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Abstract: The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) of liquid rocket
engines (LREs) has a significant effect on the dynamic response of the bearing–rotor system. To reveal
the fault mechanism of CSLBBs, a tribo-dynamic model is proposed in this paper that considers the
solid-lubricated traction, six-DOF motion of the ball and contact collisions between the ball and the
cage. The modified traction model uses fan-shaped and arched sections to discretize the contact
area to eliminate the meshing error. The newly developed fault model, called ‘geometrical-frictional
defects’, can more realistically represent solid-lubrication coating defects. The results show that the
frictional excitation can significantly increase bearing vibration by increasing the traction force on the
raceway. The change in the amplitude of the bearing vibration and its derivative can be used as a
reference to determine the depth of defects. The width of the defect can be diagnosed by monitoring
the double-pulse time interval and spectrum of the bearing vibration signal. This research may
provide some theoretical guidance for the design and condition monitoring of CSLBBs.

Keywords: ball bearing; solid lubrication; tribo-dynamic model; fault mechanism

1. Introduction

Cryogenic solid-lubricated ball bearings (CSLBBs) are widely used in turbopumps of
liquid rocket engines (LREs), which operate under severe conditions that include high loads,
high speeds and ultra-low temperature and solid lubrication [1]. As a fundamental element
of the rotor system in turbopumps, safe and reliable performance of the ball bearing is
essential to the launch of liquid rockets [2]. To ensure the successful launch of the rocket
and even obtain the remaining useful life of LREs, it is of great importance to carry out
the prognostics and health management (PHM) service of LREs. However, due to the lack
of understanding of the fault mechanism, it is difficult to quantitatively assess the fault
extent of LREs [3]. Therefore, a quantitative study of the failure mechanism of CSLBBs
using a theoretical model at the early stage is valuable for the optimal design and condition
monitoring of CSLBBs.

As CSLBBs are exposed to cryogenic liquids, they are generally lubricated by solid
coatings on raceways and self-lubricating cages. As solid lubrication has a large coefficient
of friction (COF), it leads to a significant increase in the traction or friction force between
balls and raceways under extreme loading conditions, which accelerates the temperature
rise and wear. In the early days, the modelling of traction forces in CSLBBs relied on the
traction curve model [4], which simply describes the COF as a nonlinear function against the
relative sliding velocity. As the parameters of the traction curve are often obtained through
traction experiments, the traction curve is also called the semi-empirical model. Based
on the semi-empirical model, scholars carried out a series of experimental and theoretical
research on traction behavior under cryogenic solid-lubricated environments. Gupta [5]
derived the four parameters of the traction curve and documented the parameters for
different solid lubricants. Tevaarwerk [6] designed a tribometer to test the rolling contact
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traction coefficient under a liquid oxygen (LO2) condition, based on which, Chang et al. [7]
obtained several traction curves for different types of solid lubricants. Utilizing Chang’s
experimental data, Gupta et al. [8] established a multi-field coupling dynamic model and
studied the effect of ball material on the temperature rise of CSLBBs. In order to further
improve the accuracy of the traction curve under the influence of cryogenic fluids, Kwak
et al. [9] developed a solid-lubricated sliding traction tester under liquid nitrogen (LN2)
conditions and modified the Kragelskii model based on the experimental data. In order
to obtain more accurate cryogenic rolling contact traction data, Liu et al. [10] carried out a
ball-on-disc, rolling–sliding contact experimental device under an ultra-low temperature
environment and obtained different traction curves under a series of contact loads and
coatings. Based on the traction data, they developed a dynamic model to study the friction
power loss for CSLBBs [11]. In order to simulate the rolling contact phenomenon more
realistically, Chen et al. [12,13] introduced the FASTSIM rolling contact algorithm into
the quasi-static model of ball bearings, abandoning the constraints of the raceway control
hypothesis [14,15] and thus improving the accuracy of the bearing model. Zhao et al. [16,17]
investigated the skidding, spinning and power loss characteristics of solid-lubricated ball
bearings based on rolling contact quasi-static models. Although the rolling contact models
can more accurately represent the rolling contact behavior between balls and raceways
under solid and dry lubrication, due to the complexity of the traction model, they are
currently mainly used in quasi-static models and have yet to be deployed into bearing
dynamic models. Therefore, to effectively and accurately consider the effect of cryogenic
solid-lubricated traction on the dynamic response of the CSLBB, the newly obtained traction
data are adopted in this paper to build the tribo-dynamic model of the CSLBB.

