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Abstract: Ensuring precise prediction, monitoring, and control of frictional contact temperature is
imperative for the design and operation of advanced equipment. Currently, the measurement of
frictional contact temperature remains a formidable challenge, while the accuracy of simulation
results from conventional numerical methods remains uncertain. In this study, a PINN model
that incorporates physical information, such as partial differential equation (PDE) and boundary
conditions, into neural networks is proposed to solve forward and inverse problems of frictional
contact temperature. Compared to the traditional numerical calculation method, the preprocessing
of the PINN is more convenient. Another noteworthy characteristic of the PINN is that it can
combine data to obtain a more accurate temperature field and solve inverse problems to identify
some unknown parameters. The experimental results substantiate that the PINN effectively resolves
the forward problems of frictional contact temperature when provided with known input conditions.
Additionally, the PINN demonstrates its ability to accurately predict the friction temperature field
with an unknown input parameter, which is achieved by incorporating a limited quantity of easily
measurable actual temperature data. The PINN can also be employed for the inverse identification of
unknown parameters. Finally, the PINN exhibits potential in solving inverse problems associated
with frictional contact temperature, even when multiple input parameters are unknown.

Keywords: frictional contact temperature; PINN; inverse parameter identification; unknown input
thermal parameters

1. Introduction

Friction is mostly dissipated as heat. The temperature rise generated by frictional
heat plays a crucial role in determining the operating state of high-performance equip-
ment [1]. Elevated frictional contact temperature has the potential to cause lubrication film
breakdown, to diminish material functionality, or to intensify friction and wear between
components, ultimately impacting the overall performance, lifespan, and reliability of the
equipment [2—4]. Therefore, it is imperative to accurately evaluate the frictional contact
temperature to guarantee the secure functioning of equipment.

Friction temperature can be either measured by experiments [5] or calculated by nu-
merical simulations. For experimental methods, temperature in the vicinity of the contact
surface can be captured by using infrared thermography or thermocouples, while directly
measuring the temperature at the contact interfaces remains a challenge. There are various
numerical methods available for temperature estimations, including the finite element
method, finite volume method, and finite difference method [6-10]. These traditional
numerical techniques have undergone significant development and have been proven to
be successful in simulating friction temperature fields. However, an inherent challenge
associated with these methods lies in the precise determination of the boundary condi-
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tions of the simulation domain, leading to disparities between the simulated and actual
temperatures [11].

With the development of artificial intelligence (Al), deep learning methods have been
successfully applied in industrial manufacturing [12,13], computer vision [14,15], and
natural language processing [16,17]. In recent years, Al approaches have been studied in
relation to thermal problems in engineering. Peng [18] developed a data-driven model
for rapidly predicting steady-state convective temperature fields of complex geometries
based on convolutional neural networks. Zhu [19] used data-driven deep learning models
to study the thermal effects of batteries, which can forecast the temperature at certain times
and predict the temperature fluctuation of batteries for a long period. Numerous data-
driven deep learning methods have demonstrated impressive performance, but obtaining
a large amount of reliable data is a time-consuming and laborious task. Additionally, these
data-driven deep learning methods often exhibit limited generalization capabilities and
lack of universality.

The physics-informed neural network (PINN) combines deep learning with phys-
ical models and has been applied in many fields such as fluid mechanics [20,21], solid
mechanics [22,23], and heat transfer [24,25]. The PINN is gradually developing in the
field of tribology [26-31]. The PINN utilizes the robust fitting capacity of neural networks
to represent physical variables within the constraints of governing equations, boundary
conditions, and initial conditions. Compared to data-driven deep learning models, the
PINN can be trained even in the absence of sufficient data.

