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Abstract: Metal machining production faces a myriad of demands encompassing ecology, automation,
product control, and cost reduction. Within this framework, an exploration into employing a direct
inspection of the machined area within the work zone of a given machine through a confocal
chromatic sensor was undertaken. In the turning process, parameters including cutting speed (A),
feed (B), depth of cut (C), workpiece length from clamping (D), and cutting edge radius (E) were
designated as input variables. Roundness deviation (Rd) and tool face wear (KM) parameters were
identified as output factors for assessing process performance. The experimental phase adhered to
the Taguchi Orthogonal Array L27. Confirmatory tests revealed that optimizing process parameters
according to the Taguchi method could enhance the turning performance of C45 steel. ANOVA results
underscored the significant impact of cutting speed (A), feed (B), depth of cut (C), and workpiece
length from clamping (D) on turning performance concerning Rd and KM. Furthermore, initial
regression models were formulated to forecast roundness variation and tool face wear. The proposed
parameters were found to not only influence the machined surface but also affect confocal sensor
measurements. Consequently, we advocate for the adoption of these optimal cutting conditions in
product production to bolster turning performance when machining C45 steel.

Keywords: confocal chromatic sensor (CCHS); turning; steel C45; roundness deviation; tool face
wear; machined surface; Taguchi method; ANOVA

1. Introduction

Laser scanning technology has been well established for several years, with its efficacy
in product inspection demonstrated across various research endeavors. While the utiliza-
tion of scanners in inspecting machined surfaces within the working zone of machines post
process completion offers numerous benefits, it also presents limitations [1]. Sustainable
and efficient manufacturing serves as the impetus behind the burgeoning Zero Defect
Manufacturing (ZDM) trend. ZDM aims not only to detect defective products but also to
predict and prevent defects [2]. As concluded by the authors of [3], dry machining proves
optimal for clean manufacturing. Laser technology currently finds critical applications in
the non-contact inspection of product parameters, with researchers exploring the integra-
tion of laser sensors in measuring parameters within the cutting zone during machining.
According to [4], CCHS represents a high-precision measuring device, with data analysis
stability outweighing mere accuracy. Reflectivity of the beam from the object to be mea-
sured and light source fluctuation pose challenges, as noted by [5]. Other researchers [6]
delved into the utilization of CCHS in three-dimensional product surface measurement.
Meanwhile, in their exploration of product measurement, Ref. [7] employed a high-speed
3D camera system. The authors of [8] investigated the application of CCHS for assessing
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the surface properties of product layers in [9]. However, the machining process itself can be
significantly influenced by factors such as surface topography and microhardness [10–12],
surface roughness [10,11,13], residual stress [14–16], and microstructure [17]. In their analy-
sis in [18], the authors provide insights and solutions for machining hardened steels with
regard to surface integrity. Specifically, they explore the impact of hardening on surface
roughness, cylindricity, and roundness after turning C45 steel. Research findings [19]
indicate a detrimental effect of hardening on surface quality. Furthermore, surface treat-
ment via machining methods can alter parameters associated with surface integrity [20].
The investigation and analysis of the surface quality parameters of milled surfaces were
conducted using a confocal laser scanning microscope by the authors of [21]. Mechanical
hardening is described in detail in studies by the authors of [22,23]. Additionally, other
researchers have endeavored to identify the influence of material properties on the surface
hardening of materials such as Al 6061-T6 [24] and Hadfield steels [25–31]. The issue
of surface hardening in AISI 304 steel is addressed in [32]. The authors of [33] examine
samples of surface roughness after turning. The influence of surface texture on surface
roughness is investigated in [34], while Ref. [35] analyzes the impact of the tip radius of
measuring contacts on surface roughness parameters. Additionally, Ref. [36] asserts results
that surface roughness significantly affects machined product performance. Investigations
into factors affecting the machined surface of metallic materials are carried out by the
authors of [37,38]. The authors of [39] observe the deterioration of machined surfaces in
Ti6Al4V alloys due to thermal softening using the HSM method. Similarly, results from [40]
indicate a trade-off relationship between significant process factors’ influence on material
removal rate and surface roughness. Regarding EDM technology, Ref. [41] investigates
the performance of machined stainless steel. Changes in machined surfaces affect quality
parameter attainment in milling due to thermal deformation [42], in turning due to stress
and strain prediction [43], in turning due to cutting tool modification [44] and cutting tool
damage [45], and in milling Ti alloys due to elastic deformation [46]. The investigation
of the effect of tool wear on surface roughness increase is addressed by [47], while [48]
demonstrates through research that low-temperature cooling can enhance machined surface
quality while minimizing tool wear. The determination of tool wear in the machining of
duplex stainless steel is presented in papers [49,50], with the issue of tool wear and surface
topography also discussed in [51–55]. Additional researchers [56] conduct experimental
investigations into factors affecting stainless steel turning and assess wear parameters on
the cutting tool’s face and back surface. Additionally, surface integrity evaluation param-
eters encompass shape and position deviations. In this regard, the application of CCHS
proves highly beneficial, particularly considering its comprehensive data and swift data
acquisition. Nonetheless, the challenge remains in efficiently processing acquired data and
accurately interpreting them for theoretical and practical needs, as per the research results
in [1]. The authors of [57] utilize CCHS to measure roundness deviation and demonstrate,
through experimental results, the method’s steady and reliable evaluation of roundness
deviations. Several authors have explored different machinability characteristics of C45
steel through varying heat treatment methods [58], employing coated tools in milling [59],
utilizing process media [60], implementing ultrasonics in turning [61], and modifying
cutting inserts [62]. Furthermore, the authors of [63–65] investigate various parameters of
machined surfaces using non-contact methods.