According to the complexity of the model, the rolling bearing dynamic model can
usually be categorized into two types: simplified dynamic models and multi-degree-of-
freedom (DOF) models. Simplified dynamic models generally only consider translational
movements of the rolling element [18–20]. When traction is embedded, the model can
also simulate the orbital movement of the rolling element [21–24]. The simplified dynamic
model ignores the gyroscopic moment and lateral sliding of the rolling element. However,
for ball bearings with contact angles such as angular contact ball bearings (ACBBs), these
movements are key factors in bearing failure. Therefore, in order to more accurately
simulate the dynamic behavior of ball bearings, it is necessary to introduce more DOFs of
the ball to establish a multi-DOF dynamic model. Based on the five-parameter rheological
model, Liu et al. [25] studied the effect of oil type and temperature on the ball skidding
behavior and ball–cage collision characteristics of ACBBs. Liu et al. [26] introduced the
elastic deformation of the rotor into the multi-DOF dynamic model of ACBBs and studied
the influence of rotor deformation on bearing vibration. Ma et al. [27] developed a multi-
DOF model to study the dynamic contact behavior of four-point contact ball bearings. Based
on a multi-DOF tribo-dynamic model, Wen et al. [28] revealed the influencing mechanism
of starved lubrication on the tribological characteristics of ACBBs.

To reveal the fault mechanism of ball bearings, the dynamic response under fault
excitation is usually studied based on the bearing dynamic model. Patel et al. [29] estab-
lished a dynamics model of deep-groove ball bearings on the basis of differential equations,
based on which, the effect of single and multiple local defects on vibration response and
frequency characteristics was analyzed. Niu et al. [30] introduced geometric defects to
balls on the basis of Gupta’s [31] dynamic model and studied the spectral characteristics
of the fault impact vibration signals of angular contact ball bearings (ACBBs). By intro-
ducing a more accurate raceway defect excitation into the dynamic model, Jiang et al. [32]
found that the bearing will show the phenomenon of ‘double-pulse’ in the vibration time
domain signal when the defect width reaches a certain value. Liu et al. [33] established a
dynamics–acoustic analysis model for angular contact ball bearings (ACBBs) and injected
the time-varying fault excitation to the raceway of the model to study the influence of
load, rotational speed and defect size on the vibration and acoustic emission of ACBBs.
Deng et al. [34] took the waviness of the raceway into consideration on the basis of the
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multiple-DOF dynamic model of ACBBs and investigated the three-dimensional sliding
of the balls, the ball-raceway contact force as well as the collision force between the ball
and the cage. The lubrication failure of CSLBBs not only causes geometric excitation but
also changes the COF at the ball–raceway contact patch when the solid coating is locally
peeling off. Therefore, the fault dynamics mechanism of CSLBBs must be analyzed from
both aspects of geometric and frictional excitation.

In response to this need, a tribo-dynamic model for CSLBBs is proposed in this paper,
which considers the solid-lubricated traction, six DOF motion of the ball and the ball–cage
collision behavior. The modified traction model not only adopts the latest solid-lubricated
traction data but also uses fan-shaped and arched sections to discretize the contact area to
eliminate the meshing error. The newly developed ‘geometrical-frictional defects’ model
fully considers the geometrical and frictional excitation brought by the peeling of solid
coatings and thus more realistically represents the solid-lubrication coating defect. The
proposed model is validated by comparisons with both experimental data and traditional
quasi-static models. To study the fault mechanism of solid-coating defects, the dynamic
response under different depths and widths of the raceway defect is compared.

This paper is an extended version of the conference paper [35] that was originally
presented at the Lubrication, Maintenance and Tribotechnology (LUBMAT 2023) Confer-
ence. While the conference paper briefly introduced the modeling methods and analyzed
the impact of early wear fault depth, this paper derived the tribo-dynamic model and the
construction method of early wear geometrical-frictional excitations in detail. In addition,
combining with the signals of healthy bearings, this article conducts in-depth research
on the influencing mechanism of different fault depths and widths on the tribo-dynamics
characteristics of CSLBBs, thereby providing deeper theoretical support for structural
optimization and condition monitoring of CSLBBs.

2. Tribo-Dynamic Modelling of Cryogenic Solid-Lubricated Ball Bearings

In this section, the solid-lubricated traction model is developed based on the newly
obtained cryogenic solid-lubricated rolling contact traction data. Then, the geometrical-
frictional coupling fault excitation model of the CSLBB is established based on the charac-
teristics of the solid-lubricated bearing. Finally, based on the traction and fault model, a
multi-DOF fault dynamic model for CSLBBs considering the six-DOF ball, three-DOF inner
ring, two-DOF outer ring and one-DOF cage is proposed.

The main assumptions of the model are listed as follows:
(1) The contact between the ball and the raceway is assumed to be Hertz contact. As

the influence of the contact area is not considered, the contact between the ball and the cage
pocket is assumed to be linear elastic.

(2) Although CSLBBs operate in fluid environments, the viscosity of cryogenic fluids
(such as liquid hydrogen and liquid oxygen) is too low to form a hydrodynamic film.
Therefore, it is assumed that the contact between bearing components is dry contact, i.e.,
solid–solid contact.

(3) Assuming that cryogenic fluids can promptly remove the heat generated by the
bearing, the impact of temperature changes is not considered.

