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Abstract: Pavement skid resistance is crucial for driving safety, and pavement texture significantly
impacts skid resistance performance. To realize the application of pavement texture data in assessing
pavement skid resistance performance, this paper proposes a convolutional neural network model
based on the InceptionV4 module to predict the pavement friction level from the pavement texture
dataset. The surface texture data of indoor test-rutted slabs were collected using a portable laser
scanner. The surface friction coefficient of rutted slabs was measured using a pendulum tribome-
ter. After data pre-processing, a total of nine types of texture data that are in the range of 0.4 to
0.8 skid resistance levels are selected at an interval of 0.05 for training, validation, and testing of the
network model. The same dataset and training parameters were also used to train a conventional
convolutional network model for comparison. The results showed that the proposed network model
achieved 97.89% classification accuracy on the test set, which was 11.94 percentage points higher
than the comparison model. This demonstrates that the proposed model in this paper can evaluate
pavement friction levels by non-contact scanning of textures and has higher evaluation accuracy.

Keywords: pavement texture; skid resistance prediction; inceptionv4 model; deep learning

1. Introduction

Pavement skid resistance is an essential indicator for evaluating the safety risk of
roadway traffic [1,2]. Most traffic accidents are related to the decline in the anti-skid
performance of road surfaces. Previous research shows that improving roadway skid
resistance by 10% reduces traffic accident rates by 13% [3]. The anti-skid performance
of pavement is related to the surface texture structure. The Permanent International
Association of Road Congresses (PIARC) classifies texture according to wavelength and am-
plitude into micro-texture (λ < 0.5 mm, h < 0.2 mm), macro-texture (0.5 mm < λ < 50 mm,
0.2 mm < h < 10 mm), coarse texture (50 mm < λ < 500 mm, 0.5 mm < h < 50 mm), and
unevenness (500 mm < λ) [4]. The macro- and micro-textures of the pavement provide the
vehicle with the primary anti-skid properties. According to a mechanical point of view,
road friction is the result of the interaction between adhesion and hysteresis. The micro-
texture mainly affects the adhesion component and provides the anti-skid performance
of the vehicle under low-speed driving conditions. The macro-texture mainly affects the
hysteresis component, providing the anti-skid performance of the vehicle under high-speed
driving conditions and timely draining water existing on the road surface. Macrotexture
and microtexture can be characterized by direct or indirect measurements [5]. Macrotexture
is usually characterized by mean texture depth (MTD) and mean profile depth (MPD) [6].
The traditional method of measuring MTD is mainly the sand patch method. The pendulum
value measured by the British Pendulum Tester (BPT) system is usually used to indirectly
characterize the pavement microtexture, and its measurement speed is about 10 km/h.
Research has proven that microtexture has a great impact on anti-skid performance at
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low speeds [7]. These methods are all fixed-point detection methods, which have the
disadvantage of hindering traffic flow and have low detection efficiency. Lateral force test
vehicles, wheel lock testers, variable slip devices, and other equipment can directly measure
the friction coefficient and achieve road network-level measurements. However, testing is
expensive due to test tire wear caused by continuous contact collection [8]. Therefore, eval-
uating the anti-skid performance of pavement through non-contact methods has become a
research hotspot for many scholars. In other words, establishing the relationship between
pavement texture and skid resistance requires obtaining a large amount of texture data.