The PINN has several advantages over traditional numerical computation methods [32].
Firstly, it obviates the necessity for mesh generation, simplifying the preprocessing pro-
cedures and rendering them applicable to complex structures. Secondly, the PINN is
relatively efficient in handling high-dimensional problems, avoiding the dimensionality
catastrophe that plagues traditional numerical methods [33]. Finally, the PINN can combine
known actual data to solve inverse problems, such as identifying material parameters and
unknown boundary conditions [34-38]. Cai [39] used the PINN to obtain temperature
and velocity distributions under unknown thermal boundary conditions, a task that is
typically challenging for conventional numerical techniques. Go [40] proposed a model
for simulating real-time temperature fields based on the PINN, which is capable of accu-
rately estimating the temperature distribution and heat flux of a given heat source, even
with limited temperature data. A PINN-based hybrid thermal model was developed by
Liao [41], which utilizes partially observable data obtained by an infrared camera to predict
the temperature distribution and estimate the unknown material and process parameters
that are not directly observable. Zhang [42] divided the composite material into multi-
ple subdomains and then used PINN to acquire the temperature distribution. Pang [43]
proposed a PINN approach for assessing the heat generation rate of lithium-ion batteries,
and the experimental findings demonstrated that the proposed PINN approach exhibits
favorable performance in estimating the heat generation rate of batteries.

In order to obtain the friction temperature field, traditional numerical methods mainly
consider the heat transfer process under specified boundary conditions, such as heat flux,
temperature, and convection. However, determining the heat partitioning coefficient (HPC)
and convective heat transfer coefficient (CHTC) directly presents a significant challenge.
To overcome this challenge, the present study employs the PINN to simulate the friction
heat transfer process. The PINN model is able to effectively capture unknown parameters,
including the HPC and CHTC, in combination with available data. Therefore, the PINN
can not only address the forward problem of frictional contact temperature but can also
perform inverse evaluations of unknown input parameters.
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2. Theory and Methods
2.1. Heat-Transfer Theory

The transient heat conduction differential equation can be expressed as
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where T is the temperature as a function of time ¢ and spatial coordinates x, y and z, k is
the thermal conductivity, p is the density, c is the specific heat capacity, and g is the energy
generated per unit volume.

When the internal heat source is not considered and only the two-dimensional steady-
state heat transfer phenomenon is analyzed, Equation (1) can be expressed as
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The boundary conditions of heat transfer problems can be categorized into three
types: the Dirichlet boundary condition, the Neumann boundary condition, and the Robin
boundary condition.

The Dirichlet boundary condition enforces a specific temperature at the boundary and
can be expressed as follows:

Tw=T 3)

where T, is the temperature of the boundary.
The Neumann boundary condition imposes a heat flux on the boundary and can be

expressed as follows:
oT
k—=| =4 (4)
on lw
where g is the heat flux imposed on the boundary.
The Robin boundary condition can be expressed as follows:

oT
_kﬁ

= W(Ty — To) + sa(Tg, - Tg) )
w
where h is the CHTC at the surface, Ty, is the temperature of the boundary, ¢ is the radi-

ant emissivity of the component, o is the Stefan—Boltzmann constant with the value of
5.699 x 1078 W/m?2-K*, and Tp is the ambient temperature.

2.2. Frictional Contact-Temperature Simulation Method

Figure 1a illustrates the friction process between the two components. The total heat
flux at the interface during the friction process is determined by the friction force and
sliding speed. The total heat flux at the friction interface will be divided into two parts, in
which one portion flows into the upper sample, and the remaining portion flows into the
lower sample.

When the HPC is given, the friction heat transfer process can be simplified. As shown
in Figure 1b, the simulation of frictional contact temperature can be simplified to the heat
conduction process of the upper sample, which is influenced by the partial total heat flux
and other boundary conditions. The heat flux entering the contact surface of the upper
sample can be represented as follows:

Jup = &qtotal (6)

where ;44 is the total heat flux at the friction interface, g, is the heat flux flowing into the
upper sample, and « is the HPC.

When the heat flux and other boundary conditions are given, the temperature distri-
bution resulting from friction can be determined by solving Equation (2).
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Figure 1. Friction heat transfer process. (a) Overall model of frictional heat transfer. (b) Simplified
model for frictional heat transfer.