(4) Considering that the CSLBB is not subjected to torque loads under normal circum-
stances, it is assumed that the inner ring of the bearing has only three translational DOFs
and no rotational DOF.

2.1. Solid-Lubricated Traction Modelling of Ball–Raceway Contacts

To clearly describe the relative motions between different bearing elements, three
types of coordinate systems are established: the inertial coordinate system O-XYZ, the
moving coordinate system ob-xbybzb that is attached on the geometry center of the ball as
well as local contact coordinate systems between balls and raceways, as shown in Figure 1.

The traction behavior between the ball and raceways significantly influences the
dynamic performance of rolling element bearings [36]. As shown in Figure 1c, contact
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coordinate systems are established between the ball and the inner and outer raceways,
where the x coordinate directs the rolling direction of the ball.

The contact between the ball and the raceway is assumed as Hertz contact. In fact,
as the thickness of the solid-lubrication coating is within 10 µm, the ratio of the contact
radius and the coating thickness is usually larger than three, so the condition for Hertz
contact assumption does not hold [37]. However, considering that the distribution of the
contact force does not have a significant effect on the overall traction force [10,12,13] and
that the micro contact behavior of the particle is not studied in depth in this paper, the
Hertz contact assumption is still used to calculate the contact force.

To take the spinning motion and differential sliding behaviors of the ball into con-
sideration, the Hertz elliptical contact patch is first nondimensionalized into a unit circle
and then discretized into several arch blocks with each block represented by a particle in
its center, as shown in Figure 2. The arch division method ensures that there is no error
in meshing the contact surface. Assuming that the dimensionless circle is divided into
R parts in the radial direction and N parts in the circumferential direction, respectively,
the dimensionless coordinates and area of the (i,j) arch block are respectively represented
as follows: 

Xi,j = Rj cos θi
Yi,j = Rj sin θi

D(i, j) = π
[(

Rj/R
)2 −

(
Rj−1/R

)]
/N

(1)

where i is the circumferential number, j is the radial number, and Rj and θi are the radius
and polar angle of the (i,j) block, respectively. The dimensionalized coordinates and area of
the (i,j) block are obtained using xi,j = aXi,j, yi,j = bYi,j and di,j = abDi,j, where a and b are the
elliptical semimajor and semiminor axes, respectively.

Considering the effects of the slide-to-roll and spinning of the ball, the longitudinal
and lateral sliding velocities of the (i,j) block are expressed as follows:{

∆vx = (rb − δ − δr)
(
−ωby sin α + ωbz cos αi

)
+ ωiRc − φy

∆vy = p(rb − δ − δr)ωbx + φx
(2)

where rb is the radius of the ball; δ is the Hertz contact deformation; and ωbx, ωby and
ωbz are the rotational speed components of the ball with respect to the xb-axis, yb-axis and
zb-axis in the moving coordinate system, respectively. δr, Rc and p are denoted as follows:

δr = rc −
√

rc2 − y2 (3){
Rc = rp − rb cos αi for inner contact
Rc = rp + rb cos αo for outer contact

(4)

{
p = 1 for inner contact
p = −1 for outer contact

(5)

where rc = 2rbRi/(rb + Ri), Ri is the radius of the inner race curvature, rp is the pitch radius,
and αi and αo are the inner and outer contact angles, respectively.

Kragelskii’s [4] traction model of Ag coating under a contact pressure of 2.5 GPa is
developed on the basis of Liu’s [10] experimental data, as shown in Figure 3a. The traction
model depicts a relationship between the COF and the relative sliding velocity of a contact
particle, as shown in Equation (6):

µ = (A + B∆v)e−C∆v + D (6)

where A, B, C and D are traction parameters without physical significance, µ is the traction
(friction) coefficient, and s is the relative sliding velocity. The stresses px and py of each
particle can be obtained by combining Equation (1) with Equation (6) and applying the
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Amontons–Coulomb friction law. Consequently, the traction force and moment of a contact
patch can be calculated by the following integration:

Tx =
s

c px(x, y)dxdy
Ty =

s
c py(x, y)dxdy

M =
s

c
[
−ypx(x, y) + xpy(x, y)

]
dxdy

(7)
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Figure 1. Coordinate system setup: (a) bearing inertia coordinate system; (b) moving coordinate
system attached on the geometry center of the balls; (c) local contact coordinate systems.
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lubrication coating [10]; (b) traction curve under 440C-440C unlubricated condition [7].
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2.2. Modelling of Localized Geometrical-Frictional Defects

Suppose the outer ring is fixed, the compatibility condition, that is the displacement
relationship between the geometric center of the curvature centers of the raceways, is
shown in Figure 4a, where the black lines represent the displacement relationship before
deformation, while the red lines represent the displacement relationship after deformation.
Based on the compatibility condition, the inner and outer contact angles of the ball can be
deduced as follows:

αi = arctan
A0

i sin α0 + zi − zb

A0
i cos α0 + yi − yb

(8)

