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Characterization of friction factor using A-|S™| (Figure S1) gives similar results to the characterization
with 2-|S*| (Figure 6). Separations of cases for apparent film (1-|S**| > 1), boundary (1-|S**| < 107%), and
transitional (1072 < - |S**| < 1) lubrication occurred for similar ranges of 1-|S**|. While the characterizations
are similar, it is worth noting that |S**| requires more input parameters than |S*|.

Multiplying A by the dimensionless spreading parameter SP** does not provide the same insight as 1 -
|S*| (Figure 6) or A-|S**| Figure S1. When adhesion is greater than cohesion, $* and S$** become small
negative numbers, but SP* and SP** change sign. Since the sign of SP* and SP** changes, taking the
absolute value of either parameter reduces the information they provide.

The ratio of cohesion work to adhesion work (W;/W,) is another potential dimensionless parameter to
describe wetting between a lubricant and a target surface. This ratio can be formulated as a function of the contact
angle
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Like the dimensionless spreading parameters, W o/Wyg9 and W¢ pp/W,pp were correlated to contact
angle (Figure S2a) and linearly correlated with each other (Figure S2b). Like S, S*, and S**, the sign of this ratio
does not change with 8 and the absolute value increases with increasing contact angle. Like S*, W g/W, ¢ can
be fully determined with a measurement of the contact angle between the lubricant and the target surface.

The ratio of cohesive to adhesive energy (W;/W,) can can also be used to try to capture the effect of
wettability on friction coefficient (Figure S3). Similar regimes are seen on this figure with hydrodynamic
lubrication occurring when A - (W;/W,) > 1, and moderate and dramatic changes to friction coefficient in the
regions defined by (0.01 < A+ (W;/W,) < 1), and when A - (W;/W,) < 1, respectively. On this figure, the cases
where IL 104 was used as a lubricant for Steel-Steel and POM-POM contact fall in at the beginning the
transitional region instead of the end of the boundary lubrication region. Like |S*I, it is possible to calculate
(W¢/W,) with only 6 (Figure S2b).
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Figure S1. Friction coefficient as a function of lambda
multiplied by the dimensionless spreading parameter
(A-15*]). Data includes cases from [7] where (1-|S**]) > 1
(white),(1 - |S**|) < 0.001 (black), and 0.01 < (A-[S™]) <1

(gray).
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Figure S2. Comparison of (a) W¢pp/Wapp (closed) and
Weco/Wag (open) to the 8 and (b) a direct comparison of
Wepp/Wapp and Weg/Wye for experimental cases in

[7,10,16]
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Figure S3. Friction coefficient as a function of lambda
multiplied by the ratio of cohesion to adhesion formulated
using (a) polar and disperse components of surface tension
and (b) contact angles. Data includes cases from [7]
where (W /W,) > 1 (white), (W;/W,) < 0.015 (black), and
0.0125 < (W;/W,) <1 (gray). Log fits in each regime are
provided.



