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Abstract: Radial shaft sealing rings (RSSR) are important machine elements used in rotating and oil
lubricated systems. Their main task is to prevent oil from exiting the system and dirt particles from
entering the system. When this function is not fulfilled, a leakage can occur and cause excessive
damage after certain operating times, such as gear failure due to insufficient lubrication. This is
the reason for the high level of current research interest in seals. The sealing function of RSSR
occurs in the contact area between the sealing lip and the shaft. The contact takes place over a very
small contact width of approximately 1 µm. These extremely small dimensions and the complex
relationships between the functional influencing variables on the radial shaft sealing system make it
difficult to simulate wear on the sealing ring. The energetic consideration of the wear process offers
the possibility of quantifying influencing variables more easily by their energetic contribution, which
can be determined experimentally. Based on experimentally measured total friction moments, and
with the help of a semi-analytical (SA) solid contact model based on the half-space theory, this paper
presents a modelling approach for the calculation of wear at the sealing ring. The model presented in
this work differs from the existing models in two ways. The first particularity is the coupling of SA
method with finite element method (FEM) for the resolution of the contact between the sealing lip
and the shaft, allowing a fine discretization of the contact zone (by SA method) and the consideration
of the structural behavior (by FE method). The SA method compared to the commonly used FEM
presents a great saving in computation time. The second particularity is the use of the real data
obtained during the wear tests. Most existing simulation models are based purely on contact pressure.
This means that through the contact pressure obtained by simulation and a given sliding distance
value, a friction energy will be estimated which will be used in a next step using a wear model such
as Archad’s to calculate the wear rate. In this publication the value of friction energy was obtained
directly on an experimental basis and a more appropriate wear law, such as Fleischer’s, taking into
account the friction conditions, was used to estimate the wear rate.

Keywords: wear; contact mechanics; radial shaft sealing ring

1. Introduction

This paper presents a SA method for wear prediction at the radial shaft sealing rings (RSSR)
tribological system. The model presented in this work was validated by a comparison with
experimentally determined wear volumes. Good concordance was found between experimental
and simulative results. The semi-analytical contact model used in this publication showed itself to be
particularly advantageous due to the short calculation times. This paper presents a detailed version of
the conference paper [1] of the 60th German Tribology Conference (GfT). Functional parameters in
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the sealing system include the topography (microgeometry of the contact surfaces), the properties of
the lubricants, and the operating conditions such as speed and temperature. Thus, wear modelling
represents two main difficulties: On the one hand, the real contact surfaces must be considered, and on
the other hand, a wear law must be selected, which considers the lubricant and operating conditions.
The consideration of the real rough surface with sufficient accuracy in the finite element (FE) model
causes exponentially increasing calculation times in many cases due to the quantity of meshing element
required. The semi-analytical (SA) contact model as implemented in this work was based on the contact
algorithm of Polonsky and Keer [2,3] for the normal contact without friction and the extension [4,5]
for the frictional case. They offer today a valuable alternative to conventional finite element method
(FEM). With such models contact pressures at the real rough surface for contact problems on the macro-
(about >30 µm) and microscale (about 0.03 to 30 µm) can be determined with reasonable calculation
times. The SA method has the disadvantage that it cannot directly take into account the influence of
structural deformation in solving the contact problem, which is a deficiency in the case of the contact
problem between the sealing lip and shaft investigated in this publication. In fact, the bending of the
sealing lip has an influence on the position, the size of the contact surface, and the contact pressure.
In this publication, this influence was first determined using a FE model and integrated into the SA
contact model.

In the current state of the art of semi-analytical contact modeling, the rolling contact between
elasto-plastic contact partners can be simulated based on the work of Jacq [6]. As shown in [7,8], harder
surface layer effects (in the form of coating) and inclusions in the material interior can also be taken
into account. A current frequently used application field of the SA method is the simulation of wear
phenomena due to fretting [4,9,10]. Fretting is a contact situation with very small tangential relative
displacements. Because of the very small relative displacements compared to the contact size, the
middle area of the contact surface is always in contact and there is sticking. At the boundary of the
contact area, on the other hand, sliding prevails. Due to this splitting of the contact areas into stick and
sliding areas, such contact types are also designated as contacts with partial sliding. The small bodies
movements present in fretting are caused in machine elements such as axial sealing by oscillating
forces. For Hertzian point (spherical, ellipsoidal) or line (cylindrical) contact, the literature [11] gives an
analytical formula for estimating the tangential body movements at contact between two elastic bodies.
These formulas are used, for example, in contact algorithm [9,10] to simulate the fretting between a
sphere and a plane. For non-Hertzian contact problems and especially for the simulation of fretting
with real rough surfaces, the generally formulated contact algorithm in [4] is better suited. Here, in
contrast to [9,10], the body displacements were estimated directly from the surface displacements
(from the fundamental displacements solutions on the half-space) in the tangential direction. With
ever increasing tangential body movements, a transition from partial to full gliding occurs in contact.
This means that a sliding condition exists on the entire contact area. Such a contact situation exists, for
example, in the case of wear between the sealing lip and the shaft. Based on the coupling between the
SA method and a local friction energy-based wear algorithm, a tangential contact algorithm for the
simulation of wear during full sliding is presented in [12]. The tangential contact conditions proposed
in [12] were considered in this paper. These are described in Section 3.3.

