h(x, t) = h0 + s0(x, y) + δelastic(x, y) (25)

describes the height of the separating fluid film in terms of the distance and the shape of the undeformed
geometry as well as of the elastic deformation. The geometry of the rolling element was composed of a
quadratic approximation of the radius in and the logarithmic profile perpendicular to the direction
of motion:

s0(x, y) =
x2

2 ·Rx
+ 0.00035 ·D · ln

 1

1−
( 2·y

L

)2

. (26)

The load balance equation:

F =

∫
Ωc

ptotal(x, y) d Ωc =

∫
Ωc

[ph(x, y) + pa(x, y)] d Ωc (27)

ensures the equilibrium of forces, taking into account simultaneously occurring asperity contact
(Section 2.1.) and hydrodynamic lubrication by a stochastic mixed lubrication [61].

In order to obtain a consistent model without regenerating and remeshing the computational
domains at different load cases as well as to avoid instabilities due to memory variables with limited
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accuracy, all the solution variables were normalized to characteristic quantities of the Hertzian theory
or, in the case of the lubricant, initial values:

X =
x

bHertz
, Y =

y
bHertz · scale

, P =
p

pHertz
, H =

h ·Rx

b2
Hertz

, δelastic =
δelastic ·Rx

b2
Hertz

, ρ =
ρ

ρ0
, η =

η

η0
(28)

In addition, the computational domain was decreased in y direction by the factor scale in order to
reduce the number of degrees of freedom and thus the computation time.

2.4. Wear Modeling

Widely used wear models were proposed by Kragelski [62] and Fleischer et al. [63]. The first
developed a molecular mechanical fatigue-based wear model and the approach of the latter considered
the frictional energy density. However, the most common model for calculating wear, originally
intended for dry contacts, goes back to Archard [5,64] and Holm [65]. Although various other wear
modeling approaches, based upon empirical relationships or limited to specific applications, exist in
the literature, Archard’s wear model was applied within the scope of this contribution for its generality
and simplicity. Thereby, the total wear volume Vw was considered proportional to the normal force
FN, the sliding distance s and the proportionality factor k, also known as the wear coefficient:

VW = k · FN · s. (29)

To calculate the wear in a lubricated contact, the Archard wear model, which in its conventional
form is valid for dry contacts, was modified assuming that wear could only occur on a solid
asperity contact:

VW = k · s ·
∫
Ω

pa(x, y) · dx dy. (30)

As a result, the local wear depth was derived by

hW(x, y) = k · s · pa(x, y). (31)

Since the wear coefficient depends on numerous factors, such as material properties, surface
conditions and boundary layers, it was frequently determined experimentally and could vary between
10−1 and 10−15 mm3/Nm for metals [66,67]. As it can be assumed that even under the highest loads,
some protecting boundary layer will be formed and that at least some lubricant will remain in the
contact between the two opposing asperities, it seems appropriate in the context of the present study to
apply a wear coefficient that is valid for the boundary lubrication regime in order to calculate the wear
depth. In accordance to Czichos and Habig [68], a local wear coefficient of k¯ = 6×10−8 mm3/Nm
was applied.

2.5. Surface Topography Model

The Sugimura model [32–34] was used to take into account the wear-induced change of statistical
surface parameters within the asperity contact pressure calculation.

Assuming an arbitrary distribution of the initial surface heights, the upper proportion of the
probability distribution S1 was removed, as schematically illustrated in Figure 3a, depending on the
wear depth W and the mean wear-related height loss w:

∆φ(t) = S1 = S2 =

zh∫
zh+∆zh

φ(z, t) dz =
W(t)
w(t)

, (32)
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where:

w(t) =

∞∫
0

w ·ψ(w, t) dw. (33)
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Thereby, ψ denotes the probability density function of the wear-induced height loss and could be
derived from the wear particle size distribution:

ψ(w) =

∞∫
0

∞∫
0

u v f (u, v, w) du dv

∞∫
0

∞∫
0

∞∫
0

u v f (u, v, w) du dv dw
, (34)

where u, v, and w are the wear particle dimensions. Additionally, f (u,v,w) denotes the probability
density function of the wear particle size. Assuming the proportionality of u and v to w results in:

ψ(w) =
w2
· fw(w)

∞∫
0

w2 · fw(w) dw
, (35)

with the marginal density function of the wear particle density function:

fw(w) =

∞∫
0

∞∫
0

f (u, v, w) du dv. (36)

Following Kimura and Sugimura [34], an exponential distribution for the wear particle size,
as depicted in Figure 3b, was assumed. Finally, the fraction of the removed surface PDF was then
redistributed to the remaining density function accordingly (Figure 3a). The surface height probability
density function at the time t + ∆t was written by considering the shift of the mean height ∆z0:

φ(z, t + ∆t) =

φ(z + ∆z0, t) +ψ(zh(t) − z, t) · ∆φ(t) if z ≤ zh(t) + ∆zh

0 if z > zh(t) + ∆zh
, (37)

where the shift of the mean height satisfies:

− ∆z0 = w(t) · ∆φ(t). (38)



Lubricants 2020, 8, 58 10 of 21

2.6. Overall Numerical Procedure

The global numerical solution scheme is presented in Figure 4. Based upon the initial parameters on
bulk material, surface topography and lubricant rheology (see Section 2.1), the asperity contact pressure
in dependency of the mean surface distance was calculated according to the Greenwood–Williamson
model as described in Section 2.2 using MATHWORKS MATLAB. Subsequently, the system of highly
nonlinear EHL equations, see Section 2.3, was solved fully coupled utilizing COMSOL MULTIPHYSICS.
For more fundamental aspects about FEM in EHL and further information about the implementation,
the interested reader is referred to Habchi [69]. After convergence, the wear evolution was calculated
based upon the resulting solid contact pressure using Archard’s law as described in Section 2.4 and
the profile was updated accordingly. Moreover, the PDF of the surface heights was adapted using the
Sugimura model, see Section 2.5. These steps were also implemented in MATHWORKS MATLAB and
repeated until the intended operating period of the thrust roller bearing was reached.
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It should be noted that each of the individual aforementioned sub-models (Sections 2.2–2.5) used
within the scope of this contribution were chosen based upon their similar degree of complexity
and good implementability. However, they could in principle be replaced by any other or more
sophisticated models.

3. Results and Discussion

The lubrication conditions of all four load cases and both oil types in terms of fluid film gap and
total and solid contact pressure are depicted in Figures 5 and 6 and Figures 10–13. The value ranges of
the result variables are set equal in all figures to ensure easy comparability. The scales were chosen in
such a way that the relevant effects are properly visualized and actual extrema are partially not mapped.
Furthermore, the wear profiles of the rolling elements and washers as well as the probability density
function and the asperity contact pressure function are shown in Figures 7–9 for several time-steps.
The calculated mass losses are then summarized in Table 3.