Our primary research focus revolves around controlling factors affecting machined
surfaces through non-contact methods, utilizing laser sensors directly within a machine’s
working zone. We aim to optimize input parameters and analyze adverse phenomena on
machined surfaces.

In this investigation, we explored the feasibility of directly measuring roundness
deviation within a machine’s working zone using a confocal chromatic sensor during the
turning of C45 steel. In the turning process, parameters such as cutting speed (A), feed (B),
depth of cut (C), workpiece length from clamping (D), and cutting edge radius (E) were
chosen as input parameters. Roundness deviation and tool face wear (KM) parameters,
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following ISO 3685 standards, were proposed as output factors for evaluating process per-
formance, measured using a microscope. To measure roundness deviation, we developed
new-generation CCHS sensors (CL P070 from Keyence—Mechelen, Belguim). To analyze
the effect of cutting insert face wear on roundness deviation under defined cutting condi-
tions using Taguchi Design in Minitab 21.4.2 software, we designed the Orthogonal Array
L27 experiment matrix. All research tests were conducted under dry turning conditions,
with a key assumption being that machine tool vibrations align with prescribed values
certified for specific machine tools (as outlined in Table 1). Currently, several companies in
our region manufacture various C45 steel products for the engineering industry.

Table 1. Experimental data.

M—Machine

Leadwell T5 CNC machine tool equipped with a FANUC
Oi-MATE-TC control system. Maximum radial sweep certified by
the manufacturer is 0.030 mm, and maximum axial sweep is
0.020 mm.

T—Cutting insert
Tool holder
Working insert tool
geometry

Cutting tool clamped with a tool holder marked SSDCN1212 F09
from Dormer Pramet Ltd., Šumperk, Czech Republic.
Cutting insert SCMT 09T308E-FM, T9325 made of sintered
carbide, with specific geometry parameters (nose angle εr = 90◦,
main cutting edge setting angle κr = 45◦, clearance angle major
α = 7◦, and nose radius rε= 0.8 mm).

W—Workpiece material and
dimensions

Workpiece material C45 steel (1.0503). Test specimen dimensions:
diameter (d) = 40 mm, length (L) = 150 mm.
The chemical composition of the steel is given in Table 2 and was
verified prior to the start of the research. Table 3 shows the main
properties of the tested steel.

F—Fixture for tool and
object

Specimen: A round bar clamped in a chuck.
Tool: Clamped in the cutter head.

Machining conditions Dry machining.
Machining method—turning.

Mobile Measuring System
(MMS) is composed of
CCHS sensor

PLC Siemens-1511C, Communication module KEYENCE-CL3000,
Amplifier KEYENCE-CLP070N, Communication module
KEYENCE-DL-PN1 and sensor CL P070 by Keyence.
Measurement range: 75 mm to 130 mm.
Reference distance: 100 mm.
Resolutions: ±1 mm.
Spot diameter: 600 mm.
Linearity: ±0.15% of F.S. (IL-100: ±20 mm).
Repeatability: 4 mm.
For the research purposes, a bespoke holder tailored for the
CCHS sensor was meticulously designed and subsequently
fabricated utilizing advanced 3D printing
technology.

Table 2. Chemical composition of C45 steel (EN 10083-2-91) *.

Steel C45 (%)

C 0.50
Mn 0.80
Si 0.37
Cr 0.22
Ni 0.28
Cu 0.18
P 0.035
S 0.032

* Chemical composition verified through analysis of the sample.
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Table 3. Verified properties of C45 steel products.