With the development of high-precision non-contact laser scanning technology and
improved computing power, researchers have used non-contact scanning equipment to
obtain pavement texture information. They utilized various technical methods of texture
characterization to establish a connection with the pavement’s anti-skid performance. Pre-
vious studies acquired pavement texture information by the laser scanner and extracted
macro and micro texture feature parameters from the perspective of spatial texture parame-
ters [9–11]. Multivariate regression analysis was performed using these parameters and
pavement skid resistance measures like BPN, friction coefficient, and grip test values [12].
This enabled the development of models to predict pavement skid resistance. However,
there are omissions in the selection of feature parameters in the linear regression model,
which limits the model’s generalization ability. Leveraging previous works, scholars have
extracted more categories of 3D texture parameters to assess pavement skid resistance
performance by machine learning methods such as Random Forest (RF), Gradient Boosting
Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (Light-GBM), Feed-forward Neural Network, etc. [13–15]. Some scholars also pro-
cessed the pavement texture data from the perspective of a signal system and characterized
it by the 2D wave spectrum and power spectral density (PSD) [16–19]. Several studies have
characterized the skid resistance of asphalt mixture aggregates in terms of fractal dimen-
sion as well as multiple fractal spectral features [20–23]. Nevertheless, there are still some
limitations to assessing pavement anti-skid performance. Machine learning models require
less configuration of layer numbers, but all data must go through tedious manual feature
extraction before being input. With recent advances in deep learning and convolutional
neural networks, input data can undergo multilayer nonlinear transformations for adaptive
feature extraction. Such deep learning models have demonstrated considerable benefits in
diverse application areas. Tong et al. [24] trained a deep learning model based on a convo-
lutional neural network to predict the MTD value from the collected pavement texture data.
The results showed that the model’s prediction error was lower than that of the traditional
manual sand patch test. However, the MTD value only reflects the macrotexture level of the
surface texture, and the correlation coefficients with the pavement skid resistance indexes,
such as the SFC value, are not significant [25]. A study by Yang et al. [26] introduced
a convolutional neural network model named FrictionNet. This model transforms 3D
texture data into spectrograms, eliminating the need for pre-extracted texture parameters.
It directly inputs them into the model training to realize the classification and evaluation of
pavement skid resistance. However, the model’s shallow depth with few layers restricts its
ability to extract complex features.

The road surface anti-skid performance prediction model based on machine learning is
mainly a regression model. Various characteristic parameters of the pavement texture and
factors affecting the anti-skid performance of the surface are taken as input, and the specific
road friction coefficient is provided as the output. There are also machine-learning anti-skid
performance evaluation models based on classification tasks [27]. However, the number
of data sets for such models are not large, which limits the model’s ability to evaluate
anti-skid performance. The road surface anti-skid performance prediction model based
on deep learning technology is mainly a qualitative classification model. The road texture
are converted into image data as input, and the corresponding friction classification level
is provided; that is, it is in a certain friction coefficient range. In the process of anti-skid
performance evaluation at the road network level, road engineering maintenance experts
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need to quickly evaluate whether a certain road section needs repair or maintenance. The
anti-skid prediction model based on classification tasks is more suitable for experts.

This study was inspired by GoogleNet [28], which built the Inception module and
demonstrated powerful feature extraction capabilities, amazing classification accuracy in
ImageNet, and challenging classification tasks. The purpose of this study is to build a deep
learning model based on the Inception V4 module [29] that specifically uses road surface
texture data to directly predict friction levels. This model combines small-size convolution
kernels and asymmetric convolution kernels to extract texture features and classification
boundaries at different scales. Not only can the network depth be increased, but it can also
have stronger feature extraction capabilities, thus improving the prediction accuracy of the
anti-skid level. This study used sufficient data sets to train, verify, and test the built model,
namely 155,648 pairs of texture and anti-skid data sets collected from indoor experiments.

The remainder of this paper can be summarized as follows: Section 2 introduces
the main structure of the proposed network model and the overall workflow. Section 3
describes the collection and preprocessing processes of the dataset. Section 4 analyzes
and discusses the process and evaluation results of model training. Our conclusions are
summarized in Section 5.

2. Model Introduction
2.1. Inception Module

The Inception module utilizes a convolutional neural network (CNN) architecture.
In contrast to traditional CNNs, it concurrently applies convolutional kernels of different
sizes in a single layer. A pooling operation aggregates their outputs, enabling the network
to extract multi-scale features per layer. This helps capture local and global patterns in
the input image [28]. Before performing large-size convolutional kernel computation,
the Inception module applies 1 × 1 kernels to reduce input feature map channels. This
decreases model parameters while still obtaining a larger receptive field to extract richer
features. Traditional CNN architectures apply just one convolution or pooling operation
per layer to extract features. Stacking many such layers risks overfitting, despite increas-
ing depth. In this paper, two basic modules of InceptionV4 are selected as the feature
extraction module for pavement texture data, and their basic structures are shown in
Figures 1 and 2, respectively.
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Figure 2. Inception B module.