An important parameter in wear simulation is the wear coefficient, which establishes a relationship
between the cause of wear (friction energy) and the wear rate. A linear relationship was experimentally
proven by Schallamach for elastomer [13]. His result is used in many works [14–16] for the calculation
of the sealing wear with the wear laws of Archard [17]. The wear laws of Archard (28), which have been
frequently used up to now, use an empirically determined wear coefficient αA. Energetic approaches
for the formulation of wear in the tribological system are used more and more frequently. These have
the advantage that many influencing variables can be taken into account when determining the friction
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energy. Fleischer [18] presents the following correlation between the friction work Ed and the measured
wear volume V via the friction energy density eR:

eR =
Ed
V

(1)

In recent work, such as [18], empirical wear coefficients according to Archard are replaced by a
wear coefficient determined from the experimentally determined friction energy density. A similar
approach was used in this paper. The friction energy density will be first determined as described
in Section 5 from the friction work measured during the wear experiments and the wear volume
measured at the end. The wear coefficient applied further in the simulation is determined from the
reciprocal of the friction energy density already determined. In this paper the friction energy was
determined experimentally on specific lubricants, RSSR materials, and operating parameters.

2. RSSR Tribological System and Half-Space Theory

The first part of this section presents the RSSR tribological system with its main component.
Furthermore, geometric and surface topographical requirements for a good sealing function will be
explained and finally the lubrication and friction conditions present in the sealing contact during
operation will be explained using the Engelke friction model [19]. In the second section, in order
to facilitate the introduction to the semi-analytical method presented in Section 3, some theoretical
fundamentals of half-space theory will be explained. The focus will be on the basic assumptions
that are made and the applicability of this theory in the semi-analytical model to solve the sealing
contact problem.

2.1. RSSR Tribological System

The RSSR tribological system essentially consists of three components: The sealing ring, the
counter surface, and the lubricant. Figure 1 shows a sectional view of the contact between the elastomer
sealing lip and the counter surface in the sealing system.
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The good functionality of the RSSR system depends mainly on macro-geometric, micro-geometric,
and operating parameters. In the following, some important influencing variables will be explained.
The macro-geometry of the sealing lip is characterized by the different contact angles between the
sealing edge and shaft on the air side β and oil side α. These different angles provide an asymmetrical
contact pressure, which is an absolute condition for a good function. As example, in [18] the following
value ranges 20–30◦ and 40–50◦ are recommended for the β and α angles in the unassembled state. While
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manufacturing shaft surfaces for RSSR systems, two requirements are imposed on the micro-geometry
achieved. On the one hand, the manufactured surface should be twist free as much as possible. On the
shaft surfaces, the twist structures resulting from standard manufacturing processes such as the turning
process can have a negative pumping effect during operation depending on the rotation direction of
the shaft and lead to leakage [20]. To avoid this, the shaft surfaces are further grinded after the turning
process. On the other hand, the smoothness achieved by the grinding process from a critical roughness
value can lead to problems. In fact, roughness profiles form so-called “pockets” on the shaft surfaces
in order to maintain the lubricating film. Guidelines for the selection of surface roughness for shaft
surfaces can be found in the standard International Organization for Standardization (ISO) 6194.

Depending on surface roughness and operating parameters (e.g., temperature, speed), various
friction and lubrication conditions can occur in the sealing contact, which are difficult to predict.
A popular friction model for sealing contact is the Engelke model, which will be briefly described
hereafter. Engelke presented in [19] a model for the iterative calculation of the friction torque and
contact temperature in the sealing contact based on a large number of experimental investigations.
Here the total friction torque Mr is summarized from the sum of a dry friction component M0 and a
viscous component Mη:

Mr = M0 + Mη. (2)

The dry friction component M0 is determined from the radial force Frad, the limiting friction value
µ0, and the shaft radius rw as follows:

M0 = Frad·µ0·rw. (3)

The viscous friction torque Mη, on the other hand, is determined from the dynamic viscosity η(T),
which depends on the sealing contact temperature, the sealing contact width b, the sum of the mean
roughness peaks in the contact RP (as an approximation of the lubricating film thickness), and the
speed n:

Mη =
η(T)·b·r3

w·4·π2
·n∑

RP
. (4)

2.2. Half-Space Theory and Its Applicabiliy to RSSR Contact Problem

The semi-analytical contact model implemented in this work is based on the half-space theory,
where contact bodies are considered as half-space. In continuum mechanics, a half-space describes a
semi-infinite space bounded in one direction by a plane (see Figure 2). External forces can only act on
the half-space via this plane.
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Fundamental solutions on which most semi-analytical contact models are based are the Boussinesq
and Cerruti solutions given in Equations (5) and (6) [21] for the displacements on the half-space on
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which, respectively, a normal Fz and a tangential force Fx act. From these fundamental solutions the
coefficients of influence described in Section 3.1 were derived, which were used for the numerical
implementation of the contact model.

→
uBoussinesq =


ux

uy

uz

 =


Fz x
4πGR

[
z

R2 −
1−2ν
R+z

]
Fz y

4πGR

[
z

R2 −
1−2ν
R+z

]
Fz

4πGR

[
2(1− ν) − z2

R+z

]
 (5)

→
uCerrutie =


ux

uy

uz

 =


Fx x
4πGR

[
1 + x2

R2 + (1− 2ν)
(

R
R+z −

x2

(R+z)2

)]
Fx xy
4πGR

[
1

R2 −
1−2ν

(R+z)2

]
Fx x

4πGR

[
z

R2 +
1−2ν
R+z

]
 (6)

where R =
√

x2 + y2 + z2.
The use of the half-space theory to resolve the contact problems presupposes basically the

following assumptions:

1. Extremely small contact dimensions compared to body dimensions,
2. A linear elastic behavior of the contact bodies, and
3. No structural deformation influence on the contact problem.

From the three conditions mentioned above only the first one is in case of RSSR contact problem
directly without further fulfilled. In fact, the contact in the RSSR system took place in a very small
region (approx. 1 µm contact width) compared to the geometry dimensions of the sealing lip (see
Figure 1). However, the sealing lip of the RSSR showed a hyperelastic material behavior and the
bending of the sealing lip (structural deformation) had a big influence on the contact as the results
show later. For these two last reasons, the material behavior of the sealing lip should be linearized (see
Section 3.2) and the structural deformation influence on the contact should be determined beforehand
(see Section 3.1) for the application of semi-analytical contact modeling to the RSSR contact problem.