Steel C45 Values

Yield stress Re (MPa) 202
Tensile strength Rm (MPa) 650

Density (g/cm3) 7.85
Hardness HB max. 220

Elastic modulus (GPa) 81
Flexural strength (MPA) 606

Thermal conductivity (W/mK) 50

2. Description, Implementation, and Experimental Results
2.1. Experimental Design

In this section, we outline the experimental setup and methodology employed in our
study. We proposed to utilize the experimental data within the framework of the technology
system (TS) depicted in Figure 1, along with the mobile measurement system (MMS)
previously introduced by the authors [1], illustrated in Figure 2 and described in detail in
Table 1. The experimental parameters considered in this study are enumerated in Table 1.
The range for each controlled parameter was determined based on prior experiments and
information obtained from manufacturers of C45 steel products, as summarized in Table 2.
Additionally, adhering to recommendations from the tool manufacturer, a specific cutting
insert was selected for machining C45 steel, as detailed in Table 1.
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The cutting process conditions are outlined in Table 4, with cutting speed designated
as parameter A, feed as parameter B, depth of cut as parameter C, workpiece length from
clamping as parameter D, and cutting edge radius as parameter E. The assessment of
the output factor, specifically the roundness deviation of the circular bar, was conducted
using CCHS. The experimental matrix and resultant output factors, represented as average
values from the measurements, are detailed in Tables 5 and 6. Roundness deviation of
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the machined surface was directly measured and analyzed within the working zone of
the machine tool utilizing CCHS. This measurement was performed post-machining on a
240 mm length workpiece without unclamping, employing MMS (mobile measurement
system) for CCHS. Rd was assessed at three points along the machined length (60 mm)
of the circular bar, specifically at distances of 5.0 mm, 30.0 mm, and 55.0 mm from the
clamping point (refer to Figure 3). KM face wear was gauged following a 240 mm traversal,
adhering to ISO 3685 [66] standards, as illustrated in Figure 4. Rd values for specific local
locations were determined as averages. Resultant average values of Rd and cutting insert
face wear were derived from 12 replicate measurements, with the exclusion of minimum
and maximum outliers. Each experiment employed a cutting insert with a new cutting
edge. Literature reviews [55,56] highlight the importance of surface integrity research
incorporating new technologies, necessitating further investigation. The exploration of
roundness deviation control using CCHS on a reference specimen of C45 steel serves as a
foundation for other materials. A systematic examination of process parameter effects on
the machined surface underscores the potential to influence output factors towards desired
values by parameter adjustments. Enhanced machined surface integrity is achievable
through the optimization of input parameters such as cutting speed, feed, depth of cut,
workpiece clamping length, and cutting edge radius. The alignment of cutting conditions
with CCHS requirements is imperative. These adjustable input parameters during turning
render them conducive to automation and intelligent processing.

Table 4. The primary machining conditions.

Symbol Process Parameters Units
Levels

1 2 3

A Cutting speed (m/min) 90 180 270
B Feed (mm/rev.) 0.1 0.2 0.3
C Depth of cut (mm) 0.1 0.4 0.8
D Workpiece length from clamping (mm) 5.0 30.0 55.0
E Cutting edge radius (mm) 0.003 + 0.0005 0.005 + 0.0005 0.008 + 0.0005

Table 5. Experimental matrix, design, and experimental results.

Number of
Exp.-RUN

Controllable Process Parameter Experimental Results

A B C D E
Rd (mm) KM

(mm)Average Rd STDVP STDV ERROR SE (AVERAGE)

1 1 1 1 1 1 0.0260 0.001 0.0003 0.1420
2 1 1 1 1 2 0.0184 0.001 0.0005 0.1120
3 1 1 1 1 3 0.0220 0.001 0.0006 0.1180
4 1 2 2 2 1 0.0440 0.001 0.0006 0.1850
5 1 2 2 2 2 0.0440 0.002 0.0009 0.1740
6 1 2 2 2 3 0.0410 0.001 0.0006 0.1670
7 1 3 3 3 1 0.0860 0.005 0.0024 0.1820
8 1 3 3 3 2 0.0720 0.003 0.0015 0.1810
9 1 3 3 3 3 0.0640 0.003 0.0012 0.1960

10 2 1 2 3 1 0.0520 0.003 0.0012 0.1730
11 2 1 2 3 2 0.0450 0.002 0.0010 0.1710
12 2 1 2 3 3 0.0460 0.013 0.0059 0.1690
13 2 2 3 1 1 0.0640 0.008 0.0035 0.1860
14 2 2 3 1 2 0.0420 0.012 0.0054 0.1820
15 2 2 3 1 3 0.0390 0.011 0.0051 0.1670
16 2 3 1 2 1 0.0340 0.005 0.0025 0.1750
17 2 3 1 2 2 0.0360 0.007 0.0030 0.1700
18 2 3 1 2 3 0.0320 0.003 0.0012 0.1710
19 3 1 3 2 1 0.0370 0.010 0.0043 0.1880
20 3 1 3 2 2 0.0410 0.001 0.0006 0.1770
21 3 1 3 2 3 0.0390 0.003 0.0013 0.1860
22 3 2 1 3 1 0.0300 0.007 0.0031 0.1970
23 3 2 1 3 2 0.0370 0.008 0.0034 0.1820
24 3 2 1 3 3 0.0440 0.010 0.0045 0.1820
25 3 3 2 1 1 0.0290 0.001 0.0004 0.1820
26 3 3 2 1 2 0.0370 0.002 0.0007 0.1920
27 3 3 2 1 3 0.0180 0.002 0.0009 0.1810
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Table 6. Calculated S/N ratios.