The Inception A module replaces the 5 × 5 convolution kernel in the original module
with two 3 × 3 convolution kernels. It also applies 1 × 1 convolution kernels to reduce
channels and computations. The Inception B module utilizes asymmetric convolution
kernels rather than large symmetric kernels. Specifically, it applies 1 × 7 and 7 × 1
convolution kernels instead of 7 × 7 convolution kernels. In both Inception A and B
modules, the convolved feature maps from different kernel sizes are stacked and then fused
via pooling operations.

2.2. Incep-FrictionNet Network Architecture

Since InceptionV4 targets image classification for ImageNet, it does not apply to
this paper’s pavement texture dataset. By incorporating Inception A and B modules, a
new Incep-FrictionNet is proposed for predicting anti-skid levels from pavement textures.
Figure 3 shows the network architecture. The input texture data undergoes initial pro-
cessing in the backbone feature extraction network. This step aims to capture the shallow
features present in the pavement texture data. Subsequently, the data passes through four
Inception A modules, each with a consistent structure, followed by seven Inception B
modules employing a uniform structure. This process is designed to extract deep features
at various scales. The Inception A and Inception B modules exclusively modify the number
of channels within the feature layer without altering the size of the feature layer itself.
Downsampling is conducted individually after the final Inception A module and the con-
cluding Inception B module. In this process, a 3 × 3 convolution kernel with a stride of 2 is
employed, along with the integration of a maximum pooling layer, to effectively diminish
the feature size. In the final stage, following the global average pooling layer for the flatten-
ing of deep features, the process proceeds to the fully connected layer. Subsequently, the
output corresponds to the anti-skid level classification of the texture data, achieved through
the activation function. The number of neurons in the fully connected layer aligns with the
quantity of anti-skid-level classifications. To enhance training convergence speed, batch
normalization and ReLU activation functions are applied after each convolution operation.
This study is a multi-classification processing task, and the final output uses the Softmax
activation function. This activation function expresses the output of the sample as the
probability of belonging to a certain category, as shown in Equation (1). Batch normalization
and ReLU activation functions are performed after each convolution operation to speed
up training convergence. Batch normalization normalizes the output of each batch of data
after the convolution operation [30]. Normalize the sample to a distribution with a mean
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of 0 and a variance of 1 to stabilize the calculation, as shown in Equation (2). The ReLU
activation function [31] is used to prevent the weight gradient from disappearing, as shown
in Equation (3).

P(y = j|z(i)) = ezj(i)

k
∑

j=0
ezk(i)

(1)

where zj(i) is the output of the ith sample corresponding to the jth category. There are k + 1
categories in total. The sample output is finally converted into the probability of belonging
to the jth category.

x̂i = γ
xi − µb√

σ2
b + ε

+ β (2)

where xi is a sample in a batch, µb is the sample mean in a batch, σb is the corresponding
standard deviation, ε is a very small constant, and γ and β are trainable parameters.

ReLU(x) =
{

0, i f x < 0
x, i f x < 0

(3)

where x is the input sample matrix.
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2.3. Overall Methodological Flow

The comprehensive workflow encompasses several key stages: data acquisition for
both texture data and skid resistance level classification; noise removal from the texture data;
conversion of texture data into texture-gray scale maps; partitioning of the dataset; and the
subsequent phases of network model training and validation testing. The corresponding
flow chart is depicted in Figure 4. The training set is input into the Incep-FrictionNet for
training, and the loss function is recorded to judge the convergence of the model. The
validation set is used to evaluate whether there is an overfitting risk in the model, and the
test set is used to judge the model’s Generalization Ability.
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3. Data Acquisition and Preprocessing
3.1. Indoor Rutted Plate Specimen Data Collection