The method described in Section 3.1 is based on the assumption of a linear elastic behavior of the
sealing lip, which allows the superposition principle to be used to determine the contact displacements.
The total contact displacement on the sealing lip is summarized as shown schematically in Figure 3,
from a local deformation part (without macroscopic displacements) and a macroscopic structural
deformation part (without local deformations) from the bending of the sealing lip. The structural
deformation influence required to consider the second deformation part of the contact displacements
in the half-space model was determined using a finite element model of the RSSR.
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3. Semi-Analytical Frictional Contact Modelling of RSSR

As already mentioned in the introduction, the contact bodies are considered as half-spaces in
the semi-analytical contact modelling approach. This simplification requires, among other things: A
linear elastic behavior of the bodies and an infinitely wide dimensions of the bodies. From the latter
condition, any structural deformation influences remained unconsidered at first. In this section, the
first Section 3.1 presents the fundamental solutions of the displacements on a half-space and their
extension for the RSSR contact problem by considering the bending of the sealing lip. In the second
Section 3.2, the material parameters and contact surfaces geometry of the sealing lip and shaft are
discussed. Finally, the main contact equations and the iterative solution scheme will be described in
the last subsection.

3.1. Fundamental Solution on the Half Space for RSSR Contact Problem

The solution to the contact problem is an iterative determination of the contact displacement
by checking previously defined contact conditions. The surface displacements on a half-space are
obtained from the fundamental solutions of Boussinesq and Cerruti. For this purpose, the surface of
each half-space (contact partner) and the load acting on it was discretized. Figure 4 shows, for example,
the surface of the half-space discretized into Nx ×Ny square segments with the dimensions 2a, 2b. For
simplicity, only the normal contact is discussed in the following consideration. The normal surface
load pkl is assumed to be constant for each surface element. The index k and l describe the position of
the area load in the coordinate system.
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In the case of a single point load, as shown in Figure 2, the normal displacement due to a normal
load is given by the third component of the displacement field Equation (5):

uz =
Fz

4πGR

[
2(1− ν) −

z2

R + z

]
. (7)

On the surface (z = 0) results:

uz=0 =
Fz

4πGR
[2(1− ν)]. (8)

With the following relationship G = E
[2(1+ν)] between the shear modulus G and elastic modulus E,

the relationship in Equation (8) can be simplified as follows:

uz=0 = Fz·

(
1− ν2

)
πER

. (9)

The quantity
(1−ν2)
πER in Equation (9) describes the coefficient of influence of a normal single point

load Fz on a normal displacement uz on the surface of a half-space. In order to describe the coefficient
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of influence for a surface load pz
kl, the coefficient just derived in Equation (9) must be integrated over the

surface segment (shown in Figure 4). The following integration formula was proposed by Love [22]:

Czz
i jkl =

∫ b
−b

∫ a
−a

(1−ν2)
πER dxkdyl

=
(1−ν2)
πE

∫ b
−b

∫ a
−a

1√
(xi−xk)

2+(y j−yl)
2
dxkdyl

=
(1−ν2)
πE

(xi + a) log


√
(xi+a)2+(y j+b)

2
+y+b√

(xi+a)2+(y j−b)
2
+y−b

+(xi − a) log


√
(xi−a)2+(y j−b)

2
+y−b√

(xi−a)2+(y j+b)
2
+y+b


+

(
y j + b

)
log


√
(xi+a)2+(y j+b)

2
+x+a√

(xi−a)2+(y j+b)
2
+x−a

+ (
y j − b

)
log


√
(xi−a)2+(y j−b)

2
+x−a√

(xi+a)2+(y j−b)
2
+x+a

.

(10)

The nomenclature used in Equation (10) was defined as the two superscripts zz indicating the
direction of displacement and the area load, respectively. The four assumed indices describe in pairs
the position of the area element where the displacement is currently being determined (i, j marked
red in Figure 4) and the position of the area load (k, l marked blue in Figure 4). The expression for
determining the normal displacement on any area element, j, due to an area load pz

kl at point k, l can be
written compactly as follows:

uzz
i j = Czz

i jkl·p
z
kl. (11)

If several kl surface elements are subjected to normal loads pz
kl, then the resulting normal

displacement at one point i j results from the superposition of the individual contributions as follows:

Uzz
i j =

∑Nx

k=1

∑Ny

l=1
Czz

i jkl·p
z
kl. (12)

The Equation (12) represents with regard to mathematical programming a convolution between
the influence coefficients Czz

i jkl as kernel function with the normal loads pz
kl. This equation is solved was

this work with the help of the Fourier transformation. First, the influence coefficients and normal loads
presented as 2D matrix were transformed in the frequency domain. Here in the frequency domain
the complex convolution operation was replaced by a simple matrix multiplication. The result of this
multiplication was then retransformed in the space domain.