αo = arctan
A0

o sin α0 + zb

A0
o cos α0 + yb

(9)

where A0 is the initial distance between the curvature centers of the inner and outer
raceways, α0 is the initial contact angle, and yi and zi are the displacements of the inner
race in the yb and zb directions of the moving coordinate system, respectively.
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The spalling in the raceway can be considered as a reduction in the radius of the
curvature of the groove, which actually changes the initial contact angle of the balls, and
the expression for the initial contact angle of the balls considering the spalling is derived
based on the geometrical relationship shown in Figure 4b as follows:

α0
w = cos

(
1 − ℜo +ℜi − Ro + Ri

ℜo +ℜi − Db + dw

)
(10)

where Ri/o is the inner/outer ring radius, Db is the ball diameter, i/o is the inner/outer
curvature radius, and dw is the depth of the local defect fault.

As shown in Figure 5, when the solid-lubricant coating is partially worn, there will
be a change in the radius of the raceway curvature, thus changing the initial contact angle
of the ball. However, when the coating is completely peeling off, it also leads to a change
in the traction coefficient at localized defects in the raceway, which in turn affects the
instantaneous traction force and introduces additional shocks to the bearing. Here, when
the ball reaches the spalling defect, a 440C-440C contact traction curve from [7] under the
rolling velocity of 12 m/s is used to replace the original lubricated traction curve, which is
shown in Figure 3b. The traction parameters under Ag-coated and unlubricated conditions
are listed in Table 1.
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Table 1. Traction parameters under Ag-coated and unlubricated conditions.

Traction Parameters Ag Coated [10] Unlubricated [7]

A −0.1082 −0.2221
B 0.0510 1.4045
C 0.5613 10.8773
D 0.1082 0.2221

2.3. Dynamic Differential Equations of the Bearing

The ball bearing dynamic model is mainly composed of partial differential equations
of each bearing element. Assuming the outer ring is fixed in a housing, in order to simulate
the measurement of the vibration of the housing by the sensor, the radial translational
DOFs of the X and Y directions are considered for the outer ring, which are subjected
to the constraints of stiffness and damping from the housing. The inner ring has three
translational DOFs and is subjected to a certain rotational speed and axial and radial loads
as well as damping constraints. The six-DOF ball is subjected to contact forces, traction
forces, centrifugal forces, fluid drag forces, churning moments and gyroscopic moments.
The cage has only a rotational DOF with each pocket having elastic and damping forces in
all cage pockets. The stiffness and damping configuration of the ball bearing as a whole
and between the cage and balls are shown in Figure 6.
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Differential equations for the six-DOF ball are deduced as follows:

Mb
..
yb + Cb

.
yb = Tox − Tix + Fd + Fdc

Mb
..
zb + Cb

.
zb = −Qo cos αo + Qi cos αi − Toy sin αo − Tiy sin αi + Fc

Mbrp
..
xb + 2Mb

.
ybωbm = Qo sin αo + Qi sin αi + Toy cos αo + Tiy cos α

Ib
..
θbx = Mox − Mix − Mgx + Mcx + Mcx

Ib
..
θby = −Mzo cos αo + Miz cos αi − Miy sin αi − Moy sin αo − Mgy + Mcy

Ib
..
θbz = −Moz sin αo + Miz sin αi + Miy cos αi + Moy cos αo + Mcz

(11)

where subscripts i and o represent the inner and outer contact, respectively; Tx and Ty are
the longitude and lateral traction forces, respectively; Q is the Hertz contact force between
the ball and the raceway; Fd is the fluid drag force of the ball; Fc is the centrifugal force
of the ball; Mz is the ball–raceway spinning traction moment; Mg is the ball gyroscopic
moment; Mcx/cy/cz is the ball churning moment; and Fdc is the ball–cage collision force.
The calculation methods of the fluid drag force and churning moment can be found in [17].

ACBBs are generally subjected to axial, radial and moment loads, which means that
the inner ring will have translational and torsional displacements [38–40]. However, since
the CSLBBs are mainly responsible for carrying the axial and radial loads of the turbopump,
it is assumed in this paper that the inner ring of the bearings has only three translational
DOFs and no torsional DOF. The three-DOF differential equations for the inner ring are
formulated as follows: 

Mi
..
xi + Cir

.
xi + Fix + Fx = 0

Mi
..
yi + Cir

.
yi + Fiy + Fy = 0

Mi
..
zi + Ciz

.
zi + Fiz + Fz = 0

(12)

where Mi is the mass of the inner ring; Ci is the damping of the inner ring; Fx, Fy and Fz are
the applied loads along the X, Y and Z directions, respectively; Fix, Fiy and Fiz are resultant
of the forces of the inner ring in the moving coordinate system along the xb, yb and zb
directions, respectively, which can be calculated using a transformation matrix [16].