This paper collected texture data from rutted plate specimens (300 mm × 300 mm × 50 mm)
molded by the free indoor wheel milling method. The aggregate type is basalt, and the
gradation type of the mixture is SMA-13. Figure 5 shows the information on the SMA-13
grading curve, including the upper grading limit, the lower grading limit, and the grading
median value. In this study, the asphalt mixture was formed according to the gradation
median, and the optimal oil-stone ratio was 5.84%.
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Figure 5. The gradation curves of the SMA-13 asphalt mixtures.

The formed rutted plate specimens were scanned for initial texture data on the surface
of the specimen package by using a portable three-dimensional texture scanner (LS-40) [32].
Simultaneously, the BPN value was measured using a BP-III pendulum tribometer. The
scanner LS-40 has a scanning resolution of 0.05 mm in the horizontal direction and 0.01 mm
in the vertical direction, with a scanning area of 102.4 × 102.4 mm, and can eventually
export an array of 2048 × 2048, with the values in the array representing the pixel elevation.

The BPT system, developed in the United Kingdom during the 1960s, serves as a
portable friction device. Comprising a suspended pendulum, a support platform, and a
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test sample, the system operates by placing the test sample horizontally on the support
platform. Following the adjustment of the BPT system by the user manual, the rubber block
attached to the pendulum is released from its horizontal position, initiating a swing along
the fixed fulcrum. As the rubber block makes contact with the surface of the test sample
at an approximate speed of 10 km/h, friction arises due to the interaction between the
two surfaces. This interaction leads to the gradual dissipation of energy from the rubber
block during contact. Consequently, the pendulum decelerates, eventually coming to a
complete stop due to the effects of friction. By quantifying the swing angle of the pendulum
following contact, the British Pendulum Number (BPN) can be determined [33]. The BPN
value can be converted into a friction coefficient, which represents the tire-road friction
force. In this study, the BM-III pendulum friction meter was employed for fixed-point
testing of the surface friction coefficient in rough asphalt mixture specimens. The testing
procedures adhere to the specification (JTG 3450-2019 [34]. During the measurement of each
test sample, the pendulum meter undergoes a sequence of steps, encompassing instrument
leveling, pointer zeroing, and calibration of the sliding length. Specifically, gently release
the pendulum from the left and right sides, respectively, so that the edge of the rubber block
comes into contact with the surface. Change the height of the pendulum by turning the
lifting knob, adjusting the distance between the two contact points (i.e., the sliding length),
and referring to the standard ruler to ensure that the distance between the two points meets
the specification requirements, that is, 126 mm ± 6 mm. Before releasing the pendulum
from the horizontal position, employ a dry brush to cleanse the specimen’s surface of any
contaminants. Subsequently, utilize a water spray bottle to moisten the surface of the object
under investigation. Following this, employ a thermometer to gauge the temperature
of the wet specimen surface. Finally, release the pendulum to measure the BPN value.
Repeat the pendulum release operation five times, recording the pendulum value for
each test. Among the five swing values, it is specified that the difference between the
maximum and minimum values should not exceed 3. If the difference surpasses 3, repeat
the aforementioned operations until the stipulated requirements are met. The average of the
five specified swing values serves as the measurement result of BPNT at the corresponding
temperature. Calculate the pendulum value BPN20 at the standard temperature of 20 ◦C
according to Equation (4) and use it as the ultimate measured friction value (all subsequent
references to BPN values signify the BPN20 value).

BPN20 = BPNT + ∆BPN (4)

where BPN20 denotes the swing value at the standard temperature of 20 ◦C; BPNT signifies
the swing value measured when the surface temperature is T ◦C; and ∆BPN represents the
temperature correction value, which is chosen by Table T 0964-2 specified in the specification
(JTG 3450-2019).

