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Abstract: A theoretical model of a slipper with multi-lands and multi-grooves for swashplate type
axial piston pumps and motors was established, including surface interactions. Further, a numerical
simulation was conducted under an unsteady state and mixed lubrication conditions. Four model
configurations were considered: A slipper with a single main land; a slipper with inner and main
lands and a groove; a slipper with outer and main lands and a groove; and a slipper with inner, main,
and outer lands with two grooves. Numerical solutions were obtained across a wide range of operating
conditions in terms of center clearance, pad attitude, contact pressure, flow rate, friction torque,
power loss, and stiffness. The motion and characteristics were differentiated into two groups: Slippers
with a single-land and an annex inner-land; and slippers with an annex outer-land and a triple-land.
The single-land and annex inner-land slippers exhibited smaller pad swing, whereas the triple-land
and annex outer-land slippers reduced contact pressure and power loss.

Keywords: hydraulics; tribology; slipper; multi-land; groove; hybrid bearing; mixed lubrication;
piston pump; simulation

1. Introduction

Hydraulic systems have the advantages of high power density and high frequency response,
and they are used widely in areas such machinery construction, aeronautical equipment, and complex
manufacturing. Hydraulic pumps and motors are positive displacement machines, which are prime
components that play a role in the transformation of mechanical energy into fluid pressure, and vice
versa. The swashplate type axial piston machine is a common hydraulic pump/motor because of
its high pressure operation, high efficiency characteristics, and variable displacement mechanism.
The swashplate axial piston pump/motor has three sliding parts: Interference between the pistons
and cylinder bores; interference between the valve plate and cylinder block; and interference between
the slippers and swashplate. The friction and leakage at parts having bearing and sealing functions
strongly affect the efficiency and performance of the pump/motor. Wear and seizure at these parts
influence reliability and durability; therefore, the tribological characteristics of the pump/motor are
very important.

In swashplate type axial piston pumps and motors, the slippers are mounted on the ends of
the pistons, which are required to support a highly fluctuating load, suppress losses, and operate
safely under high sliding speed conditions. Pioneering studies on slippers were conducted by
Shute and Turnbull [1], Böinghoff [2], Iboshi and Yamaguchi [3], and Koç and Hooke [4]. In recent
years, numerical simulations have been performed in which slippers, pistons, and other parts [5] of
the pumps and motors were modeled as a multi-body system of the components [6–9]. In such studies,
the slipper was often assumed to be a single land with one recess and one land. The single-land
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slipper has simple geometry and is relatively easy to manufacture. To compensate for weaknesses
and improve performance, some slippers have two or more lands and grooves and such intricately
shaped slippers have been investigated [10–12] in recent years. However, these studies are limited
under the condition of fluid film lubrication, while slippers in real hydraulic pumps/motors are often
operated in mixed lubrication.

In this report, a multi-land and multi-groove slipper model [13], including in terms of surface
roughness and asperity contact, was developed and a three-dimensional simulation was performed
under mixed lubricating conditions in an unsteady state. The solutions were computed across a wide
range of pressure and speed conditions. Furthermore, the effects of annex inner and outer lands on
tribological characteristics were compared and their effectiveness was discussed. Although the effects
of heat generation at the interface [14], e lastic deformation of the parts [15], changes in the fluid
properties [16] have not been negligible for actual slippers in hydraulic piston machinery, this paper
focused on multi-land slippers in mixed lubrication.

2. Theoretical Model

A slipper of piston pumps and motors can essentially be modeled as a hybrid
(hydrostatic and hydrodynamic) thrust-pad bearing including inclination, rotation, and revolution.
The foundation of the mixed lubrication model for the pad bearing [17,18] was based on a combination of
the asperity-contact model proposed by Greenwood and Williamson (the GW model) [19] and the mean
flow model proposed by Patir and Cheng (the PC model) [20,21]. The former is a model for
the contact mechanism of non-lubricated stationary rough surfaces with a Gaussian correlation function,
whereas the latter is an approach for fluid film lubrication that introduces the flow factor concept to
narrow passages between rough surfaces. The hybrid model fills the gap between these two extreme
models and has been validated by experimental data for thrust washers and hydrostatic bearings [22],
although the model is limited under no-revolution conditions in the steady state. Later, the model was
extended to include the dynamic motion and revolution of the pad [23,24], which enabled simulation of
the three-dimensional motion of the pad and an estimation of the tribological characteristics of the slipper.