Due to the roller radius in and the logarithmic profile perpendicular to the direction of motion,
the initial conditions featured typical characteristics for elliptical EHL contacts with a horseshoe-shaped
lubricant gap (Figure 5a–d), a total pressure distribution similar to Hertz (Figure 5e–h) as well as a
constriction in the film height as well as a barely pronounced Petrusevich spike in the outlet region.
Due to the smaller contact area, the pressures exceeded the Hertzian values determined for a perfect
line contact (Table 1). In addition, the speed profile (Figure 1b) resulted in a slight asymmetry and
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tilting of the contact area. The clearly recognizable asperity contact pressure (Figure 5i–l) followed
the lubricant height in shape and indicated an operation under mixed EHL conditions. The effects
of the load case and oil on the lubricant gap and the pressure formation basically corresponded to
theoretical expectations. Higher speed (load case 2) and higher viscosity (Figure 6) led to a larger and
higher load (load case 3, 4) to a lower fluid film height. Accordingly, the asperity contact pressure
behaved just oppositely. Moreover, the higher load led to a significantly larger elastically deformed
contact area. It should be noted that although the contact width y was scaled in the same way for
all cases, the contact length x was plotted normalized to the Hertzian width for reasons of reduced
space requirements. Thus, the contact area actually expanded further in the x direction at higher loads
as well.
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The continuous progress of the simulated time led to material loss and changes of the surface
topography of the washers and the rollers. In brief, the wear-depth distribution, as depicted in Figure 7,
followed the product of asperity contact pressure and sliding velocity. The inner (negative y values)
and outer halves (positive y values) of the raceway showed a slightly asymmetrical shape due to
different velocities. Thereby, wear was higher in the area of the negative slip. This stands in good
agreement with the experimental results from Terwey et al. [13,14]. Despite differences in absolute
values due to the less severe conditions (lower loads and higher velocities) and the operation being in
the mixed instead of the boundary lubrication regime, the qualitative profiles agree well. Furthermore,
a more significant difference in the wear depth between the inner and outer halves of the raceway
could be found on the washer. This was due to the fact that the calculated wear volume was distributed
over a smaller circumference at the inner half of the raceway than at the outer area. Higher loads and
lower sliding velocities resulted in a higher wear depth. This can be explained by lower lubricating
film heights resulting in higher asperity contact pressures. For the same reason, the use of a lower
viscosity oil (FVA1) compared to a higher viscosity oil (FVA 2) led to higher wear depths.

Proceeding wear also resulted in an adjustment of the probability density function of asperity
heights, see Figure 8. By applying Sugimura’s wear model, the probability density function of the
surface heights was recalculated and adapted in each time step of the wear simulation assuming an
exponentially distributed wear particle size. With a further continuing wear process, the PDF reached
a stationary shape. This can be seen the most for the wear-intensive load case 3 with lower-viscosity
oil FVA 1 (see Figure 8c). Here, the PDF of the surface heights after half of the simulation time only
differed slightly from the PDF at the end of the wear simulation, indicating a run-in surface topography.Lubricants 2020, 8, x 13 of 21 
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Table 3. Total mass losses after 2,850,000 overrollings (= t).

Lubricant Load Case 1 Load Case 2 Load Case 3 Load Case 4

FVA 1 5.1 mg 3.6 mg 10.8 mg 7.2 mg
FVA 2 3.7 mg 2.0 mg 7.4 mg 3.4 mg
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The PDF of the asperity heights were further applied to the calculation of the asperity contact
pressures, which were a prerequisite for the application of the mixed friction model based upon the
load sharing concept. As can be seen in Figure 9, the contact pressures were shifted to the bottom
left with increasing simulation time, which was caused by the worn-out asperity peaks in terms of
the modified probability density functions. Furthermore, in most cases the asperity contact pressure
curves also reached a stationary state with slight differences to the final state being distinguishable for
less harmful cases, see for example Figure 9f).

Changes in the surface topography were also accompanied by transformations of the lubrication
conditions, see Figures 10–13. In addition to the horseshoe-shaped constriction of the lubricant gap at
the contact outlet region, there was a similarly pronounced minimum along the y = 0 axis. This was due
to the low wear in this area, despite the high total and asperity contact pressure, since the conditions
of the pure rolling (slide-to-roll ratio (SRR) = 0) prevailed. Furthermore, the asymmetry and slight
tilting resulting from the speed and wear profiles could still be observed. Generally, the distributions
of the lubricant gap and the pressure continued to correspond to the principles of the influences
of speed, load and viscosity. In most cases, the fluid and pressure distribution only featured small
differences between the half and end of the simulation time. While some load cases still showed
significant asperity contact pressure after the simulated runtime, see Figure 12i,k), others indicated
a kind of completed running-in process with hardly any solid contact compared to the initial state,
see for example Figure 13l).Lubricants 2020, 8, x 15 of 21 
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Finally, the calculated wear masses for both bearing washers and all the rolling elements of the
studied 81212 thrust roller bearing are summarized in Table 3. Again, it can be seen that the highest
wear mass was calculated for load case 3 (highest load, lowest speed) in combination with the lower
viscosity oil FVA 1. In contrast, load case 2 (lowest load, highest speed) in combination with the higher
viscosity oil FVA 2 resulted in the lowest total wear.