The differential equations of the outer ring with two DOFs are given as follows:{
Mo

..
xo + Co

.
xo + Koxo + Fox = 0

Mo
..
yo + Co

.
yo + Koyo + Foy = 0

(13)

where Mo, Ko and Co are the mass, stiffness and damping of the outer ring, respectively.
Since the cage pocket has a certain clearance, elastic and damping forces are generated

only when the ball comes into contact with the cage pocket. Assume that the rotational
displacement of a certain ball is θm, the rotational displacement of the cage is θc, the angular
difference between the two is ∆θ, and rp is the ball pitch radius, the ball–pocket contact
force can be obtained as follows:

Fk
cb =

{
0 |∆θ| < θcl

Kcbrp∆θ + Ccbrp∆
.
θ |∆θ| > θcl

(14)

where Fcb
k is the contact force between the k-th ball and the corresponding cage pocket, Kcb

and Ccb are the contact stiffness and damping, respectively, and θcl is the pocket clearance.
The differential equation for cage rotation is expressed as follows:

Ic
..
θc = Mch +

Nb

∑
k=1

Fk
cbrp (15)

where Ic is the polar moment of inertia of the cage.
The dynamic model is solved by the fourth-order Runge–Kutta method with the step

size of 1 × 10−6 s, and the initial value of the iteration is given by a tribo-quasi-static model
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that considers the solid-lubrication traction curve and the six-DOF movement of the ball
based on the method given in [16].

3. Model Validation

To validate the proposed tribo-dynamic model, the vibration data from a cryogenic
ball bearing test rig are analyzed. The structure of the test rig is shown in Figure 7 in which
the tested bearing-rotor system is driven from static to a high rotational speed by the air
turbine and the bearing is submerged in LN2 fluids. The geometry parameters of the tested
bearing can be found in [17]. The analysis of the tested data is given in Figure 8.
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Figure 7. The cryogenic ball bearing vibration tester: (a) actual photograph; (b) schematic diagram [2].
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signal; (b) rotational speed of the inner ring; (c) FFT spectrum of the stable signal.

As shown in Figure 8a, there is a significant variation in the acceleration signal. Based
on the inner-ring rotational data shown in Figure 8b, the bearing first experienced an
acceleration process from 0 s to 90 s and then kept a stable speed of 14,000 rpm. It can
be found that the vibration amplitude boomed at the beginning as the rotational speed
sharply increased from zero to 10,000 r/min. From 30 s to 56 s, the vibration amplitude
stayed relatively stable as the rotational speed slowly increased. However, the vibration
signal experienced significant fluctuations due to the adjustment of the loading conditions
of the test rig from 56 s to 90 s. Subsequently, the rotational speed and operating conditions
kept constant, and the amplitude of the vibration signal remained relatively stable.

To obtain the frequency components of the tested bearing, an FFT analysis is performed
on the stable signal from 120 s to 150 s. It can be observed in Figure 8c that there are
two frequency components in the signal: 237 Hz and 1254 Hz and their octaves. While



Lubricants 2024, 12, 84 10 of 20

the 237 Hz component is the inner-ring rotational frequency, the 1254 Hz component
corresponds to the outer-ring defect frequency. Therefore, the cage rotational frequency can
be calculated as 1254/13 = 96.45 Hz, and the average cage rotational speed is 5787 r/min.

Based on the experimental loads (Fr = 20,000 N, Fa = 40,000 N), the dynamic and static
responses at a rotational speed of 14,000 r/min are calculated using the classical Jones–
Harris (J–H) quasi-static model [14,15], the tribo-quasi-static model and the tribo-dynamics
model proposed in this paper. The average values of some selected parameters of all the
balls are compared in Table 2.

Table 2. Results of different theoretical models.

Items J–H Model
(Outer Raceway Control) Tribo-Quasi-Static Model The Proposed

Tribo-Dynamic Model

Inner-ring radial displacement yi/m 2.2070 × 10−5 2.6447 × 10−5 3.0366 × 10−5

Inner-ring axial displacement zi/m 1.7693 × 10−4 1.7629 × 10−4 1.4250 × 10−4

Internal contact angle αi/◦ 26.5825 28.2436 28.3543
External contact angle αo/◦ 19.8722 17.4971 16.0600

Attitude angle α/◦ 16.8767 26.6790 26.2248
Yaw angle β/◦ 0 0.4272 0.4987

Ball rotation component ωbx/(r/min) 0 254 299
Ball rotation component ωby/(r/min) 11,129 17,197 16,936
Ball rotation component ωbz/(r/min) 36,693 34,219 34,379

Ball orbital rotation ωbm/(r/min) 5896 5843 5834

According to Table 2, it can be found that the errors of the cage rotational speed of the
theoretical models are 1.88%, 0.97% and 0.81%, respectively, compared with the experiment.
Since the J–H model does not consider the effect of fluid, the calculated ball rotational
speed is higher than that of the other two models. In addition, the limitations of the degrees
of freedom and the lack of friction prevent the J–H model from accurately calculating the
contact, attitude and yaw angles of the balls. In particular, as the gyroscopic moments of
the balls are assumed to be completely offset by friction force, the J–H model is unable to
compute the correct yaw angle and the ball rotation component ωbx.