A tribological component combined with a slipper and a swashplate was modeled as a combination
of a circular hybrid thrust bearing and a rotating disk, as illustrated in Figure 1. In this paper, a slipper
with multi-lands and multi-grooves, as shown in Figure 2, was considered. Four types of slippers
were discussed: A simple slipper with a main land and a recess (designated as main); a slipper with
an inner land and groove added to the simple slipper (inner); a slipper with an outer land and groove
added to the simple slipper (outer); and a slipper with both inner and outer lands and grooves added
to the simple slipper (both). It was also assumed that the flow was laminar, the liquid was Newtonian
and iso-viscous, the solid was rigid, and the surfaces were flat. Since the disk rotated, the centrifugal
force was not acted and the trajectory of the slipper was circular. Mass of the slipper was considered,
including a conceivable piston mass, while the effects of joints between the slipper and the piston
and the friction between the piston and cylinder bore were ignored. Additionally, the inner and outer
lands have small notches; thus, the pressures of the inner and outer grooves were assumed to be
consistently equal to the recess pressure and the atmospheric pressure, respectively. The areas of
the notches were sufficiently smaller than the areas of the lands; hence, that it can be assumed that
the slipper was of an axisymmetric shape. To model the suction and delivery processes of the hydraulic
pump, the supply pressure ps and the eccentric load W were changed according to a rectangular
waveform, as shown in Figure 3.
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Figure 1. The coordinates of the slipper model. 

 

Figure 2. Schematic of the sliding surface of the multi-land slipper. 
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Figure 1. The coordinates of the slipper model.
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2.1. Basic Equations

Following the GW model [19], the asperity-contact pressure, pa, is a result of the elastic and plastic
deformation of the contacting asperities, pae and pap; these are derived, respectively, using

pa = pae + pae
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2
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wherein, on the assumption of the asperity height distribution being Gaussian, the function Fn(hs)
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Following the PC model [20,21], the Reynolds equation is expressed as [24]
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wherein the fluid pressure, p f
∗, is expressed in gage, φ and φs are the roughness parameters, and *

denotes the expectation. The boundary conditions of p f
∗ for the main land (subscript: mn), inner land

(in), and outer land (out) are set by

p∗f ,mn(a,θ, τ) = pgri, p∗f ,mn(a
′,θ, τ) = pgro (main land)

p∗f ,in(ain1,θ, τ) = pr, p∗f ,in(ain2,θ, τ) = pgri (inner land)
p∗f ,out(aout1,θ, τ) = pgro, p∗f ,out(aout2,θ, τ) = pe (outer land)

 (4)

where pgri = pr and pgro = pe, and the environmental pressure is set to atmospheric pressure, i.e., pe = 0.
Additionally, considering surface roughness and pad inclination, the clearance in the lands

between the slipper pad and the rotating disk, hT
∗, is

h
∗

T = hc + α r cos(φ− θ) +
(
σ
H

)
F1(hs) (5)

Once the asperity-contact and fluid pressures in the lands are obtained, the reaction force
and moments of the slipper can be calculated by aggregating the fluid pressures in the lands,



Lubricants 2019, 7, 55 5 of 18

recess, and grooves, and the asperity-contact pressure on the lands. Firstly, the load-carrying
capacities, Wa and W f , (owing to the contacting asperity and lubricating fluid) as well as the moment
load-carrying capacities about axes x and y, Max, May, M f x, and M f y, respectively, can be computed by
the following integrals.