4. Conclusions

Within the scope of this contribution, a numerical simulation method for studying the wear
evolution of a thrust roller bearing under mixed elastohydrodynamic lubrication was introduced.
Therefore, realistic geometries and operating conditions, especially a local velocity distribution,
were considered. During the simulation time, the macroscopic lubrication conditions obtained by
a FEM-based 3D EHL model were coupled with macroscopic and microscopic surface topography
changes following a local Archard-type wear model, a Greenwood–Williamson-based load-sharing
approach and the Sugimura surface adaption model. The simulations, carried out by means of
four load cases and two different mineral oil types, indicated clear differences in the wear behavior,
whereby stronger wear was favored by a lower velocity, higher load and lower oil viscosity. Thereby,
asymmetrical wear profiles on the rollers and washers were revealed, whereas a negative slip on
the outer half resulted in more a pronounced wear compared to the positive slip on the inner half
of the raceway. This could be attributed to the velocity and slip distribution. Thus, the obtained
results corresponded qualitatively well with the experimental results from the literature. In the future,
it is intended to further enhance the EHL model by taking into account thermal and non-Newtonian
effects. The use of locally modified probability density and asperity contact functions will also improve
the prediction quality. However, the presented numerical simulation procedure already enables the
determination of harmful load case and fluid property combinations. Moreover, the approach could be
used to derive suitable running-in procedures.
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Nomenclature

bHertz Hertzian contact half-width
C compliance matrix
d separation based on asperity heights
D diameter of roller
E’ reduced Young’s modulus
E1, E2 Young’ modulus of washer/roller
Eeq equivalent Young’s modulus
f probability density function of the wear particle size
f w marginal density function of the wear particle density function
F bearing load
FN normal contact force
h lubricant gap
h0 film thickness constant parameter
hliq lubricant film thickness
hw local wear depth
H dimensionless lubricant gap
k global wear coefficient
k local wear coefficient
L length of roller
m0,2,4 zeroth, second and fourth spectral moment of a surface profile
n rotational speed
pa asperity contact pressure
ph fluid pressure
pHertz Hertzian contact pressure
ptotal total pressure
P dimensionless pressure
Rx radius of curvature in x direction
s sliding distance
s0 geometry-function of the roller
SRR slide-to-roll ratio
t test duration
u, v, w size of cuboid shaped wear particle
u1, u2 relative velocity of the washer/roller in x direction
U displacement tensor
Uz displacement in z direction
v1, v2 relative velocity of the washer/roller in y direction
vslip slip velocity
Vw wear volume
w mean height loss
W mean wear depth
x,y coordinates in and perpendicular to the rolling direction
X, Y dimensionless coordinates in and perpendicular to the rolling direction
ys distance between the mean height of asperities and the mean height of surface
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z profile coordinate based on mean height of surface
zs profile coordinate based on mean height of asperities
z0 ordinate of the mean line of the composite profile
∆z0 descending quantity of mean line
zh highest point of composite profile
∆zh moving distance of highest point
α bandwidth parameter
αp pressure-viscosity coefficient
β mean summit radius
γ penalty function
δelastic elastic deformation in z direction
δelastic dimensionless elastic deformation in z direction
ε strain tensor
ν1, ν2 Poisson’s ratio of washer/roller
νeq equivalent Poisson’s ratio
ρ lubricant density
ρ dimensionless lubricant density
ρ0 lubricant density at reference state (40 ◦C)
η lubricant viscosity
η dimensionless lubricant viscosity
η0 lubricant viscosity at reference state (40 ◦C)
ηs area density of asperities
θ fractional film content
σ standard deviation of surface heights
σelastic stress tensor of the equivalent body
σs standard deviation of asperity heights
φ probability density function of surface heights
φs probability density function of asperity heights
ψ height-loss probability density function
ω angular velocity
Ωc contact domain
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