After every 20,000 cycles of accelerated loading abrasion on the rutted plate, the
corresponding friction coefficient was recorded using a BP-III pendulum tribometer. Rutted
plates undergo 200,000 cycles of abrasion, and Figure 6 shows the process of acquiring
test data. In this paper, 76 sets of texture data with BPN values in the range of 40 to
80 were finally developed. The BPN ranges were preliminarily classified at intervals of
5 BPN points, and the classification number was set as the label for subsequent input to
the training of the neural network model. Table 1 shows the range split, sample size, and
classification labels. According to the principle of balanced classification, ten groups of
samples should have been taken for each category. However, in this paper, the BPN value
of the molded rutted plate specimens rarely exceeded 77.5. After 200,000 cycles of abrasion
on the rutted plate specimens, only three groups of samples exhibited BPN values below
42.5. To preserve the difficulty of the categorization task as well as the variety of species,
both of these samples are still retained in this paper.



Lubricants 2024, 12, 8 8 of 18

Lubricants 2024, 12, x FOR PEER REVIEW 8 of 18 
 

 

value for each test. Among the five swing values, it is specified that the difference between 
the maximum and minimum values should not exceed 3. If the difference surpasses 3, 
repeat the aforementioned operations until the stipulated requirements are met. The av-
erage of the five specified swing values serves as the measurement result of BPNT at the 
corresponding temperature. Calculate the pendulum value BPN20 at the standard temper-
ature of 20 °C according to Equation (4) and use it as the ultimate measured friction value 
(all subsequent references to BPN values signify the BPN20 value). 

20 TBPN BPN BPN= + Δ  (4)

where BPN20 denotes the swing value at the standard temperature of 20 °C; BPNT signifies 
the swing value measured when the surface temperature is T °C; and ΔBPN represents 
the temperature correction value, which is chosen by Table T 0964-2 specified in the spec-
ification (JTG 3450-2019). 

After every 20,000 cycles of accelerated loading abrasion on the rutted plate, the cor-
responding friction coefficient was recorded using a BP-III pendulum tribometer. Rutted 
plates undergo 200,000 cycles of abrasion, and Figure 6 shows the process of acquiring 
test data. In this paper, 76 sets of texture data with BPN values in the range of 40 to 80 
were finally developed. The BPN ranges were preliminarily classified at intervals of 5 BPN 
points, and the classification number was set as the label for subsequent input to the train-
ing of the neural network model. Table 1 shows the range split, sample size, and classifi-
cation labels. According to the principle of balanced classification, ten groups of samples 
should have been taken for each category. However, in this paper, the BPN value of the 
molded rutted plate specimens rarely exceeded 77.5. After 200,000 cycles of abrasion on 
the rutted plate specimens, only three groups of samples exhibited BPN values below 42.5. 
To preserve the difficulty of the categorization task as well as the variety of species, both 
of these samples are still retained in this paper. 

   
(a) (b) (c) 

Figure 6. Data Acquisition Processes. (a) Texture scanning; (b) British Pendulum Number (BPN) 
Measurement; (c) Accelerated loading abrasion device. 

Table 1. Anti-skid levels correspond to different BPN ranges. 

BPN Ranges Median Number of Samples Classification Label 
[37.5,42.5) 40 3 0 
[42.5,47.5) 45 10 1 
[47.5,52.5) 50 10 2 
[52.5,57.5) 55 10 3 
[57.5,62.5) 60 10 4 
[62.5,67.5) 65 10 5 
[67.5,72.5) 70 10 6 
[72.5,77.5) 75 10 7 
[77.5,82.5) 80 3 8 
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Measurement; (c) Accelerated loading abrasion device.

Table 1. Anti-skid levels correspond to different BPN ranges.