For the main land,
Wa;mn =

∫ 2π
0

∫ a′

a pa;mnrdrdθ

W f ;mn =
∫ 2π

0

∫ a′

a p f ;mnrdrdθ

Max;mn =
∫ 2π

0

∫ a′

a pa;mnr
2

sinθdrdθ

M f x;mn =
∫ 2π

0

∫ a′

a p f ;mnr
2

sinθdrdθ

May;mn = −
∫ 2π

0

∫ a′

a pa;nmr
2

cosθdrdθ

M f y;mn = −
∫ 2π

0

∫ a′

a p f ;nmr
2

cosθdrdθ


(6)

For the inner land,
Wa;in =

∫ 2π
0

∫ ain2
ain1

pa;inrdrdθ

W f ;in =
∫ 2π

0

∫ ain2
ain1

p f ;inrdrdθ
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∫ 2π

0
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2
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0
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2
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0
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2
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0
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2

cosθdrdθ


(7)

For the outer land,
Wa;out =

∫ 2π
0

∫ aout2
aout1

pa;outrdrdθ

W f ;out =
∫ 2π

0

∫ aout2
aout1
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∫ 2π

0

∫ aout2
aout1
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2
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0
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∫ 2π

0
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2

cosθdrdθ

M f y;out = −
∫ 2π

0

∫ aout2
aout1

p f ;outr
2

cosθdrdθ


(8)

Secondly, the load-carrying capacities, W f ;r, W f ;gri, and W f ;gro (based on pressures in the recess,

the inner groove, and the outer groove, respectively), are calculated by

W f ;r = πain1
2pr; W f ;gri = π

(
a2
− ain2

2
)
pgri (with inner land)

W f ;r = πa2pr; W f ;gri = 0 (without inner land)
W f ;gro = π

(
aout1

2
− a′2

)
pgro (with outer land)

W f ;gro = 0 (without outer land)


(9)

Since the pressure distributions in the recess and grooves are uniform, the moment load-carrying
capacities are zero, i.e., M f ;r = M f ;gri = M f ;gro = 0.

The equation of motion of the slipper in the direction perpendicular to the disk surface,
and the equations around the x and y axes, respectively, are

m
(Ω
ω

)2 d2h0

dτ2 = Wa;mn + Wa;in + Wa;out + W f ;mn + W f ;in + W f ;out + W f ;r + W f ;gri + W f ;gro + W (10)
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and
Ix

d2Φx
dτ2 − Iz

ω
Ω

dΦy
dτ = −Max;mn −Max;in −Max;out −M f x;mn −M f x;in −M f x;out −Mx

Iy
d2Φy

dτ2 − Iz
ω
Ω

dΦx
dτ = −May;mn −May;in −May;out −M f y;mn −M f y;in −M f y;out −My

 (11)

wherein Φx and Φy are related to α and φ as [3]

Φx = −α sinφ
Φy = −α cosφ

}
(12)

Considering the fluid compressibility and displacement volume in the recess extended, the recess
pressure pr satisfies the following relationship [23]:

Vr
dpr
dτ

= Qr −Q(r) −πr2 H
R2

dhc

dτ
(13)

where r = a , and Qr and Q(r) are the flow rates through a capillary restrictor and in the clearance,
respectively, given by

Qr = π
H
R2

ps − pr
β

(14)

and

Q(r) =
H
R2

r
2

∫ 2π

0

−φh
3 ∂p f

∗

∂r
+

Ω′

Ω
R0

R2
sinθ

(
hT
∗ +

σ
H
φs

) dθ (15)

The friction torque acting on the rotating disk, T1, is the summation of the torque based on contact
friction, Ta1;mn, Ta1;in, and Ta1;out and the torque based on fluid viscosity, T f 1;mn, T f 1;in, and T f 1;out, of
each land, given by (see Appendix A)