The relation in Equation (12) was further represented compactly with the operator ∗ as a convolution
product as follows:

Uzz
i j = Czz

i jkl ∗ pz
kl. (13)

In the case of a frictional contact problem, both normal loads pz
kl (in z direction) and tangential loads

qx
kl, qy

kl (each in x and y directions) act on each discrete surface element. These loads cause displacements
in all three spatial directions x, y, z at any point i j on the half-space. The total displacement in x
direction on a point i j for example, can be determined from the individual contributions of the loads
(pz

kl, qx
kl, qy

kl) as follows:
Ux

ij = Uxx
ij + Uxy

ij + Uxz
i j

= Cxx
ijkl ∗ qx

kl + Cyy
ijkl ∗ qy

kl + Cxz
i jkl ∗ pz

kl
(14)

The solutions for frictional contact problems are often described by full coupling of the normal
and tangential behavior by the following relationship (derived from Equation (13)):

Ux
ij

Uy
ij

Uz
i j

 =


Cxx
ijkl Cxy

ijkl Cxz
i jkl

Cyx
ijkl Cyy

ijkl Cyz
i jkl

Czx
i jkl Czy

i jkl Czz
i jkl

 ∗


qx
kl

qy
kl

pz
kl

. (15)

The following nomenclature clarifies the relationship Equation (15): The indices i j and kl,
respectively, denote the coordinates of the evaluation points of the displacement and the load
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application point. The letters x, y, z describe the three spatial directions. With this fixed nomenclature,
the meaning of the displacement influence coefficients becomes apparent. The influence coefficient Cxx

ijkl
determined as example the displacement in point i j in spatial direction x caused by a tangential load
qx

kl oriented in spatial direction x and acting in point kl. Analytical expressions for the displacement
influence coefficients can be found in [7–9,21]. The determination of the displacements on the sealing
lip with the relation Equation (15) was imprecise due to the high structural influence (here the bending
of the sealing lip in Figure 3b) on the resulting contact displacements. For this reason, the structural
influence matrices (Sxx

ijkl, Syy
ijkl, . . . , Sxy

ijkl) were first determined by finite element analysis (FEA) and
added to the influence coefficients in Equation (15). The method for determining the structural
influence matrices is described in [23,24] for the gear contact. The main steps by the implementation of
this method for the sealing contact are explained in further.

The FE model used for this purpose was the simulation model in [17] (see Figure 5) built in finite
element software Abaqus. The sealing edge of the sealing lip was finely meshed with N nodes as
shown in Figure 5.
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Figure 5. Finite element (FE) model [17] to determine the structural influence matrices.

Under the assumption of small linear elastic deformations, the superposition principle was applied
and the total contact displacement utotal is summarized as follows from a local part ulocal and a part
from the structural bending of the sealing lip ustruc:

utotal = ulocal + ustruc. (16)

The displacement component due to structural deformation can be determined from Equation
(16) as follows:

ustruc = utotal − ulocal. (17)

With the displacement component from Equation (17), the desired structural influence matrices
can be determined as described in [23,24]. The Equation (17) was solved with the help of two simulation
series with different boundary conditions for utotal and ulocal. These boundary conditions are described
hereafter. The determination of the total displacement utotal required a free movement of the sealing
lip. This was made possible by the boundary condition shown in the Figure 6a. On the contrary, for
determination of the local displacement ulocal, the bending of the sealing lip must be prevented by an
additional boundary condition (see Figure 6b).
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With the structural influence matrices (Sxx
ijkl, Syy

ijkl, . . . , Sxy
ijkl) as already described, the total

displacement field on the sealing lip was determined in the semi-analytical contact model as follows:
Ux

ij
Uy

ij
Uz

i j

 =


Cxx
ijkl + Sxx

ijkl Cxy
ijkl + Sxy

ijkl Cxz
i jkl + Sxz

i jkl
Cyx

ijkl + Syx
ijkl Cyy

ijkl + Syy
ijkl Cyz

i jkl + Syz
i jkl

Czx
i jkl + Szx

i jkl Czy
i jkl + Szy

i jkl Czz
i jkl + Szz

i jkl

 ∗


qx
kl

qy
kl

pz
kl

. (18)

The structural deformation influence coefficients obtained from the method briefly described
above are only valid for specific sealing lip contact geometry and cannot be applied to other geometries.

3.2. Material Parameters and Contact Surface Geometry for the Simulation

In addition to the experimental friction torque values described in Section 5, the important
simulation parameters are the geometry and material parameters of the shaft and elastomer sealing lip.
This paper assumes a steel shaft made of 16MnCr6 according to German Institute for Standardization
(DIN) 3761. In comparison to the shaft, the sealing lip showed a hyperelastic behavior. The nonlinearity
in the material behavior of the elastomer made it difficult to model the sealing lip with the half-space
theory, since this basically assumed a linear elastic behavior. For this reason, this paper assumed small
deformations of the sealing lip and a linear elastic material behavior. The modulus of elasticity of the
sealing lip for the simulation can be determined from two ways: Directly from a step tensile test as
done in [18], or from the Mooney Rivlin parameters, C10 and C01, if these were already determined.
For the second variant, the approximation formula proposed according to Equation [14] was used:

Eelastomer = 6(C10 + C01). (19)

In this paper the first determination method was preferred and a modulus of elasticity for the
elastomer from the step tensile test as done in [18] was used. Due to the incompressibility of the
elastomer material, the model considered a Poisson’s ratio of 0.49. Table 1 summarizes the material
parameters and some geometric values used in the simulation for both contact partners.

Table 1. Geometry and material parameters for simulation.

Contact Partner No. Radius (mm) Modulus of Elasticity (MPa) Poisson’s Ratio (-)

No.1(Shaft) 40 210 0.3
No.2 (ACM-Elastomer) ∞ 1.93 0.49
No.2 (FKM-Elastomer) ∞ 4.42 0.49
No.2 (NBR-Elastomer) ∞ 3.83 0.49
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The simulation model required the contact surface of the sealing lip and the shaft. The RSSR
and the shaft (see Figure 7a) were both thoughtfully cut in axial directions and unwound over their
circumference (see Figure 7b).
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Figure 7. (a) RSSR contact, (b) sealing lip, and shaft geometry in half-space contact model.