4. Dynamic Behavior of the Bearing under Healthy Condition

Based on the working conditions listed in Section 3, the dynamic response of the
bearing under healthy conditions is studied in this section. It can be observed from
Figure 9a,b that the vibration amplitude is approximately 2.7 m/s2 and that the inner-ring’s
trajectory is smooth, which means that there is no obvious impact in the raceways of the
bearing. However, the cage rotational speed is not stable. It can be observed in Figure 9c
that the time interval of each fluctuating period is approximately 7.92 × 10−4 s, which
corresponds to a frequency of 1263 Hz, which is the passing frequency of all the balls.
Figure 9d shows the ball–cage pocket collision force of the No. 13 ball from which it can be
observed that the ball hits the cage pocket in a time interval of 0.01025 s, which corresponds
to a frequency of 97.56 Hz, which indicates the cage rotating frequency.

To further study the ball–cage interaction mechanism, polar plots of the ball’s behavior
in an entire orbital rotation of the ball are given in Figure 10. From Figure 10a, it can be
found that the ball–cage collision behavior mainly occurs at the range of 210~300◦ of the
ball’s azimuth position. Since the inner ring is subjected to a radial load of 20,000 N, which
points towards the positive x position, the azimuth range of −90~90◦ is considered as a
heavily loaded zone, and the 90~270◦ is a slightly loaded zone. As shown in Figure 10b,
the ball–inner contact force increases gradually from 180◦ to 360◦, which means that the
ball–cage collision phenomenon occurs during the process of the ball entering the heavy-
loaded zone from the lightly loaded zone. It can be observed that the ball has a higher
orbital speed at the slightly loaded zone and a lower orbital speed at the heavily loaded
zone, between which there is a fluctuation in the range of 210~300◦.
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Figure 9. Dynamic response of the bearing under healthy conditions: (a) outer-ring vibration
acceleration; (b) inner-ring trajectory; (c) cage transient speed; (d) ball–cage collision force.
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Due to the need for thrust provided by the ball to overcome the fluid churning moment,
the ball will collide with the cage pocket when the ball’s orbital velocity reaches a certain
level. However, the collision force of the cage is not the only reason for the decrease in the
ball’s orbital speed in the heavily loaded zone. From Figure 10c, it can be observed that,
even if the ball no longer contacts the cage pocket, its orbital speed continues to decrease.

The above analysis indicates that, when the ball moves from the slightly loaded zone
to the heavily loaded zone, it collides with the cage pocket as its orbital speed is larger than
that of the pocket. However, as the ball–raceway contact forces increase, the ball’s orbital
speed will decrease gradually; thus, the orbital speed of the ball becomes no longer larger
than that of the cage pocket and finally terminates the collision.
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5. Numerical Study of the Fault Mechanism

In this section, the outer raceway geometrical-frictional, solid-lubrication defects are
implanted into the proposed CSLBB tribo-dynamic model. To study the tribo-dynamic
mechanism of the CSLBB, different types of dynamic response, including dynamic acceler-
ation signals, cage transient rotational speeds, frequency spectrums, the traction forces, etc.,
under a series of quantified defects are compared.

5.1. Effect of the Local Defect Depth

Figure 11 shows the time-domain and frequency-domain response of the CSLBB with
a local defect on the outer race coating. The width of the defect is L = 5 mm, and the depth
of the defect is D = 2 µm, while the total thickness of the Ag lubrication coating is 10 µm.
As shown in Figure 11a, the acceleration amplitude of the outer ring is 21 m/s2, which is
almost seven times that under healthy conditions. As the signal fluctuates regularly, two
repeated cycles are plotted in Figure 11b. It can be observed in Figure 11b that the period
of each cycle is 0.0103 s, which is equal to the rotational period of the cage. In addition,
it can be observed from Figure 11b that there are 13 pulses in each cage period with each
pulse having a time interval of 7.92 × 10−4 s, which corresponds to the outer-ring fault
frequency of 1263 Hz. To further study the fault pulse, a detailed plot of the pulse is given
in Figure 11c, where it can be observed that the fault pulse is actually a double-pulse with a
time interval of 8 × 10−5 s, which is equal to the time for the ball to pass through the defect.
As demonstrated in Section 2.3, a defect in the raceway will lead to a sudden change in the
contact angle of the ball; thus, the defect will bring an impact to the bearing when the ball
moves into and out of the defect zone. Therefore, the time interval of the double-pulse can
be a potential way to indicate the defect width.
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Figure 11. Time-domain and frequency-domain diagrams of the outer-ring vibration signal:
(a) the whole time-domain signal; (b) detailed time-domain signal; (c) detailed time-domain signal;
(d) Hilbert envelop spectrum of the acceleration signal.
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As illustrated in Figure 11b, the amplitude of the fault double-pulse varies with
the period of cage rotation, which means that the fault pulse signal may be amplitude
modulated by the cage frequency. Therefore, to reveal the frequency characteristics of
the fault, the vibration signal is processed by the fast Fourier transform (FFT) after a
Hilbert demodulation, as shown in Figure 11d. As displayed in the envelope spectrum,
there are only two types of frequency components in the signal: the cage frequency of
95 Hz and the outer race fault frequency of 1265 Hz, which is the product of the ball pass
frequency and the number of balls [41,42] and their octaves. Among the two frequency
components, the cage frequency has the largest amplitude; so, it is the most obvious wave
in Figure 11a. In addition, the fault frequency is accompanied by a 95 Hz sideband, which
is a typical characteristic of the amplitude modulation phenomenon, which validates the
above inference.