T1 = Ta1;mn + Ta1;in + Ta1;out + T f 1;mn + T f 1;in + T f 1;out

= Ta1 + T f 1
(16)

wherein

Ta1 =
x

A

R′
{
ξτp

[
τe

τp
dAe + dAp

]
+ (1− ξ)τaddAr

}
(17)

and

T f 1 =
H

6R2

∫ 2π

0

∫
r

R′r

h



 ω
Ω r cos(θ−Θ) − Ω′

Ω
R0
R2

sinθ sin(θ−Θ)

−
Ω′
Ω

(R0
R2

cosθ+ r
)

cos(θ−Θ)


×

[
φ f −

(
1− 2σ1

2

σ2

)
φ f s

]
− 3φ f phR′r

∂p∗f
R′∂Θ


drdθ (18)

Finally, the mean power loss, Lm, in one cycle is calculated by averaging the summation of the loss,

LQ, based on leakage of the fluid, Qout = Q(a′), and the loss, LT, based on the torque of the fluid
and solid friction:

Lm = 1
2π

∫ 2π
0

(
LQ + LT

)
dτ

= 1
2π

∫ 2π
0

(
psQout +

∣∣∣T1
∣∣∣)dτ (19)

The dynamic stiffness λ is estimated by the variability of the center clearance of the pad, which
can be defined by

λ =
∆W

∆h
=

∣∣∣∣∣∣∣Wmax −Wmin

hc,max − hc,min

∣∣∣∣∣∣∣ (20)
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Regarding one of the representative operating parameters corresponding to a normalized load,
the static balance ratio of the load to the maximum hydrostatic load-carrying capacity, ζ0, can be
defined by [18]

ζ0 =
2|W0| log(a′/a)
(a′2 − a2)ps0R22 (21)

2.2. Calculation Procedure

The Reynolds equation was discretized using the finite difference method and the equations of
motion were solved by applying the Runge–Kutta method (The outline of the numerical simulation is
provided in Appendix B). The time pitch width and space lattice width were examined prior to the full
simulation. The number of meshes in the direction of the radius in the main land was 40, the number
in the inner and outer lands was 20, and the number in the direction of the circumference was 160.
The number in terms of time was 104–106. The convergence criterion in terms of fluid pressure was 10−5.
The periodic calculation was iteratively conducted until the solutions converged. The convergence
criteria were set such that all differences in the center clearance, recess pressure, rotating angles around
the x and y axes, and mean power loss fell below 10−2. Regarding the cavitation condition, the fluid
pressure in gage was replaced with zero when the value became negative.

The main numerical parameters are specified in Table 1. The representative operating conditions
of the supply pressure ps and rotational speed N are 21 MPa and 25 s−1, respectively, and the other
parameters are set as H/σ = 1, σ1/σ2 = 1, Ω′/Ω = 1, and ω/Ω = 0.

Table 1. Representative numerical parameters.