2.3. PINN Theory and Method

The PINN model incorporates essential physical information, such as partial differen-
tial equation (PDE) and boundary conditions, within a neural network framework. The
exceptional fitting capability of neural networks allows them to effectively learn and ap-
proximate physical field variables, such as temperature. The automatic differentiation
(AD) of neural networks allows for the direct derivation of differential terms in PDEs,
eliminating the requirement for numerical techniques to compute the differentials. The
PINN transforms the solution process for PDE with boundary conditions into a process
that minimizes the residual of the PDE and boundary conditions. The neural network
iteratively optimizes its parameters to ensure that the physical field variables satisfy both
the constraints of the PDE and boundary conditions simultaneously.

Figure 2 shows the procedure of simulating frictional contact temperature by the
PINN. In the initial step, as depicted in Figure 3, the collection points and actual data
points are sampled within the computational domain. Subsequently, the neural network
propagates forward to obtain the temperature of sampling points. For the second step,
backpropagation is performed to calculate the partial differential of T with respect to x, y
and 6, respectively, and the loss for each part can be computed. Finally, the optimization
algorithm is employed to update the parameters of the neural network, and the process is
iterated until the residual of the loss reaches its minimum value [34,35].

Update parameter: 0 +— @*
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Data points
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2
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Figure 2. Simulation of frictional contact temperature based on the PINN.
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Figure 3. Sampling of collection points and actual data points within the computational domain.

When dealing with the forward problem of frictional contact temperature, the bound-
ary conditions and material parameters of the computational domain are known, and the
loss function can be expressed as follows:

L= Lpde + Ly @)

where L is the total loss function, Ly, is the loss function of PDE, and Ly, is the loss function
of the boundary condition.

When certain boundary conditions or material parameters within the computational
domain are unknown, additional actual data need to be incorporated into the training of
the PINN to guide the neural network’s training process and facilitate the determination of
these unknown parameters. The temperature field predicted by the PINN must conform
to both the PDE and boundary conditions, but also needs to satisfy the constraints of the
actual data on the temperature field. The loss function can be expressed as follows:

L= Lpde + Lyc + Laata 8

where L, is the loss function of actual data.

During the optimization period, in addition to optimizing the parameters of the neural
network, the unknown parameter p also needs to be updated. The parameter p can be
unknown material parameters or the parameters representing boundary conditions, etc.
The parameters that need to be optimized become 6(w, b, p), where w is the weight of the
neural network, b is the bias of the neural network, and p is the unknown parameter that
needs to be updated.

Many studies [44-48] have identified an optimization imbalance problem between
different losses in PINN. This study employs the learning rate annealing method [49] to
adapt the weights of each loss function, thereby facilitating comprehensive optimization of
each individual loss. The total loss function can be expressed as

L= prpdg + wyLpe + wyLgatq ©)

where w), wy, and wy are determined by the learning rate annealing method.

In this research, the training of the PINN is performed using GPU acceleration, specifi-
cally on an NVIDIA® Tesla® V100-SXM2, and relies predominantly on the PyTorch library.
The detailed specifications of the GPU are provided as follows: GPU memory capacity:
32 GB, CUDA Cores: 5120, tensor cores: 640, single-precision floating-point performance:
15.7 TeraFLOPS, double-precision floating-point performance: 7.8 TeraFLOPS, FP16 tensor
core performance: 125 TeraFLOPS. We employ a fully connected neural network with 9 hid-
den layers and 30 neurons per layer. The parameters of the neural network are randomly
initialized by the Kaiming initialization method, the activation function used is swish, and
the Adam optimizer is used for optimization. The initial learning rate is 2 x 104, and
the value of the learning rate is automatically reduced when the loss no longer decreases
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within 100 iteration steps. To ensure complete convergence of the PINN, each neural
network underwent training for 30,000 iterations, with a training time of approximately
1 h on our computer. The initial weights of each loss function were w, = 0.1, w, = 0.12,
and w; = 0.4, respectively, and the loss function weights were updated every 300 iterations
during this process.

3. Frictional Contact Temperature Forward Calculation by the PINN

The forward calculation of frictional contact temperature by the PINN, as shown in
Figure 4a, primarily involves the calculation of heat transfer within the sample subjected to
known Neumann and Robin boundary conditions. The spatial distribution of collection
points is visualized in Figure 4b, illustrating the random selection of 10,000 points within
the computational domain, with an additional 500 points collected at each boundary. It is
imperative that the temperature of all collection points within the computational domain
needs to satisfy the PDE, while the temperature of the boundary collection points must
satisfy the specified boundary conditions.