This paper assumed an idealized case with an axially symmetrical geometry of the sealing lip, i.e.,
with constant cross-sectional profile over the circumference, as shown in Figure 7b. In the simulation,
both ideally smooth and measured sealing lip profiles were used (see Figure 8). The determination of
the structural deformation matrix under consideration of the real sealing lip profile with sufficient
accuracy by means of an FE model posed a great challenge due to the very long computing time
for a sufficiently fine meshing of the real sealing lip profile. This effort could not be accomplished
within the time frame of this publication but will be done in future works. For the simulation with
real sealing lip profile, the profile geometry of a sealing lip was measured at four different angles in
circumferential directions and the averaged profile was used in the axially symmetric model. As an
example, Figure 8 shows the averaged profile for the Fluorinated rubber (FKM) sealing lip compared
to the ideally smooth profile.
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3.3. Contact Conditions and Itterative Solution Scheme

After describing the coefficient of influence to determine the displacements on a half-space taking
into account the structural deformation as made in the first section and presenting the geometry and
material parameters used in the contact model, this section presents the contact conditions and the
solution scheme of the contact algorithm.
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To describe the normal and tangential contact conditions, the contact problem between two
elastic bodies (K1, K2) under normal and tangential force Fz, Fx shown schematically in Figure 9a
was used. For simplicity’s sake, the two sectional views in Figure 9b,c were used. For an easy
recognition of belonging of the geometric variables, the two surface profiles are represented with
different colors (blue for K1 and red for K2). Despite the two dimensional representation in Figure 9b,c,
which is only for illustrative purposes, the following description was made for the general case of a
three-dimensional contact problem. In order to avoid confusion, the parenthetical expression (x, y)
was used for three-dimensional variables.
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As can be seen in the sectional view in Figure 9b, the normal contact has the following parameters:

1. Fz: Normal force (radial force on sealing lip)
2. hi1(x, y), hi2(x, y): Surface profile heights of bodies 1 and 2
3. δz1, δz2: Body displacement of bodies 1 and 2 in normal direction, and
4. P1, P2: Centers of gravity of bodies 1 and 2,

In three-dimensional normal contact, the following conditions must be applied:

• The equilibrium. It forms an equivalent relationship between the externally applied normal force
Fz and the normal pressures p to be determined in the contact region Γc:

Fz =

∫
Γc

p(x, y)dΓc (20)

• The gap equation. This equation describes the change of the contact gap h(x, y) (distance between
the contact bodies). Two cases are shown in Figure 9b to explain the gap equation. In the first
case, the two contact bodies, K1 and K2, were considered as rigid bodies. Thus, their surface
profiles remained undeformed (see dotted lines). Here, the centers of gravity under the contact
force Fz made the body displacements δz1, δz2. As help geometry, tangent lines were formed as
reference lines in the deepest profile points. In the second case, the two bodies were represented
in a deformed state (see strong lines). At the origin (x = 0), the vertical distances from the contact
point to the reference lines described the body displacements δz1, δz2 mentioned in the first case.
The gap at any contact point pair was described by the initial profile height hi(x, y) (point distances
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to the respective reference lines in the nondeformed state) and the displacements uz(x, y) (distance
changes from the nondeformed to the deformed state) as follows:

h(x, y) = (hi1(x, y) + hi2(x, y))
−(δz1 + δz2) + (uz1(x, y) + uz2(x, y)).

(21)

• The complementarity condition. This condition arises due to the impenetrability of the contact
bodies. It links the contact gap h(x, y) Equation (21) and the contact pressure p(x, y) Equation (20)
as follows:

if
h(x, y) > 0→ p(x, y) = 0 ∀(x, y) < Γc

else
h(x, y) = 0→ p(x, y) > 0 ∀(x, y) ∈ Γc.

(22)

The formulation of the tangential contact, as described below, required more consideration than
the normal contact. Here, the contact region Γc was divided into two areas, a sticking region Γst and
a sliding region Γsl. The tangential contact conditions were described using the sectional view in
Figure 9c. The tangential contact had the following parameters:

1. Fx: Tangential force (friction force on sealing lip),
2. Fx1, Fx2: Action-reaction forces on bodies 1 and 2,
3. ux1(x, y), ux2(x, y) :: Surface displacement of bodies 1 and 2,
4. δx1, δx2: Body displacement of bodies 1 and 2, and
5. P1, P2: Centers of gravity of bodies 1 and 2.

In Figure 9c, a tangential force Fx was introduced into the contact region (Fx1 on body 1 and Fx2

on body 2) and caused similar to the case of the normal contact (see Figure 9b) on the body centers of
gravity the body displacements δx1 and δx2 in the tangential x-direction. For each contact point pair in
the sticking region (center of the contact zone), Γst the body displacements of the center of gravity δx1,
δx2 were equal to the surface displacements ux1(x, y), ux2(x, y). Thus, the contact point pair remained
on the same x-coordinate after the deformation. In the sliding region (at the boundary of the contact
zone), Γsl, on the other hand, the difference between the body displacements δx1, δx2 and the surface
displacements ux1(x, y), ux2(x, y) resulted in sliding paths sx1(x, y), sx2(x, y).