Number of Exp.-RUN
S/N Ratios of Results

Rd (dB) KM (dB)

1 31.7005 16.9542

2 34.7036 19.0156

3 33.1515 18.5624

4 27.1309 14.6566

5 27.1309 15.1890

6 27.7443 15.5457

7 21.3100 14.7986

8 22.8534 14.8464

9 23.8764 14.1549

10 25.6799 15.2391

11 26.9357 15.3401

12 26.7448 15.4423

13 23.8764 14.6097

14 27.5350 14.7986

15 28.1787 15.5457

16 29.3704 15.1392

17 28.8739 15.3910

18 29.8970 15.3401

19 28.6360 14.5168

20 27.7443 15.0405

21 28.1787 14.6097

22 30.4576 14.1107

23 28.6360 14.7986

24 27.1309 14.7986

25 30.7520 14.7986

26 28.6360 14.3340

27 34.8945 14.8464
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The face wear on the cutting insert was assessed in accordance with ISO standard
3685, as depicted in Figure 4. and analyzed by using a Carl Zeiss Primotech D/A ESD
microscope – Carl Zeiss Jena GmbH, Jenna, Germany as shown in Figure 5.
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2.2. Optimization of Turning Input Parameters Using Taguchi Method with S/N Ratio Analysis

An experiment matrix employing Orthogonal Array L27 was designed following
Taguchi principles using Minitab 21.4.2 software—Coventry, United Kingdom. Five param-
eters were set at three levels each, resulting in a total of 27 runs.

Researchers [67,68] have noted that Taguchi’s methodology [69] considers factors
such as resource wastage, warranty costs, customer complaints, and repair expenses, all of
which influence product quality. Taguchi’s approach is particularly beneficial for optimizing
products or processes while simultaneously reducing experimentation time and research
costs. Orthogonal arrays, coupled with signal-to-noise ratio analysis, are employed to
gauge output parameter quality. Various models incorporating Taguchi methods have been
applied in research, with parameters’ significance determined through ANOVA. These
models include L8OA [70–72], L18OA [73], L27OA [74,75], L27OA with ANOVA [58,76,77],
L18OA with ANOVA [78], L9OA with ANOVA [37,60,72], and the L8OA model combined
with Response Surface Methodology (RSM) and ANOVA [38,79,80]. Additionally, the GRA
(Grey Relation Analysis) method with ANOVA has been proposed [74,81–84], along with
other variations by different researchers [85].

Genichi Taguchi [69] introduced a loss function in data processing to represent the
disparity between experimental and target values, subsequently converted into signal-to-
noise (S/N) ratios. The S/N ratio, defined as the ratio of mean value to standard deviation,
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categorizes into “Larger is Better,” “Medium is Better,” and “Smaller is Better,” based on
response requirements. This study focuses on the output factors of roundness deviation and
wear on the cutting insert’s face surface, both adopting the “Smaller is Better” methodology,
aligned with practical and C45 steel machinability requirements. Equation (1) was utilized
for S/N ratio calculation, with the results tabulated in Table 6. Taguchi analysis, mean
S/N ratio graphs, and ANOVA were conducted using Minitab 21.4.2 software.

The impact severity of each input parameter on output factors is depicted in Figures 6 and 7.
Cutting conditions and cutting insert geometry influence chip evacuation from the cutting
zone [37,43,44,78]. Continuous cutting processes yield regular machined surfaces devoid
of Plastically Deformed Material (PDM) elements. Conversely, discontinuous cutting may
produce irregular chips with PDM, adversely affecting surface quality and increasing
roundness deviation (see Figure 6). Increasing Rd may signify elevated cutting insert
wear, notably on the KM face, further exacerbating surface quality due to augmented
PDM elements.
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Figure 6. Main effects plots: (a) illustrates the effects of input factors on roundness deviation, while
(b) displays the mean S/N ratios corresponding to roundness deviation.
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Figure 7. Main effects plots: (a) the effects of input factors on the tool wear of the face, and (b) the
mean S/N ratios corresponding to the tool wear of the face.
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The S/N ratio (Equation (1)) serves as a quantitative tool, with Rd proposed as a
qualitative machined surface factor, ideally minimized. The S/N ratio is as follows:

S/N = −10 log
[

1
n

(
y2

1 + y2
2 + . . . + y2

n

)]
(1)

where

S/N represents parameter values (unit dB)
and
y1, y2, ..., yn are the observed output values for the test condition repeated n times.