BPN Ranges Median Number of Samples Classification Label

[37.5,42.5) 40 3 0
[42.5,47.5) 45 10 1
[47.5,52.5) 50 10 2
[52.5,57.5) 55 10 3
[57.5,62.5) 60 10 4
[62.5,67.5) 65 10 5
[67.5,72.5) 70 10 6
[72.5,77.5) 75 10 7
[77.5,82.5) 80 3 8

3.2. Data Preprocessing
3.2.1. Texture Data Noise Reduction

Since there are outliers in the original surface texture scanned by the portable 3D
texture scanner LS-40, which are generally manifested as ratio outlier noise and im-
pulse noise representing localized texture spikes, it is necessary to remove noise from
the original texture.

(1) Outlier noise removal

Outlier noise is usually caused by the portable 3D texture scanner during the scanning
process due to reflections and occlusions on the surface of the object being measured,
resulting in the point elevation being miscalculated. Therefore, outliers should be removed
first during data preprocessing. This type of noise is generally one order of magnitude
larger than the elevation value of the standard original texture, as shown in Figure 7. In
this paper, the outlier noise is eliminated using the thresholding method, as illustrated
by Equation (5). Since macrotexture refers to the pavement shape with heights ranging
from 0.5 mm to 20 mm [35], the portable 3D texture used in this paper has a resolution of
0.01 mm in the elevation direction, the threshold value is set to 2000, and the points judged
as outliers are replaced by averaging the pixel elevation.

H(i, j) =
{

mean if H(i, j) > T
H(i, j) else

(5)
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(2) Median Absolute Deviation (MAD) Denoising Method

After replacing the above obvious outliers using the mean value, the surface texture
still has more impulse noise. Within this paper, the removal of impulse noise is accom-
plished through the application of the median absolute deviation method with a sliding
window, as delineated in Equation (6). The window length is set as 6, n is set as 3, and i
takes values 1–6, respectively.

MAD = median(|xi − median(x)|)
|xi − median(x)|< n × MAD

(6)

The reconstructed surface texture after denoising using the median absolute deviation
method is shown in Figure 8. Since this method does not have a smoothing effect on
inherently spiky textures, we can find that the surface consistency still has a small number
of spikes locally. It is just a matter of replacing the more prominent local tip outliers through
a dynamic window.
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Figure 8. Texture is reconstructed after denoising by the threshold method and the MAD method.
(a) partial perspective; (b) overall perspective; (c) single texture.

Where, the single texture in subfigure (c) comes from the black line labeled in subfigure
(b), the zero scale line on the y-axis in subfigure (c) represents the average elevation of
the texture.

(3) The Gaussian filtering method

The Gaussian filtering method can smooth the texture matrix with the expression
shown in Equation (7) [36]. The process involves sliding a convolution kernel of a specific
size over the texture matrix. The parameters of the convolution kernel are determined
by Equation (7), which defines the weight parameters. The values of the texture matrix
are then replaced through the convolution calculation, ultimately achieving the effect of
smoothing. The reconstructed surface texture after denoising by Gaussian filtering is shown
in Figure 9. It can be seen that the spiky noise has been removed from the surface texture
compared to Figure 7.

G(x, y) =
1

2πρ2 e−(x2+y2)/(2σ2) (7)
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Where, the single texture in subfigure (c) comes from the black line labeled in subfigure (b),
the zero scale line on the y-axis in subfigure (c) represents the average elevation of the texture.

3.2.2. Segmentation of Data Samples

Due to the sparsity in the number of selected texture data samples in this paper, which
consists of 76 groups, and each group’s representatives having a size of 2048 × 2048, the
samples are not suitable for direct utilization as input for the neural network model due to
their excessively large size and relatively small data volume. Therefore, it is imperative
to segment the texture data samples after noise removal. In this study, each set of texture
data with a size of 2048 × 2048 are divided into multiple pieces of texture data with a size
of 1 × 2048 along the non-driving direction. As the asphalt concrete specimen is being
worn, the tires in the wearing equipment roll cyclically in one direction on the surface of the
specimen plate. We specify this direction as the standard direction to simulate the driving
direction. Therefore, when measuring the anti-slip value using the BPT system, the rubber
block slides on the surface of the specimen in the specified direction. The final segmented
texture is consistent with the specified direction in the dimensional direction. For example,
the positive direction of the horizontal axis in Figure 9c is the specified direction. Splitting
the texture data according to the above rules can obtain 155,648 samples. This is essentially
a method of data dimensionality reduction to expand the amount of data and reduce
computing resources to ensure the robustness of the model. The one-dimensional texture
data are transformed into a two-dimensional gray-scale image of size 45 × 45. It is used to
input the neural network model after min-max normalization by Equation (8).