In general, the following three-dimensional tangential contact conditions must be applied:
The equilibrium in the tangential directions:

Fx =
∫
Γc

qx(x, y)dΓc

Fy =
∫
Γc

qy(x, y)dΓc
∀(x, y) ∈ Γc, (23)

The sliding equation in the sliding zone Γsl, which expresses the sliding paths from the surface
displacement ux(x, y), uy(x, y) and the body displacement δx, δy as follows:

S(x, y) =
(

Sx(x, y) = ux(x, y) − δx

Sy(x, y) = uy(x, y) − δy

)
;∀(x, y) ∈ Γsl, (24)

The Coulomb’s friction law, which limits the magnitude of the shear stress Q in the adhesive area
Γst by using the coefficient of friction µ and the normal pressure p and reads:

||Q(x, y)|| =

√
(qx(x, y))2 +

(
qy(x, y)

)2
≤ µ ·p(x, y);∀(x, y) ∈ Γst. (25)

If the tangential body displacements δx, δy in Equation (20) were several orders of magnitude
higher than the surface displacements ux(x, y), uy(x, y), then the tangential problem changes from a



Lubricants 2020, 8, 15 13 of 22

contact with partial sliding to a contact with full sliding. Such a case occurred in the contact between
the seal lip and the counter surface during operation. In this case, the sliding Equation (24) was
replaced by the following energy equilibrium [12]:∫

Γc

qx·Sx(x, y)dΓc = Edx

∫
Γc

qy·Sy(x, y)dΓc = Edy. (26)

By using Equation (26), the sliding paths, Sx(x, y), Sy(x, y), were determined from the friction
energies Edx, Edy. As in this work, the friction energies can be determined experimentally.

The above described contact conditions and implementation of the contact algorithm for a friction
contact problem with partial and full sliding are described in detail in the literature [4,12]. The method
presented there was implemented in this work and will be briefly described in herein. The solution
of the contact problem began with its formulation as a minimization problem with constraints. The
contact conditions described were applied as constraints. The algebraic system of equations derived
from the minimization problem was solved with the conjugated gradient method (CGM). The use of
CGM gave the algorithm a fast convergence and thus a short calculation time. The implementation of
the contact algorithm was done in this work with the software Matlab version 2015b.

As a summary, Figure 10 schematically shows the general solution flow of the frictional contact
problem with partial or full sliding. At the beginning, geometric variables, such as the body geometry
of the contact partners (in the sealing system the counter face h2 and the sealing lip h1), the material
properties, and the external loads, were defined in the initialization step. As normal load Fz in the
sealing contact, the radial force values determined experimentally in the Table 1 were used. In the
tangential direction, either the tangential load Fx (friction force) for the contact with partial sliding or
the friction work in case of full sliding can be defined. In the sealing contact, full sliding takes place
during wear. From this, the experimentally determined friction work Ed (see Section 5) was used in
this work in the tangential direction. In order to avoid an automatic overestimating of the required
storage space in Matlab, storage spaces were defined in the form of Nx ×Ny 2D matrices (for a Nx ×Ny

calculation area). The normal contact pressure p(x, y) and the shear stresses qx(x, y), qy(x, y) were
initialized with different values. A meaningful starting value for the contact pressure was determined
from the normal load and the total area as follows:

p(x, y) = const =
Fz

Nx·Ny·a·b
. (27)
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The shear stresses matrices qx(x, y), qy(x, y), on the other hand, were all set to zero at the beginning.
This value can be justified by the fact that in the contact solver the normal contact is solved first.
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After the initialization, the contact solver started. There were two main interaction steps between
the normal and the tangential problem. First, the shear stresses qx(x, y), qy(x, y) (from the tangential
problem) caused displacements in the normal direction uz(x, y) and, thus, influence the normal contact
pressure p(x, y), which was determined in the normal contact. On the other hand, the normal contact
pressure influenced the tangential displacements ux(x, y), uy(x, y). This mutual influence is represented
in Figure 10 by the arrow directions 1 and 2.

At the end of the contact simulation, the following variables were determined:

1. The contact region: Γc,
2. The sliding and adhesion zone: Γsl, Γst with Γc = Γsl ∪ Γst,
3. Normal pressure: p(x, y),
4. Shear stresses: qx(x, y), qy(x, y),
5. Surface displacements: ux(x, y), uy(x, y), uz(x, y),
6. Body displacements: δx, δy, δz, and
7. Sliding paths: Sx(x, y), Sy(x, y).

As will be described in Section 4, the wear rate at each contact point was obtained from the shear
stresses qx(x, y), qy(x, y) and sliding paths Sx(x, y), Sy(x, y) using Equation (30).

4. Wear Calculation

Various approaches exist for the calculation of wear according to the current state of the art. These
can be divided into two main groups. The first group is that of the classical wear theories. This includes
the pressure-based wear law according to Archard [17,25]. According to this model, the wear volume
can be determined as follows:

V = αA·s·
p
H

. (28)

where αA, s, p, and H correspond to the wear coefficient, the sliding distance, the normal pressure,
and the hardness of the soft contact partner, respectively. While this wear model has the advantage of
being easy to implement, it has the disadvantage of not taking into account many critical parameters
such as the friction condition. In the second group of modern wear models, the friction energy-based
wear model according to Fleischer [18,26], which was used in this paper, is classified. Here the wear
equation is:

V = αF·Ed =
1
eR
·Ed. (29)

With αF, eR, and Ed as wear coefficient, friction energy density, and the friction work, respectively.
Here the wear coefficient was calculated from the reciprocal of the friction energy density, which

was determined experimentally. The friction work Ed in Equation (29) can also be determined
from experiments.

In this work the friction work was determined from experimentally measured friction torques
on the shaft. The friction work was the main input variable for the contact algorithm to determine
the shear stresses qx(x, y), qy(x, y) and the sliding paths Sx(x, y), Sy(x, y). The following local wear
formulation is derived from Equations (26) and (29) [12]:

∆h(x, y) = αF·Ed =
1
eR
·

[
qx(x, y)
qy(x, y)

]
·

[
Sx(x, y)
Sy(x, y)

]
(30)

with ∆h as wear increment (local height change after wear).
In the wear simulation, the geometry of the contact partners was updated after each contact

calculation step using Equation (30). Due to the use of Coulomb’s friction law (25) to determine the
shear stresses used in Equation (30), this wear formulation offered the possibility to consider the friction
condition compared to the Archard model. For the simulation in this work, a speed-dependent friction
coefficient was used. This was determined from the ratio between an experimental speed-dependent
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tangential force value and the radial force measured in the new state (unworn) at the start of the
experiment (see Table 2). The use of a constant radial force represented a simplification, as can be
seen in Table 2, from the difference between the measured radial force before and after the test. In
reality, a reduction in radial force occurred during operation due to wear and temperature-dependent
material changes.