Heat flux
11111} 1.0

0.8

0.6

0.4

0.2

e Sample points |

0.0

) 000 025 050 075 1.00
Convective heat transfer X

(a) (b)

Figure 4. (a) Boundary conditions of forward calculation. (b) Sampling position of collection points.

The basic parameters of the simulation are presented in Table 1. This study performs
four distinct sets of experiments, each involving different heat flux conditions, with the aim
of simulating frictional contact temperature across a range of operational scenarios. The
simulation results obtained by the PINN were compared with the actual temperature field
distribution simulated by Comsol. The simulation accuracy of the PINN was quantified
by the mean relative error (MRE). Figure 5a,b represent the simulation results obtained by
the PINN and Comsol, respectively, and Figure 5c represents the relative error distribution
of the PINN. Based on the experimental results, it is evident that the PINN is capable of
accurately simulating frictional contact temperature. The MRE for various operational
conditions is presented in Table 2.

Table 1. Basic parameters for frictional contact temperature forward calculation.

Heat Flux CHTC Ambient X, Y Thermal
W/m?2 W/ (m2 K) Temperature Length Conductivity
°C m W/(mK)

(25, 50, 75, 100) 10 20 1 1
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Figure 5. Temperature field results and relative errors. (a) Simulation results of the PINN. (b) Actual
temperature field distribution simulated by Comsol. (c) Relative error of the PINN.

Table 2. MRE of the PINN and the PINN with actual data under different experimental conditions.

Hss; Flzux PINN PINN with Actual Data
m

25 0.008% 0.006%

50 0.013% 0.009%

75 0.019% 0.008%

100 0.012% 0.007%

The PINN can not only perform forward calculation under the constraints of PDE
and boundary conditions, but can also be combined with actual data to assist the training
process. Figure 6a,b illustrate the random selection of 40 actual data points within the
computational domain, which were subsequently incorporated into the training process
of the PINN. The MRE of the temperature field under various experimental conditions is
presented in Table 2. Figure 6¢,d depict the convergence curve of the PINN and PINN with
actual data. According to the experimental results, it can be observed that the convergence
rate of the PINN is relatively slower when actual data are incorporated into its training
process compared to the convergence rate of the PINN without actual data. However,
Table 2 reveals that the incorporation of actual data into the training process of the PINN
enhances its predictive accuracy.
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Figure 6. Actual data sampling and MRE convergence process. (a,c) represent the sampling position
of actual data points and MRE convergence process when the heat flux is 50 W/m?. (b,d) are the
sampling position of actual data points and MRE convergence process when the heat flux is 100 W/m?.

The slower convergence rate of the PINN with actual data may be attributed to a
multitude of factors. After incorporating actual data, the optimization problem of the PINN
becomes more complex. As the complexity of the model increases, the optimization process
becomes challenging during the initial phase. Furthermore, the actual data will constrain
the optimization direction of the PINN so that the model does not optimize along the
fastest direction that satisfies the PDE and boundary conditions during the optimization
process. However, when actual data are incorporated, the model can be further optimized
in a favorable direction.

4. Frictional Contact Temperature Inverse Calculation by the PINN

Traditional numerical methods are frequently employed to solve forward problems
in which the input parameters are well defined, and the physical field variables can be
obtained by physical equations. According to the aforementioned findings, while the PINN
has the capability to tackle the forward problem, its training process is time consuming
and it is not as well developed as traditional numerical methods. Therefore, the PINN does
not exhibit significant advantages compared to traditional numerical methods for solving
forward problems.

In general, simulation results may not precisely mirror real-world scenarios due to
disparities between the input conditions employed in simulations and the conditions that
exist in reality. One notable benefit of the PINN, in comparison to traditional numerical
methods, is its ability to effectively incorporate available actual data to address problems
with ambiguous input conditions.