Figures 6a and 7a depict the relationship between mean values of roundness deviation
and the face wear of the cutting insert. Cutting speed emerges as the most influential
parameter impacting roundness deviation (as evident in Figure 6a), similarly affecting tool
wear at the cutting insert face (as observed in Figure 7a). Increased feed, depth of cut,
and distance of the workpiece from the fixture also exert a negative effect on Rd. With
rising roundness deviation, surface quality diminishes, accompanied by increased tool
wear. Elevated cutting speed mitigates roundness deviation but heightens the risk of tool
damage and wear. Optimal regions lie between cutting speed levels 1 and 2, as illustrated in
Figures 6b and 7b. Figures 6a and 7a highlight the optimal levels of individual parameters
to achieve the desired output factors in terms of roundness deviation (Rd) and the face
wear of the cutting inserts, respectively. These optimal levels correspond to A3B1C1D1E3
for Rd and A1B1C1D1E3 for the face wear of the cutting inserts, as corroborated by the
S/N ratio values in Figures 6b and 7b.

Lower roundness deviation (Rd) values can enhance the operational reliability of the
studied functional surface of a product. This improvement stems from increased friction
between the tool and workpiece, resulting in higher cutting temperatures with increasing
cutting speed. Elevated temperatures in the machining zone cause thermal softening of
the workpiece, reducing smeared materials on the machined surface and consequently
minimizing roundness deviation [77,85,86]. As depicted in Figure 8, Rd values escalate with
rising cutting speed due to heightened tool resistance against the workpiece, particularly as
feed increases, leading to the formation of more built-up edges (BUE) on the tool face. This
phenomenon induces surface deterioration and consequently elevates Rd values. Moreover,
an increasing trend in Rd values accompanies higher depths of cut. These trends align with
the existing literature findings on machining difficult-to-machine materials [87]. Precision
in determining the local measurement spot on the specimen significantly influences Rd.
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Figure 8. Visualization of machined surface. (a) Initial parameter settings at A = 180 m/min,
B = 0.2 mm/rev., C = 0.4 mm, D = 30 mm, and E = 0.005 mm, (A2B2C2D2E2). Magnification 5×.
(b) Taguchi optimum settings at A = 270 m/min, B = 0.1 mm/rev., C = 0.1 mm, D = 5.0 mm, and
E = 0.008 mm, (A3B1C1D1E3). Magnification 5×.
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Simultaneously, this measurement process provides insights into the cutting tool’s
compliance with the specified technical requirements of the product and identifies any
undesirable wear. Variations in Rd magnitude may indicate changes in the cutting tool.
Consequently, this measurement method facilitates the rapid and accurate identification of
local spots on the functional surface and enables the monitoring of changes in cutting tool
wear rate. However, the mean values of output factors are contingent on specific conditions,
necessitating test repetition for other materials.

The S/N ratio response factor table for Rd is presented in Table 7. Figure 7b illustrates
the S/N ratio chart generated using Minitab software. A higher S/N ratio indicates mini-
mal deviation between the desired and measured outputs. As depicted in Figure 9b, the
highest average S/N ratio values obtained for Rd are 270 m/min, 0.1 mm/rev., 0.1 mm,
5.0 mm, and 0.008 mm. Therefore, the assumed optimal process parameters for achiev-
ing low Rd using Taguchi’s method are 270 m/min, 0.1 mm/rev., 0.1 mm, 5.0 mm, and
0.008 mm. These optimal combinations are highlighted in bold in Table 6 for clarity, with
the corresponding levels identified. This predicted optimal combination is represented as
A3B1C1D1E3 for roundness deviation.

Table 7. Mean S/N ratio response table for roundness deviation.

Symbol Process Parameters and Units
Mean S/N Ratios

Level 1 Level 2 Level 3 Max–Min Rank

A Cutting speed (m/min) 27.73 27.45 29.45 2.00 3
B Feed (mm/rev.) 29.28 27.54 27.83 1.74 4
C Depth of cut (mm) 30.44 28.41 25.80 4.64 1
D Workpiece length from clamping (mm) 30.38 28.30 25.96 4.42 2
E Cutting edge radius (mm) 27.66 28.12 28.87 1.21 5
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Figure 9. Wear display on cutting insert face. (a) Initial parameter settings at A = 180 m/min,
B = 0.2 mm/rev., C = 0.4 mm, D = 30 mm, and E = 0.005 mm, (A2B2C2D2E2). Magnification 5×.
(b) Taguchi optimum settings at A = 90 m/min, B = 0.1 mm/rev., C = 0.1 mm, D = 5.0 mm, and
E = 0.008 mm, (A1B1C1D1E3). Magnification 5×.

Table 8 presents the generated S/N ratio factor table for face wear on the cutting
insert. Mean values of the S/N ratio for face wear are depicted in Figure 7b. Based on the
data from Figure 7b and Table 8, the estimated optimal process parameters for minimizing
face wear are 90 m/min, 0.1 mm/rev., 0.1 mm, 5.0 mm, 0.008 mm. This predicted optimal
combination is represented as A1B1C1D1E3 for face wear on the cutting insert.
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Table 8. Mean S/N ratio response table for tool face wear.