Table 2. Experimentally determined input variables for wear simulation.

Exp No Elastomer-Lubricant-
Combination

Radial Force Frad (N) at the
Start of the Experiment

Radial Force Frad (N) the
End of the Experiment

Wear Energy Density eR
(Nmm/mm3)

1 ACM-Mineral Oil 19.022 10.68 5.3445 × 1010

2 ACM-PAO 19.022 12.33 4.9256 × 1010

3 FKM-Mineral Oil 12.723 9.58 1.6791 × 1011

4 FKM-PAO 12.723 9.27 1.4806 × 1011

5 NBR-Mineral Oil 18.57 10.68 3.6394 × 1010

6 NBR-PAO 18.57 11.93 1.4230 × 1011

5. Experimental Determination of the Friction Work

The experimental determination of the friction work on the sealing system was herein carried
out on a multi-shaft test stand with friction torque sensor [27]. For various combinations of elastomer
materials (NBR, nitrile rubber; ACM, polyacrylate rubber, and FKM, fluorinated rubber) and lubricants
(mineral oil and polyalphaolefin (PAO)), the friction torque on the shaft was measured in a speed- and
temperature-controlled wear test. The wear distance for each test carried out in this work was 5000
km. After a running-in distance of 100 km at a speed of 1200 min−1, various speed levels from 500 to
4500 min−1 were run down. The stages were kept constant for two hours. The elastomer-lubricant
combination was then run at a speed of 3200 min−1 in order to promote wear through prolonged
constant loading. The speed steps at the beginning of the test were then repeated. As an example of
the measurement result for the elastomer material made of ACM with the lubricant mineral oil, the
friction torque curve in Figure 11 is shown.
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With the use of the diameter of the test shaft DW , the friction force curve Fr(t) can be determined
from the friction torque curve Mr(t) using the relation Equation (31).

Fr(t) =
2Mr(t)

DW
(31)

The friction work was determined by integrating the friction force progression Equation (31) over
the sliding distance s. The total friction work was determined via the individual speed stages and then
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summed up. The infinitesimal friction work dW of a time-varying force Fr(t) can be determined as
follows:

dW = Fr(t)·ds (32)

with ds as an infinitesimal sliding path. This can be calculated for the rotating shaft in the sealing
system from the shaft radius and the shaft speed:

ds = 2π·n·rw·dt. (33)

For each speed stage with constant speed applied:∫
dW = 2π n rw

∫ t2

t1

Fr(t)·dt. (34)

With Equation (34), the friction work at each speed stage was determined by time integration of
the friction force curve Fr(t) from the start of the stage (at time t1) to the end (at time t2) and used in
the contact simulation.

In this work RSSR without spring of the design BAUM 5 × 780 × 100 × 10 mm from the
manufacturer Freudenberg were used. Six elastomer–lubricant combinations were investigated (see
Table 2). Figure 12 shows the experimentally determined friction torque curves for these combinations.
Table 2 summarizes important experimental input data for the simulation.
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Figure 12. Experimental friction torque characteristics of the six different
elastomer–lubricant combinations.

The wear energy density was calculated from the measured friction work and wear volume at
the sealing edge. The wear volume was determined by observing and measuring the contour of the
sealing edge before and after the tests using a 3D microscope. The difference between the unworn
and the worn profile curve was the planimetric wear surface. The wear volume was determined by
rotating this wear surface around the geometric center of gravity [18,27].

6. Simulation Results

The simulation results are presented in this section. In the first part, the results obtained with the
ideally smooth sealing lip profile will be presented. In the second part a special attention is given to the
combination FKM–mineral oil. The simulated contact pressures and the profiles changes in both cases
with measured and ideally smooth sealing lip profile will be compared. Finally, the simulated profile
change on the measured sealing lip profile in its new state is compared with the measured sealing lip
profile at the end of the experimental wear test.
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6.1. Simulation Results with Ideally Smooth Sealing Lip Profile

An essential step in the wear simulation was the exact determination of the contact pressures. As
shown in Figure 13, these were significantly influenced by the structural bending of the sealing lip.
This influence was determined for the ideally smooth sealing lip profile by a previously performed
FEA and taken into account in the contact model Equation (18).Lubricants 2020, 8, 15 18 of 24 
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Figure 13. (a) Comparison of contact pressure with finite element method (FEM) and half-space model,
(b) influence of structural deformation on contact pressure and contact width.

In the first step, the calculated contact pressure was verified in this section. The FE model [17]
was used as the basis for comparison. Figure 13a shows a good agreement between both models, FE
and half-space. The influence of structural deformation on contact pressure and contact width can
be derived from Figure 13b. This figure compares the calculated contact pressures with and without
structural influence. The structural deformation led to a reduction of the contact pressures from 1.350
to 1.2847 MPa (approx. 4%) and at the same time to an increase of the contact width from 0.1003 to
0.1204 mm (approx. 20%).

Figure 14 shows the results of the simulation with experimental friction torque values from the
combination of ACM mineral oil. Two different views ((a) side view and (b) top view) show the
contact pressure profiles for any section in the circumferential direction over the sliding distance. At
the beginning there were high contact pressures with a maximum value of 0.770 MPa. However,
these became smaller with increasing sliding distance down to a maximum value of 0.507 MPa (see
Figure 14a). This decrease in contact pressures was favored, as can be better seen in the second view
(see Figure 14b), by an increase in the contact width. In Figure 14b (in the top view) the size of the
contact width can be can be identified in color through the area with positive contact pressures. From
the beginning at 100 km sliding distance to the end of wear at approx. 5000 km, the contact width grew
from 0.154 mm to 0.220 mm.