Parameter Value Unit

ain1 0.5
ain2 0.6

a 0.7
a′ 0.8

aout1 0.9
aout2 1

K 1 GPa
m 100 g

R0/R2 2.4
R2 12.5 mm
rc 0.3 mm

rw/R2 0.08
ζ0 1.1
µ 28 mPa·s
ρ 875 kg/m3

σ 1 µm

3. Results and Discussion

For the slipper models with a single land (main), main and inner lands (inner), main and outer
lands (outer), and main, inner, and outer lands (both), Figures 4–7, respectively, showed the changes
in center clearance hc, minimum clearance hmin, pad inclination α, pad azimuth φ, maximum contact
pressure pa,max, leakage flow rate Qout, and area ratios of cavitation Acav/A0 and in contact Acnt/A0.
The period of π/2 < τ < 3π/2 corresponded to the suction process of the pumps, whereas the periods
of 0 ≤ τ < π/2 and 3π/2 > τ ≥ 2π corresponded to the delivery process. The clearances hc, hmin,
and α were large at π/2 < τ < 3π/2, whereas they were small at 0 ≤ τ < π/2 and 3π/2 > τ ≥ 2π.
The changes in hmin were almost independent of the slipper type. The pad azimuth φ became large
close to τ ' π/2 and small close to τ ' 3π/2. The maximum contact pressure pa,max and the leakage
flow rate Qout were small at π/2 < τ < 3π/2 and large at 0 ≤ τ < π/2 and 3π/2 > τ ≥ 2π. However,
Qout peaks at τ ' 3π/2. In particular, pa,max and Qout of the both and outer slippers were smaller than
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those of the main and inner slippers at 0 ≤ τ < π/2 and 3π/2 > τ ≥ 2π. The change in the contact
area ratio Acnt/A0 was similar to the change in the maximum contact pressure pa,max. At 0 ≤ τ < π/2
and 3π/2 > τ ≥ 2π, Acnt/A0 of the outer slipper was largest, followed by the main, both, and then inner
slippers. In contrast to Acnt/A0, the cavitation area ratio Acav/A0 became unique: Acav/A0 of the both
and outer slippers peaks near τ ' π/2 and became large during π/2 < τ < 3π/2, whereas Acav/A0 of
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Figure 7. The comparison of changes in the cavitating area ratio Acav/A0 and the contacting area ratio Acnt/A0.

Figures 8–11 displayed the influence of pressure ps in terms of the annex inner and outer lands.
Figure 8 showed the effects of ps on the swing angles, ∆φ, of slippers defined by ∆φ = φmax −φmin.
As ps increased, ∆φ of all types of the slipper decreased. The behaviors in the case of the both and outer
slippers were similar, and those in the case of the inner and main slippers were also similar. The angle
∆φ of the latter was smaller than that of the former. Figure 9 plotted the effects of ps on the maximum
solid contact pressure pa,max

∗ and the mean leakage flow rate Qout
∗ (these values were normalized

based on those of the “main” slipper). The addition of the outer (and/or inner) lands contributed to
a reduction in the contact pressure because pa,max

∗ was smaller than unity for a wide range of operating
pressures. However, Qout

∗ in the case of the inner slipper exceeded unity, which means Qout
∗ was

larger than the leakage flow rate of the main slipper. As ps increased, Qout
∗ decreased, whereas pa,max

∗

increased under these conditions.
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Figure 9. The effects of supply pressure ps on normalized maximum contact pressure pa,max
∗

and the leakage flow rate Qout
∗.

Figure 10 shows the effects of supply pressure ps on normalized power loss Lm
∗ and stiffness λ

∗

,
whereas Figure 11 shows the effects of ps on the ratio of leakage power loss to the total power loss

LmQ/Lm. As ps increased, Lm
∗ and λ

∗

decreased and LmQ/Lm increased (except for λ
∗

of the inner/main,

which was nearly unity). The changes in Lm
∗ and λ

∗

of outer/main and both/main were similar in
Figure 10. However, the curves of LmQ/Lm of the main and inner slippers were almost overlapped
as shown in Figure 11.
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Moreover, the effects of the rotational speed N on these characteristics are shown in Figures 12–15.
As speed N increased, the pad swing angle ∆φ (Figure 12), normalized the leakage flow rate Qout

∗

(Figure 13), the mean power loss Lm
∗, and stiffness λ

∗

(Figure 14) increased, whereas the normalized
maximum contact pressure pa,max

∗ (Figure 13) decreased. Regarding the ratio of leakage power loss to
total power loss LmQ/Lm in Figure 15, the effect of rotational speed N depended on the lands: As speed
N increased, the ratio LmQ/Lm decreased monotonously for the main and inner slippers, while LmQ/Lm

was maximized close to N ≈ 25 s−1.
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4. Discussion