Symbol Process Parameters and Units
Mean S/N Ratio

Level 1 Level 2 Level 3 Max–Min Rank

A Cutting speed (m/min) 15.97 15.21 14.65 1.32 1
B Feed (mm/rev.) 16.08 14.89 14.85 1.23 3
C Depth of cut (mm) 16.01 15.04 14.77 1.24 2
D Workpiece length from clamping (mm) 15.94 15.05 14.84 1.10 4
E Cutting edge radius (mm) 14.98 15.42 15.43 0.45 5

The S/N ratio response table for Rd is also presented in Table 7, while Figure 6b
illustrates the mean S/N ratio chart obtained through Minitab software—Coventry, United
Kingdom. Again, a higher S/N ratio signifies minimal deviation between the desired
and measured outputs. As indicated in Figure 6b, the highest average S/N ratio values
obtained for Rd are A3 = 270 m/min, B1 = 0.1 mm/rev., C1 = 0.1 mm, D1 = 5.0 mm,
and E3 = 0.008 mm. Thus, the assumed optimal process parameters for achieving low
roundness deviation using Taguchi’s method are represented as A3B1C1D1E3, with the
corresponding level values highlighted in bold in Table 7. Table 8 presents the obtained
S/N ratio response table for face wear on the cutting insert. The average S/N ratio values
for the face wear of the cutting insert are illustrated in Figure 7b. From Figure 7a, it can be
observed that the estimated optimum process parameters for achieving low wear on the
cutting insert face are A1 = 90 m/min, B1 = 0.1 mm/rev., C1 = 0.1 mm, D1 = 5.0 mm, and
E3 = 0.008 mm.

Confirmation Test

To validate the optimality of the predicted optimal settings according to Taguchi,
confirmatory tests must be conducted. The predicted signal-to-noise (S/N) ratio (e) was
utilized to estimate and verify the response under the predicted optimal cutting settings,
calculated using Equation (2).

εpredicted = εtm +
p

∑
i=1

(εo − εtm) (2)

where

εtm is the total mean S/N ratio;
εo is the mean S/N ratio at the optimal level;
p is the number of input process parameters.
Confirmatory tests are essential to validate the predicted optimal cutting settings.

After predicting the optimum cutting settings, confirmation experiments were con-
ducted, and the results are presented in Tables 9 and 10 for Rd and KM, respectively. The
predicted optimal cutting settings for both Rd and KM led to improved process performance
outcomes. Tables 9 and 10 demonstrate that the S/N ratios under the predicted and optimal
cutting settings closely align for both Rd and KM. The enhancement in the S/N ratio at the
optimal cutting settings for Rd and KM amounted to 4.95 dB and 2.01 dB, respectively, com-
pared to the original parameter settings shown in Tables 9 and 10. From the confirmation
experiments, it was observed that the predicted optimal cutting settings by Taguchi yielded
favorable results compared to the initial parameter settings, particularly with regard to
the reduction in Rd and KM. Specifically, the reductions in Rd and KM compared to the
initial parameter settings were found to be 15.29% and 12.5%, respectively. Hence, the
predicted optimal cutting settings by Taguchi are deemed to be the optimum conditions for
achieving low Rd and low KM in machining C45 steel under the given conditions. From
Figures 8 and 9, it is evident that the optimal cutting settings as per Taguchi led to low
Rd and KM values. Figure 10 demonstrates the reduced impact of removed material and
fewer smeared particles on the machined surface under the optimum cutting conditions
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according to Taguchi compared to the initial setup. Similarly, less face wear (smaller pitting)
was observed at the optimal cutting setting by Taguchi compared to the initial setting.
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Figure 10. Normal probability plot of the residuals for roundness deviation.

Table 9. Confirmation test results for roundness deviation.

Initial Process
Parameter

Optimal Process Parameters

Prediction Experiment

Level A2B2C2D2E2 A3B1C1D1E3 A3B1C1D1E3
Roundness deviation (mm) 0.041 0.024
S/N ratio (dB) 27.44 35.56 32.39
Improvement in S/N ratio (dB) 4.95
Percentage reduction in tool face wear 15.29%

Table 10. Confirmation test results for tool face wear.

Initial Process
Parameter

Optimal Process Parameters

Prediction Experiment

Level A2B2C2D2E2 A1B1C1D1E3 A1B1C1D1E3
Tool face wear (mm) 0.198 0.157
S/N ratio (dB) 14.07 15.97 16.08
Improvement in S/N ratio (dB) 2.01
Percentage reduction in tool face wear 12.5%

3. Optimization of Input Parameters by ANOVA, Regression Analysis, and Modeling

ANOVA identifies the process parameters most influencing performance characteris-
tics. Table 11 presents the analysis of variance for the output factor of roundness deviation
(Rd). It indicates that cutting speed, feed, depth of cut, and workpiece length from clamping
significantly affect roundness deviation (with p-values less than 0.05 at a 95% confidence
interval). However, the significance of the cutting edge radius of the curvature parameter
regarding roundness deviation was not demonstrated. Rd is notably influenced by depth of
cut (37.51%), workpiece length from clamping (30.29%), cutting speed (10.50%), and feed