The comparison of the individual elastomer in combination with mineral oil and PAO is carried
out in Figure 15. This shows the tendency towards higher wear (identifiable by the large decrease
in contact pressure or increase in contact width) when combined with the lubricant polyalphaolefin
(PAO). These results are in line with the friction torque curves in Figure 12, where higher wear was to
be expected at higher friction torque values.
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Figure 14. Contact simulation results for the combination ACM–mineral oil. (a) First view to show
the decrease of the contact pressure values with increasing wear (sliding distance), (b) second view
showing the increasing of the contact width with increasing wear (sliding distance).
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The results of the wear simulation in Figure 16a show good matches with the experimentally
determined wear volumes for all elastomer–lubricant combinations except for the combinations
with NBR elastomer. The large deviations in the results for NBR elastomer could either result from
measurement errors at the torque sensor, which then led to errors in the simulation input variables,
or from measurement inaccuracies in the experimental measurement of the wear volume. An exact
measurement of the contact width was also very difficult due to the extremely small dimensions
and the large scattering. This could be the reason for the large deviations between simulative and



Lubricants 2020, 8, 15 19 of 22

experimental values in Figure 16b. A significant advantage of the presented modeling approach is
the short computation time, made possible by the use of the conjugated gradient method as equation
solver in the semi-analytical contact model. As an example, the calculation times for the simulation of
the six elastomer–lubricant combinations for a calculation area of 255*255 points were 371, 658, 318,
870, 355, and 1278 seconds, respectively.Lubricants 2020, 8, 15 20 of 24 
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6.2. Simulation Results with Mesured Sealing Lip Profile for FKM-Mineral Oil Combination

Figure 17 compares contact pressures for an FKM elastomer with an ideal smooth and measured
sealing lip profile. These were simulated with a normal force of 12.723 N. There was a large difference
in the contact pressures. These differences could be due to the unconsidered structural influence
matrices in the simulation with the measured profile. In fact, as can be seen from the comparison in
Figure 13b, the structure deformation of the sealing lip led to more contact compliance and, thus, to a
reduction in contact pressure.
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An important benchmark is the profile change during and especially at the end of the wear
simulation. This was obtained using Equation (30) from which the wear height increment was
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determined at each calculation step. Figure 18 shows, for example, for the combination FKM–mineral
oil with the measured sealing lip profile, the cumulative wear height values after 100 km, 3000 km,
and 5000 km sliding distance. As expected, there were small wear values at the beginning at 100 km
(running-in), that increased as the sliding distance increased. The profile changes shown in Figure 19a
were determined from these wear height values shown in Figure 18.Lubricants 2020, 8, 15 20 of 22 
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Figure 19. (a) Simulated sealing lip profile changes after 100 km, 3000 km, and 5000 km sliding distance,
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Figure 19b shows a comparison between the simulated and experimentally measured sealing lip
profile after 5000 km sliding distance. The measured sealing lip profile after 5000 km sliding distance
compared to the unworn shows a pronounced wear in the direction of the oil-side sealing edge. This
effect was not completely reproduced by the simulation model. The simulated wear profile, instead,
showed a more pronounced wear profile to the air side. This difference in the orientation of the wear
area could be due to the unconsidered structural deformation influence. This can be explained by the
influence of structural deformation on contact pressures shown in Figure 13b. When the structural
deformation influence is taken into account, an asymmetrical shift of the contact pressure in the
direction of the oil side is shown here and this results in more wear on the oil side.
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7. Conclusions

Based on experimental friction torque values and a contact simulation, a model for estimating
the wear on RSSR was presented in this paper. In the first step, the calculated contact pressures
were verified with FE results and a good agreement was found. Despite the indirect consideration
of the lubricant influence in the contact model by the friction energy density, a good agreement
between experimentally and simulative determined wear volumes could be determined for most
simulated elastomer lubricant combinations. The modelling approach presented here was particularly
advantageous with regard to the short calculation time (maximum 21 min). In this work the assumption
was made that the measured total friction torque contributed to wear and, thus, neglected the influence
of the lubricant. However, with increasing speed, an ever larger lubricating film built up in the contact,
so that a large part of the measured total friction torque was caused by the lubricant. In future work,
this influence of the lubricant can be taken into account either experimentally (e.g., by measuring the
churning loss) or by coupling a hydrodynamic simulation model into the contact simulation. Due to
the unconsidered structural deformation influence matrix, the changes of the sealing lip profile during
wear could not be properly simulated. The determination of the structural deformation matrix for the
real sealing lip geometry by FEA can be the goal of future work.
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Nomenclature

Discretization and indices
x, y, z; i j, kl Spatial directions; position of a discretization point on the surface
Nx, Ny: Number of discretization points in X- and Y- spatial direction
contact calculation
Fz, Fx,Fy; Contact forces in normal direction (Z) and tangential directions (x,y)
Cxx

ijkl, . . . , Cxy
ijkl; Sxx

ijkl, . . . , Sxy
ijkl displacement influence coefficients of the local and structural deformations

pz
kl, qx

kl, qy
kl; ux

ij, uy
ij, uz

i j Normal and tangential contact pressure; surface displacements

Γc, Γsl, Γst; sx, sy; δx, δy,δz contact area, sliding zone, adhesion zone; sliding paths in x- and y- direction;
body displacement in x-, y- and z- direction

wear parameters
αA, αF; V, ∆h; eR; Edx, Edy Wear coefficient according to Archard, Fleischer; wear volume, wear increment

height; friction energy density; friction work in x- and y- direction
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