When the HPC and CHTC are given, the calculation of the frictional contact temper-
ature can be simplified to the heat transfer process depicted in Figure 4a. In this section,
the PINN, combined with actual data, is utilized to solve the frictional contact temperature
under the ambiguous boundary conditions, and the HPC and CHTC can be obtained
inversely. The actual temperature is obtained by Comsol under the experimental conditions
shown in Table 3. The top boundary is the heat flux boundary condition, where the total
heat flux is 100 W/m? and the HPC is 0.5; the boundary conditions on the left, right, and
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bottom are convective boundary conditions, with CHTC of 10 W/ (mZ-K) and ambient
temperature of 20 °C. The experimental conditions and temperature distribution of the
actual temperature field are shown in Figure 7b.

Table 3. Actual experimental conditions.

Total Heat CHTC Ambient Thermal
Flux gEC) W/(m?-K) Temperature XY I;:ngth Conductivity
W/m? P’ (Left, Right, Bottom) °C W/(m-K)
100 0.5 10 20 1 1

Heat flux: =0.5¢¢ot a1

1133183
0.8*‘ - 40 E
0.6 35 §
> 30 &
0.41 &
+25 §
0.2 2
Convective heat transfer: h=10 %0 02 o2 08 08 10

(a) (b)

Figure 7. Actual temperature field. (a) Experimental conditions. (b) Actual temperature field distribution.

4.1. Inverse Problem for HPC

The total heat flux at the friction interface can be determined quite accurately based
on the operating conditions; however, obtaining the HPC between the friction pairs under
different working conditions poses a challenge [50]. Measuring the temperature at the
interface of friction is a challenging task, while acquiring the temperature of the non-contact
surface proves to be a comparatively straightforward task. The PINN can integrate the
aforementioned available information. Specifically, it utilizes measurable known data to
estimate the friction temperature distribution, even when the HPC is uncertain.

Figure 8a illustrates the boundary conditions of the simulation, where the HPC is the
unknown input parameter to be optimized, with an initial value of 0.3. Initially, 1-5 actual
data points are randomly collected within the computational domain and incorporated
into the PINN to guide its training process. After completing the training process, the
temperature distribution predicted by the PINN can be obtained, and the HPC can be
inversely determined. Figure 8b shows the MRE of the PINN and the HPC as various
datasets of actual data are incorporated into the training process. Accurate predictions of
the friction temperature field and HPC can be achieved by incorporating only two actual
data points into the training process. In addition, we also investigate the impact of actual
data positions on the precision of the PINN. As depicted in Figure 8c, we collected the
actual data from various positions, with the actual data from No.0 to No.10 gradually
approaching the heat flux boundary, then incorporated each of these actual data into
the training of the PINN. The predicted results of the PINN for actual data at different
positions are shown in Figure 8d. It can be found that the position of actual data has a
substantial impact on the prediction results of the PINN. As the actual data approaches
the heat flux boundary, the errors of temperature field and HPC decrease from No.1 to
No.4. The errors from No.4 to No.10 exhibit a tendency to remain consistent, and the HPC
closely approximates the actual value. As the actual data approach the heat flux boundary,
the temperature becomes increasingly influenced by the boundary. Consequently, the
parameters of boundary conditions can be more accurately identified by utilizing actual
data that are closer to the boundary. In Figure 8b, when actual data are incorporated into
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the training, the main reason for the relatively large error of MRE and HPC predicted by
the PINN is that these actual data are located far away from the heat flux boundary.

0.75 30
Heat flux: §=q¢otq1 @ ? [ JHPC
111111 TR
0.50 4 Il\ — -20,_\
9
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0.254
= = =] 0
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. 1 2 3 4 5
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Figure 8. Inverse problem for HPC. (a) Boundary conditions. (b) HPC and MRE of the PINN with
different total actual data. (c) Actual data sampling at different positions. (d) HPC and MRE of the
PINN with actual data from different positions.

4.2. Inverse Problem for CHTC

Directly measuring the CHTC is challenging, often relying on empirical formulas [51].
An alternative approach involves employing computational fluid dynamics to simulate the
fluid-solid coupling heat transfer process [52,53], however, this method is associated with
significant costs. The surface temperature of an object is a readily measurable parameter.
By incorporating these actual temperature data into the training of the PINN, the CHTC
can be determined inversely.