Lubricants 2024, 12, 99 13 of 20

(6.21%), while cutting edge radius exhibits the least significance (2.85%). Table 12 presents
the analysis of variance for the output factor of cutting insert face wear. It indicates that
cutting speed, feed, depth of cut, and length of workpiece from clamping significantly
affect KM cutting insert face wear (with p-values less than 0.05 at a 95% confidence level).
However, the significance of the cutting edge radius parameter for KM was not demon-
strated. KM is significantly influenced by feed (25.43%), cutting speed (23.27%), depth
of cut (21.83%), and workpiece length from clamping (16.89%), with cutting edge radius
exhibiting the least effect (3.56%).

Table 11. Analysis of variance for roundness deviation.

Source DF Adj SS Adj MS F-Value p-Value Contribution Remarks

A 2 0.000665 0.000332 6.65 0.008 10.50% Significant
B 2 0.000393 0.000197 3.94 0.041 6.21% Significant
C 2 0.002375 0.001187 23.76 0.000 37.51% Significant
D 2 0.001917 0.000959 19.18 0.000 30.29% Significant
E 2 0.000181 0.000090 1.81 0.196 2.85% Insignificant

Error 16 0.000800 0.000050 12.63%
Total 26 0.006330 100.00%

Table 12. Analysis of variance for face wear.

Source DF Adj SS Adj MS F-Value p-Value Contribution Remarks

A 2 0.002450 0.001225 20.63 0.003 23.27% Significant
B 2 0.002678 0.001339 22.54 0.001 25.43% Significant
C 2 0.002298 0.001149 19.34 0.005 21.83% Significant
D 2 0.001778 0.000889 14.97 0.008 16.89% Significant
E 2 0.000374 0.000187 3.15 0.070 3.56% Insignificant

Error 16 0.000950 0.000059 9.03%
Total 26 0.010528 100.00%

In this study, Minitab 21.4.2 software was utilized to develop predictive mathematical
models for the dependent variable of roundness deviation, considering cutting speed (A),
feed (B), depth of cut (C), workpiece length from clamping (D), and cutting edge radius
(E), through linear regression analysis. No transformation was applied to each response.
The prediction equation obtained from the regression analysis for Rd (3) and KM (4) is
provided below.

Regression analysis model for roundness deviation versus A, B, C, D, and E with
regression Equation (3):

Rd = 0.00764 − 0.00586 A + 0.00453 B + 0.01137 C + 0.01003 D − 0.00317 E, (3)

For Rd, an R2 value of 83.81% was calculated.
Regression analysis model for face wear versus A, B, C, D, and E with regression

Equation (4):

KM = 0.0961 + 0.01167 A + 0.01078 B + 0.01089 C + 0.00850.D − 0.00406 E, (4)

For KM, an R2 value of 81.64% was calculated.
The fitness of the developed models was validated using the coefficient of deter-

mination R2 [88,89]. The coefficient of determination ranges from zero to one, where a
value closer to one indicates a strong agreement between the dependent and independent
variables. For instance, an R2 value of 95% signifies that 95% of the variability in new
observations has been estimated. In this study, the regression models for Rd and KM
achieved high R2 values, namely 83.81% and 81.64%, respectively.
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A graph of the residuals was employed to assess the significance of coefficients in the
predicted model. The linearity of the residual graph indicates that the residual errors in
the model are normally distributed, and the coefficients are significant. Figure 10 displays
the residuals for roundness deviation. It illustrates that the residuals closely align with a
straight line, indicating the significance of the coefficients in the developed model. Similarly,
Figure 11 depicts the residuals for tool face wear. The residuals also fall near a straight
line, suggesting the significance of the coefficients in the developed model for KM. To
validate the developed models, confirmatory tests were conducted, and the results are
presented in Table 11. The test results, taken randomly from the orthogonal array L27,
demonstrate good agreement between the predicted and experimental results across a
range of parameters. The response was found to be favorable for machining different
difficult-to-cut materials [74,75,81].
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Figure 11. Normal probability plot of the residuals for tool face wear.

Confirmation Test

Confirmation tests of the control factors were conducted following the Taguchi method
and regression equations for both the optimum level and randomly selected levels. Table 13
provides a comparison between the test results and the predicted values obtained using
the Taguchi method and regression equations (Equations (3) and (4)). The proximity of the
predicted values to the experimental values indicates a high level of agreement between
them. To ensure reliable statistics in the analyses, the error values must be kept below
20% [88]. An examination of the results in terms of percentages reveals that the errors
for the output factors of Rd and KM did not exceed the 20% threshold. Consequently, the
results of the confirmatory test demonstrate a successful optimization process. According
to the authors of [89,90], similar results were obtained during material machining processes,
affirming the effectiveness of the Taguchi optimization method in enhancing the machining
performance of C45 steel under the specified process parameters.