The motion and characteristics of the slipper (Figures 4–7) suggested that the outer land had a large
influence on slipper behavior. The leakage Qout of the outer and both slippers was smaller than that of
the main and inner slippers. Moreover, the fluctuation of azimuth φ in the case of the outer and both
slippers was larger than that of the main and inner slippers, although the fluctuation of the angle α in
the case of the outer and both slippers was smaller than the main and inner slippers. The difference
in the slippers can be attributed to the presence or absence of the outer land, i.e., the outer lands
contributed to reduced leakage while potentially inducing instability in the pad. For all parameters,
the values and variations of the main and inner slippers and the results of the outer and both slippers
were almost coincidental.
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Furthermore, the simulated results based on the parametric study in relation to the operating
conditions (Figures 8–15) showed that the differences in behavior with slipper type essentially occurred
independently of pressure and speed. In other words, the slipper characteristics, as categorized into
two types, were hardly influenced by the operation. Additionally, on the basis of the lubrication theory,
the operating conditions of increasing pressure and decreasing speed as well as decreasing pressure
and increasing speed were observed to exhibit the same effect. Thus, the tendencies of Figures 8–11
and Figures 12–15 were roughly inverse.

The inner pad was effective in suppressing the subduction in the recess of a real slipper because
of the high stress induced by the reaction force of the piston. Although the elastic deformation of
the slipper must influence the motion and characteristics, the annex inner land may be effectively
introduced without disadvantage.

Overall, under these numerical conditions, the motion and characteristics were differentiated into
two groups: (i) Single-land slippers and annex inner-land slippers; and (ii) annex outer-land slippers
and triple-land slippers. The center clearance, minimum clearance, pad inclination, pad azimuth,
contact pressure, flow rate, friction torque, power loss, dynamic stiffness, cavitation area ratio,
and contact area ratio were relatively similar within each group. It is evident that the outer land
particularly contributed to reducing the contact pressure and power loss. However, it may also
increase pad swing, resulting in instability as well as it magnifies the slippers. It should be noted that
the experimental verification has not yet been conducted. A detailed consideration of this will require
further study.

5. Conclusions

The effects of additional lands on the behavior and characteristics of a slipper for piston machines
were assessed theoretically. The functions of additional inner and outer lands were explored numerically.
The salient conclusions were as follows: the motion and characteristics of the single-land slippers
and the annex inner-land slippers were similar; those of the annex outer-land slippers and the triple-land
slippers were also similar. The outer land contributed to a reduction in power losses. However, it may
also cause pad instability and larger size.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a inner radius ratio of main land, = R1/R2

a′ outer radius ratio of main land, = R2
′/R2

ain1 inner radius ratio of inner land, = Rin1/R2

ain2 outer radius ratio of inner land, = Rin2/R2

aout1 inner radius ratio of outer land, = Rout1/R2

aout2 outer radius ratio of outer land, = Rout2/R2

de
∗ separation

Ẽ′H equivalent elastic modulus, = E′/
(
ps0R2

2S0
)

H representative clearance
H̃a hardness, = Ha/

(
ps0R2

2S0
)

h clearance, = h/H
hc center thickness
hT
∗ mean film thickness

I moment inertia, = Ω2HI/
(
ps0R2

4S0
)

K bulk modulus
L power loss, = L/

(
Ωps0R2

3S0
)

M moment, = M/
(
ps0R2

3S0
)
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m mass, = Ω2Hm/
(
ps0R2

2S0
)

p pressure, = p/(ps0S0)

pe ambient pressure, = pe/(ps0S0)

pr recess pressure, = pr/(ps0S0)

ps supply pressure, = ps/(ps0S0)

Q flow rate, = Q/
(
ΩR2

3
)

Qout leaked flow rate, = Qout/
(
ΩR2

3
)

R0 revolution radius
R2 representative radius
r, θ, z coordinates, = r/R2, θ, z/H
rw load eccentricity
S0 parameter, = 6µΩ(R2/H)2/ps0

T friction torque, = T/
(
ps0R2

3S0
)

Vr recess volume, = 6µΩVr/
(
H2KR2

2
)

W load, = W/
(
ps0R2

2S0
)

wp
∗ plasticity index

X, Y, Z coordinates
x, y, z coordinates
α pad inclination angle, = αR2/H
β restrictor parameter, = 4H3lc/

(
3rc

4
)