Figure 9a illustrates the boundary conditions of the simulation, where the CHTC
on the right boundary is the unknown input parameter to be optimized, with an initial
value of 6W/(m?-K). Figure 9b shows the MRE of the PINN and the CHTC as various
sets of actual data are incorporated into the training process. When only a single actual
datum is incorporated into the training process, the PINN shows a relatively high MRE,
but it exhibits superior performance in predicting CHTC. Furthermore, we also investigate
the effect of actual data sampled from diverse positions at the boundary on the accuracy
of the PINN. Figure 9c displays the positions of actual data at the convective boundary,
and Table 4 presents the actual temperature for each actual data. The predicted results of
the PINN for actual data at different sampling points are shown in Figure 9d, it can be
found that the position of actual data significantly affects the accuracy of the PINN. From
No.6 to No.10, the MRE of the PINN approaches its minimum value and shows signs of
stabilization. However, substantial errors were observed in the experiments up to No.5,
and the predictions of CHTC also exhibited significant discrepancies from the actual values.
It can be found from Table 4 that the temperature risesfrom No.1 to No.5 were very small
and close to the ambient temperature. Boundary conditions have minimal influence on
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the temperature at these specific points. Consequently, incorporating these points solely
into the training process makes it challenging to constrain the optimization process of the
PINN, resulting in poor accuracy when identifying unknown parameters.
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Figure 9. Inverse problem for CHTC. (a) Boundary conditions. (b) CHTC and MRE of the PINN with
different total actual data. (c) Actual data sampling at different positions. (d) CHTC and MRE of the
PINN with actual data from different positions.
Table 4. Actual temperature of each actual datum.
Actual Data Number No04 Nol No2 No3 No4 No5 No6 No7 No8 No9 No.l0

Temperature (°C)

20.2 204 20.6 20.8 21.2 21.6 22.1 22.8 23.8 25.3 28.2

4.3. Inverse Problem for Multiple Unknown Parameters

Based on the aforementioned results, it is evident that the PINN has the capability to
predict an unknown parameter by a limited amount of data. In real-world engineering
scenarios, it is common for multiple parameters to remain unknown or undetermined.
This section explores the application of the PINN when dealing with scenarios involving
multiple unknown parameters.

The experimental conditions are shown in Table 3. In the case of two unknown CHTCs
at the left and right boundaries, 1-5 actual data points are collected separately from the left
and right boundaries, as depicted in Figure 10a. These data points are then incorporated
into the training of the PINN. Figure 10b illustrates the MRE of the PINN and the two
CHTCs as various datasets of actual data are integrated into the training process. The
experimental findings demonstrate that by incorporating a limited quantity of actual data,
the PINN can effectively predict the friction temperature field and provide more precise
estimations for the actual values of two unknown CHTCs.
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Figure 10. Sampling and results of two unknown parameters. (a) Actual data sampling of two
unknown CHTCs. (b) Two CHTCs and MRE of the PINN with different total actual data.

In cases in which all CHTCs are unknown, the actual data sampling is shown in
Figure 11a. Figure 11b shows the MRE of the PINN and the three CHTCs as various
datasets of actual data are incorporated into the training process. It is evident that the
prediction error in the temperature field by the PINN, when dealing with three unknown
parameters, is significant. The PINN exhibits greater accuracy in predicting the CHTCs
at the left and right boundaries, while the prediction error for the CHTC at the bottom
boundary is comparatively larger. Figure 11c,d illustrate the results of the PINN in cases in
which all boundary input parameters are unknown. The temperature field predicted by the
PINN shows significant errors, and the accuracy of predicting the unknown parameters
at the four boundaries is also limited. Figure 12 and Table 5 present the temperature field
results and the MRE of the temperature field predicted by the PINN when all parameters
are set to their initial values, indicating that they are unknown. It is observed from Figure 12
and Table 5 that incorporating a limited quantity of actual data into the PINN significantly
reduces the prediction error of the temperature field, even in scenarios involving multiple
unknown boundary parameters.

Table 5. MRE of the PINN with different unknown parameters.