This validation process was conducted under both practical conditions, addressing
the need for controlling the factors of machined surfaces, and under laboratory conditions,
ensuring the reliability and robustness of the optimization procedure.
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Table 13. Confirmation results for the developed models.

Run

Experimental Predicted Residuals Error

Rd
(mm)

KM
(mm)

Rd
(mm)

KM
(mm)

Rd
(mm)

KM
(mm)

Rd
(%)

KM
(%)

1 0.026 0.112 0.025 0.122 0.001 −0.01 3.846 8.929

6 0.041 0.167 0.040 0.172 0.001 −0.005 2.439 2.994

10 0.052 0.173 0.051 0.176 0.001 −0.003 1.923 1.734

11 0.045 0.169 0.048 0.168 −0.003 0.001 6.667 0.592

16 0.034 0.167 0.037 0.175 −0.003 −0.008 8.824 4.79

19 0.037 0.188 0.042 0.189 −0.005 −0.001 13.513 0.532

23 0.037 0.182 0.036 0.184 0.001 −0.002 2.703 1.099

25 0.029 0.182 0.031 0.191 −0.002 −0.009 6.896 4.945

4. Conclusions

The discrepancies between the theoretical and actual values of the machined surface
factors stem from the deformation process occurring ahead of the cutting edge of the tool.
This process is primarily influenced by the properties of the material being machined and
the prevailing working conditions [91–93]. The authors of [1,94] presented both positive
and negative experiences regarding the use of CCHS in measuring roundness deviation on
machined surfaces after turning C45 steel. Furthermore, this research uncovered several
concomitant phenomena, including the following:

• Plastic deformation occurred at localized sites on the machined surface, as illustrated
in Figure 12. These observations were captured using scanning electron microscopy
with a JEOL JSM 7000F autoemission nozzle—JEOL Ltd., Hertfordshire, England,
United Kingdom. The results of this analysis warrant further investigation.
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Figure 12. Examples of machined surfaces after turning C45 steel. (a) Deformation of the ma-
chined surface not measurable. Perlite and ferrite. Nital. Magnification 500×, A = 180 m/min,
B = 0.2 mm/rev., C = 0.4 mm, D = 30 mm, E = 0.005 mm. (b) Local plastic deformation of machined
surface ~34 µm. Perlite and ferrite. Nital. Magnification 500×, A = 270 m/min, B = 0.1 mm/rev.,
C = 0.1 mm, D = 5.0 mm, E = 0.008 mm. (c) Local plastic deformation of machined surface. Traces
of volume extraction of the machined surface. Perlite and ferrite. Nital. Magnification 500×,
A = 180 m/min, B = 0.2 mm/rev., C = 0.4 mm, D = 30 mm, E = 0.005 mm. (d) Local plastic defor-
mation of machined surface ~12 µm. Perlite and ferrite. Nital. Magnification 500×, A = 90 m/min,
B = 0.1 mm/rev., C = 0.1 mm, D = 5.0 mm, E = 0.008 mm.
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The research presented in this paper offers several key conclusions based on the analy-
sis conducted. The confocal chromatic sensor (CCHS) proved to be suitable for measuring
the roundness deviation of machined surfaces, particularly on C45 steel. The data collected
using CCHS can serve as a reference for further research, potentially extending to the
comparison of other types of steels. Roundness deviation values were effectively measured
and evaluated within the range of 0.002 to 0.08 mm using CCHS, aligning with the specified
limit of 0.1 mm. The observed wear value on the cutting insert face reached up to 0.3 mm
under the research conditions.

Key research findings include the following:

• The Taguchi method identified an optimal combination of cutting conditions (A = 270 m/min,
B = 0.1 mm/rev., C = 0.1 mm, D = 5.0 mm, and E = 0.008 mm) resulting in a 53%
reduction in roundness deviation.

• Similarly, Taguchi’s method determined optimal cutting conditions (A = 90 m/min,
B = 0.1 mm/rev., C = 0.1 mm, D = 5.0 mm, and E = 0.008 mm), leading to a 31%
reduction in the face wear of the cutting insert.

• ANOVA analysis revealed that depth of cut had the most significant influence on
roundness deviation (37.51%), followed by workpiece distance from clamping, cutting
speed, and feed. Feed was found to be the most significant factor influencing tool
cutting insert wear, with a percentage influence of 25.43%.

These results underscore the effectiveness of the determined optimal cutting settings
in reducing roundness deviation and cutting insert face wear during the machining of C45
steel. The findings also highlight the potential of these optimal settings to positively impact
roundness deviation.

Practical implications relevant for customers include the following:

• Fine-tuning conditions and controlling factors for laser sensor use on machined sur-
faces of C45 steel.

• The identification of negative phenomena on machined surfaces after turning C45 steel.
• The consideration of non-contact laser sensor methods for measuring the roundness

deviation of machined surfaces in order to implement optimal cutting settings and
enhance the quality of turning C45 steel within the specified range.
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