To study the effect of defect depth on the fault behavior of CSLBBs, the dynamic
response under a defect depth of 0 (healthy), 2 µm, 4 µm, 6 µm, 8 µm and 10 µm is obtained
based on the proposed tribo-dynamic model. Figure 12 shows the peak values of the fault
double-pulse with different defect depths, based on which, the influence of the defect
depth can be divided into three phases. The first phase is the coating wear phase; it can
be observed that, when the defect depth is smaller than 10 µm, the peak value increases
linearly with the increase in defect depth with an average gradient of 9 m/s2 per micrometer.
The second phase is the coating peeling phase, where the peak value grows sharply once
the defect depth reaches 10 µm. It is illustrated in Figure 12 that the gradient between 8 µm
and 10 µm is as high as 36 m/s2 per micrometer, which is four times larger than when the
defect depth is below 10 µm. The third phase is the bearing wear phase in which the defect
is caused by the peeling of the bearing material. It can be observed in the third phase that
the gradient of the curve returns to 9 m/s2 per micrometer.
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Figure 12. Peak values of the double-pulse vibration amplitudes under different defect depths.

In summary, the peak value of the double-pulse changes almost linearly with the
increase in the defect depth, and the sudden rise of the gradient can be an indicator of the
lubrication condition. However, as the peeling process of the local coating may be very fast,
the capture of time-domain vibration signals must be sufficiently accurate.

From the comparison of the outer traction force under healthy and defective conditions
with a depth of 2 µm, 8 µm and 10 µm in Figure 13, it can be observed that the defect
will cause an impact in the traction force. As the impact amplitude increases with the
increasing defect depth, the traction force soars to be almost five times larger than the
original value at the moment that the ball enters the geometry-frictional defect. When the
defect depth is within 10 µm, the fault excitation is a pure geometry one; thus, it influences
the ball–raceway contact force, as shown in Figure 14b. However, from Figure 14b, it can
also be observed that the frictional excitation counterpart has no obvious effect on the
ball–cage collision force, ball–raceway contact force and ball orbital speed.
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Therefore, it can be concluded that, when the solid-lubricating film peels off, the severe
vibration of the bearing is not caused by the interaction between the ball and the cage or
raceways but by the increased traction force directly acting on the raceway; the inner- and
outer-ring trajectories shown in Figure 15 are proof.
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5.2. Effect of the Local Defect Widths

To explore the influencing mechanism of defect width on the tribo-dynamic perfor-
mance of CSLBBs, the responses of the bearing under a defect depth of 10 µm and widths
of 5 mm, 10 mm, 15 mm, 20 mm and 25 mm are calculated.

The blue curve in Figure 16 shows the peak value of the defect double-pulse under
different defect widths, which indicates that the defect width has little effect on the vibration
amplitude of the bearing. Instead, the time interval of each double-pulse increases linearly
with the increase in the defect width, as shown in the pink curve in Figure 16. It can be
observed in Figure 17 that the time intervals for 5 mm, 10 mm, 15 mm, 20 mm and 25 mm
are 7.9 × 10−5 s, 1.62 × 10−4 s, 2.45 × 10−4 s, 3.25 × 10−4 s and 4.10 × 10−4 s, respectively.
In addition, as the defect width changes the time interval, there is still a change in the
frequency spectrum. As illustrated in Figure 17b, the one-time octave of the outer-ring
fault frequency of 1265 Hz is the most significant component when the defect width is
between 5 mm and 15 mm. However, the two-time octave becomes the most significant
one when the defect width is larger than 20 mm. Therefore, while the time interval of the
double-pulse can be used to identify a certain defect width, the frequency spectrum can be
applied to assess the rough range of it.
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Figure 17. The double-pulse and frequency response of the signal under different defect widths:
(a) the double-pulse impact; (b) Hilbert envelope frequency spectrum of the signal.