β′ equivalent radius of asperity summit
ζ0 hydrostatic balance ratio
η asperity density
λ stiffness, = λH/

(
ps0R2

2S0
)

µ viscosity

σ surface roughness, =
(
σ1

2 + σ2
2
)1/2

σ∗ standard deviation of asperity summit height
τ time, = Ωt
φ pad azimuth
Ω representative angular velocity
Ω′ disk angular velocity
ω pad angular velocity
Subscripts:
a asperity, contact
c center
f fluid
gri inner groove
gro outer groove
in inner land
m time-average
max maximum
min minimum
mn main land
out outer land
r recess
0 reference, high pressure period
1 inside
2 outside

Appendix A

The flow rate in the clearance can be given by

Q(r) =
∫ 2π

0
qrr dθ (A1)
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wherein,

qr = −φ
h3

12µ

∂p f
∗

∂r
+

Ω′R0 sinθ
2

(hT
∗ + σφs) (A2)

Substituting Equation (A2) into Equation (A1) and introducing the dimensionless quantities,

Q(r) =
R2r

ΩR23

∫ 2π

0

−φH3h
3

12µ

6µΩ(R2/H)2∂p f
∗

R2∂r
+

Ω′R2R0 sinθ
2

(
HhT

∗ + σφs
) dθ (A3)

Finally, Equation (15) can be obtained.
On the other hand, the torque based on contact friction can be given by

Ta1 =
x

A

R′dFa1 (A4)

wherein,

dFa1 = ξτp

[
τe

τp
dAe + dAp

]
+ (1− ξ)τaddAr (A5)

where, ξ is area ratio of solid-contact-asperities, τ is shear strength, and the subscript ad is adsorbing film [17].
Additionally, the length R′ is defined by

R′ =
√

R02 + r2 − 2R02r cos(π− θ) (A6)

Substituting Equation (A5) into Equation (A4) and introducing the dimensionless quantities, Equation (17) can be
obtained.

Further, the torque based on fluid friction can be given by

T f 1 =

∫
r

∫ 2π

0
R′τ1rdθdr (A7)

wherein,

τ1 =
µ(U2 −U1)

h

(
φ f − φ̂ f s

)
−φ f p

h
2

∂p f
∗

R′∂Θ
(A8)

and
U1 = Ω′R0 sinθ sin(θ−Θ) + Ω′(R0 cosθ+ r) cos(θ−Θ)

U2 = ωr cos(θ−Θ)

}
(A9)

Substituting Equations (A7) and (A8) into Equation (A4), including the definition of
_
φ f s [20], and introducing

the dimensionless quantities, Equation (18) can be obtained.

Appendix B

The flow chart of the numerical calculation is outlined in Figure A1. First the parameters and the initial

values are set; hc, pr, Φx, and Φy are solved by the Runge-Kutta method, while pa, p f
∗, Q, Ma, M f , Wa, and W f

are computed and L, Ta, T f , α, and φ are calculated. When a cycle ends, the initial and final values of hc, pr, Φx,
and Φy are compared. If these values are different, the initial values of the next step are set with the final values of
the present step and the calculation is continued iteratively. After these values are converged, the time pitch is
halved and further the calculation is pursued. Finally, Lm and λ are calculated and the solutions are output.
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The flow chart of the numerical calculation is outlined in Figure A1. First the parameters and the 

initial values are set; ch  (, ch ), rp , xΦ  (, xΦ ), and yΦ  (, yΦ ) are solved by the Runge-Kutta 

method, while ap , *
fp , Q , aM , fM , aW , and fW  are computed and L , aT , fT , α , and φ  

are calculated. When a cycle ends, the initial and final values of ch , rp , xΦ , and yΦ are compared. 

If these values are different, the initial values of the next step are set with the final values of the 
present step and the calculation is continued iteratively. After these values are converged, the time 

pitch is halved and further the calculation is pursued. Finally, mL  and λ  are calculated and the 
solutions are output. 

 
Figure A1. The flow chart of calculation. 
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