PINN with Different Three Unknown Four Unknown .y
. . Initial Parameters
Unknown Parameters with Parameters with .
without Actual Data
Parameters Actual Data Actual Data
MRE 0.03% 0.79% 5.16%

The PINN exhibits limited performance in solving inverse problems with multiple
unknown parameters. As the number of unknown input parameters increases, the solution
space expands into higher dimensions, resulting in a greater number of potential solutions.
Training neural networks on high-dimensional problems presents challenges, as they are
prone to trapping the neural network in local optima. On the other hand, the theoretical
research on the PINN is still in its early stages. There are a large number of large hyper-
parameters in the PINN, and the prediction of many unknown parameters may require a
better combination of hyperparameters. However, our experimental results demonstrate
that the PINN effectively enhances the accuracy of temperature field prediction by incor-
porating a limited amount of actual data, which is still difficult for traditional numerical
calculation methods.
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Figure 11. Results of multiple unknown parameters. (a) Actual data sampling of three unknown
CHTCs. (b) Three CHTCs and MRE of the PINN with different total actual data. (¢) HPC and
MRE of the PINN with four unknown parameters. (d) CHTCs and MRE of the PINN with four

unknown parameters.
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Figure 12. Temperature field predicted by the PINN. (a) Temperature field predicted by the PINN
with different unknown parameters. (b) Actual temperature field distribution. (c) Relative error of
the PINN.
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5. Conclusions

In this study, a PINN model was introduced to solve both forward and inverse prob-
lems associated with frictional contact temperature. In situations in which the input
boundary conditions are well defined, our study demonstrates that the PINN exhibits
exceptional predictive accuracy cross various operational scenarios. Additionally, incorpo-
rating actual data into the training of the PINN may modestly decrease the convergence rate
of forward problems while enhancing the prediction accuracy of the PINN. The maximum
MRE decreased by approximately 0.01% in our experiment.

When an input thermal parameter, such as HPC or CHTC, is unknown, the PINN
demonstrates the capability to accurately predict the frictional contact temperature field by
incorporating just a single actual temperature data point during training, with an MRE of
about 0.01-0.001%, and simultaneously, HPC and CHTC can be precisely identified by the
optimization process of the PINN, with the relative error of about 0.01-0.1%. Experimental
analysis revealed that the sampling positions of actual data play a significant role in
influencing the predictive performance of the PINN. As the sampling points of actual data
become closer to the boundary, the MRE of the temperature field decreases from 20.06% to
0.004% when the HPC is unknown, and from 3.25% to 0.01% when the HPCP is unknown.
Incorporating actual data, which are strongly influenced by boundary conditions, into the
training process can enhance the effectiveness of the PINN for solving inverse problems.

Finally, the study investigated the inverse thermal problem with multiple unknown
input thermal parameters. The experimental results indicate that the PINN is successful
at resolving cases involving two unknown CHTCs; the relative error of CHTCs is about
1-3%. In situations in which multiple input thermal parameters are unknown, the PINN
exhibits relatively large errors in predicting the temperature field, and the HPC and CHTCs
evaluated by the PINN deviate from the actual values. Nonetheless, incorporating a
limited actual temperature data into the PINN can substantially enhance the accuracy of
the frictional contact temperature field when all input thermal parameters are unknown.
The MRE of the temperature field decreases from 5.16% to 0.79%.

The PINN demonstrates advantages in solving inverse thermal problems compared to
traditional numerical methods, yet it is still in an early stage of development, and its theoreti-
cal basis and stability are not as robust as those of traditional forward numerical methods.
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Nomenclature

T Temperature, °C

T Ambient temperature, °C
Tw Boundary temperature, °C
Jtotal Total heat flux, W/m?

Gup Upper heat flux, W/m?
XY,z Spatial coordinates, m

0 Density, kg/ m>

k Thermal conductivity, W/(m-K)
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c Specific heat capacity, J/ (kg-K)

€ Radiant emissivity

h Convective heat transfer coefficient, W/ (mz K)
o Heat partitioning coefficient

L Total loss function

Lyge PDE loss function

Lyc Boundary condition loss function
Liata Actual data loss function

w Neural network weight

b Neural network bias

p Unknown parameter

wp, wy, wg  Weights of each loss function
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