To reveal the influencing mechanism of the defect width, traction force and ball–
cage/race interaction are illustrated in Figures 18 and 19. The outer longitude traction force
under a defect width of 5 mm, 15 mm and 25 mm is displaced in Figure 18. While the defect
width has little effect on the impact amplitude of the traction force, the increasing defect
width increases the duration of the impact. As shown in Figure 19, the defect width has an
obvious influence on the phase of the ball–cage collision force, ball–raceway contact force
and the ball orbital speed. As the defects studied in this section are all geometry-frictional
excitations, the increased width of the defect increases the ball’s orbital speed, leading the
ball to collide with the cage in advance. As shown in Figure 19b, although there is just one
defect on the outer raceway, the contact force of the ball fluctuates several times in a whole
orbital rotation. As already analyzed in Section 5.2, this is because the fault excitation
significantly changes the dynamic response of the race; therefore, whenever a ball passes
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through the fault area, it will significantly affect the behavior of the race, thereby affecting
all other balls.
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6. Conclusions

Aiming to reveal the dynamic mechanism of the cryogenic solid-lubricated ball bearing
in turbopumps of liquid rocket engines, a tribo-dynamic model is developed in this paper.
The model considers the solid-lubricated traction, six-DOF motion of the ball and the
local geometrical-frictional excitations of the solid-lubrication coating. To explore the fault
mechanism, tribo-dynamic responses are studied under healthy and defective conditions.
The following conclusions are drawn from this study:

(1) The low-temperature fluid environment of turbopump ball bearings plays an
important role in maintaining the stability of the cage. Due to the effect of fluid churning
resistance, the cage requires the thrust of the ball to keep its rotation, which is located in the
area where the ball transitions from the slightly loaded zone to the heavily loaded zone.

(2) The change in the amplitude of the bearing vibration acceleration and its derivative
can be used as a reference to determine the depth of defects of the cryogenic solid-lubricated
ball bearing. In general, the vibration amplitude has a linear variation relationship with
the defect depth. However, when the solid-lubrication coating is locally peeling off, the
vibration of the bearing increases dramatically. Therefore, monitoring the rate of increase
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in vibration acceleration amplitude is critical for determining the lubrication status during
the gradual wear of the solid lubrication of the bearing.

(3) The geometrical-frictional failure excitation of solid-lubrication coatings signif-
icantly increases bearing vibration by directly affecting the traction force between the
balls and the raceways. Therefore, whenever a ball passes through the fault area, it will
significantly affect the behavior of the race, thereby affecting all other balls.

(4) The width of the defect can be diagnosed by monitoring the double-pulse time
interval and spectrum of the bearing vibration signal. An increase in the width of the defect
lengthens the time interval between the entry and exit of the balls from the defective impact.
When the defect width is lower than 15 mm, the 1× octave of the outer-ring fault frequency
in the frequency spectrum is more obvious, while when the fault width exceeds 20 mm, the
2× octave is more obvious.
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Nomenclature

Symbols Meaning Symbols Meaning
a Elliptical semi-major axis Mo Outer-ring mass
ACBB Angular contact ball bearing N Number of circumference divisions
A, B, C, D Traction curve parameters O-XYZ Inertial coordinate system
b Elliptical semi-minor axis ob-xbybzb Moving coordinate system

CSLBB
Cryogenic solid-lubricated ball
bearing

px/y
Longitude and lateral traction
stresses

Cb Ball damping Qi/o Inner/outer contact force
Ccb Ball–cage contact damping rp Ball pitch radius
Ci Inner-ring damping R Number of radial divisions
Co Outer-ring damping Rj Radius of the (i,j) block
Db Ball diameter rp Ball pitch radius
dw Wear fault depth Ri/o Inner/outer ring radii
DOF Degree-of-freedom Tx/y Longitude/lateral traction force
Di,j Area of the (i,j) arch block xb, yb, zb Displacement of the ball
Fc Ball centrifugal force xi, yi, zi Displacement of the inner ring
Fcb

k Ball–cage pocket contact force (Xi,j,Yi,j) Dimensionless coordinates
Fd Ball fluid drag force α0 Initial contact angle
Fdc Ball–cage collision force αi/o Inner/outer contact angle
Fix/iy/iz Resultant of forces of the inner ring δ Hertz contact deformation
Fx/y/z Inner-ring applied load δr, Rc, p, rc Differential contact parameters
Ib Polar moment of inertia of the ball ∆θ Ball–cage angular difference
Ic Polar moment of inertia of the cage ∆vx/y Sliding velocities of the (i,j) block
Kcb Ball–cage contact stiffness θi Polar angle of the (i,j) block

Ko Outer-ring stiffness
θbx, θby,
θbz

Polar angle of the ball
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M Traction moment θc Cage rotational displacement
Mb Ball mass θcl Cage pocket clearance
Mch Cage churning moment θm Cage angular position
Mcx/cy/cz Ball churning moment θm/c Ball/cage pocket azimuth position

Mgx/gy/gz Ball gyroscopic moment ωbx/y/z
Rotational speed components of the
ball

Mi Inner-ring mass Ri/o Inner/outer curvature radii
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