x =
x − xmin

xmax − xmin
(8)

4. Results and Discussions
4.1. Model Parameter Settings

We developed an Incep-FrictionNet convolutional neural network model program
using Python 3.8.10 within the VsCode integrated development environment. The program
utilizes the TensorFlow 2.5.0 architecture and is configured to run on a server equipped
with a 16-core Intel Xeon Platinum 8350C CPU. For accelerated computation, an RTX A5000
GPU graphics card is employed. The texture dataset is divided into training sets in the
proportions of 10%, 30%, 50%, and 70%, respectively. The remaining ratio is equally divided
into a validation set and a test set.

The training process is preset with 100 epochs, and the number of samples in each batch
is 256. The model uses the Adam optimizer to compute the gradient of the loss function and
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initializes the learning rate to 5 × 10−4. Since the prediction task is a multi-categorization
task, the Sparse Categorical Cross Entropy Loss Function (SCELF) is adopted, as shown in
Equation (9). To judge whether the model has the risk of overfitting, the validation set is
input into the network for validation after every five epochs of training, and the accuracy
rate is monitored to judge whether there is an overfitting phenomenon. At the same time,
to determine whether the model converges, this paper sets the “early stop strategy” in the
model. Simultaneously, to assess the convergence of the model, this paper implements
the “early stop strategy” within the model. The monitoring content is the accuracy of the
training set. If the accuracy of the training set does not show further improvement for
three consecutive epochs, then the model training is halted and the optimal parameters
are retained.

Loss = − 1
N

N

∑
i=1

yi,t × log(yi,p) (9)

where N is the number of training samples, yi,t is the label of the measured skid resistance
level of the texture data, and yi,p is the predicted output of the texture data.

4.2. Training Results and Analysis

In this paper, the model was trained by inputting different proportions of the training
set. The change curves of the loss function, the validation set accuracy, and the test set
accuracy were recorded to validate the effectiveness of the constructed pavement texture
skid-resistance level prediction model, Incep-FrictionNet. These records are illustrated
in Figures 10 and 11, respectively. As can be seen from the figure, the network model is
convergent. With an increase in the proportion of the training set, the network model can
acquire more intricate features from the texture data. This often results in convergence
towards smaller values of the loss function, necessitating additional iterations and conse-
quently leading to an extended training duration. We can find that the test set accuracy
corresponding to the 10% to 30% ratio setting has the most obvious change, increasing
from 83.89% to 92.75%, an increase of 8.86%. The test set accuracy corresponding to the
30% to 50% and 50% to 70% ratio settings also increased by 1.56% and 3.58%, respectively.
Theoretically, the accuracy improvement of the latter should be lower than that of the
former. However, our data set division are not based on the former but randomly selects
a preset proportion of data from the total data set as a training set each time. Similarly,
the larger the percentage of the training set, the higher the accuracy of the test set. When
the proportion of the training set reaches 70%, the validation set can reach up to 97.96%
accuracy during the training process. In comparison, the average accuracy of the test set
under the corresponding optimal parameters can reach 97.89%.

Figure 11 summarizes the measured coefficient of friction classifications and predicted
coefficient of friction classifications with different skid resistance level classifications in the
test set with the highest accuracy. The values on the confusion matrix’s diagonal indicate
the number of textures correctly predicted for that classification, as shown in Figure 12.
For example, in the case where the actual friction coefficient is categorized as 0.45, there
are a total of 3053 texture data points correctly predicted. In contrast, there are 56 texture
data points incorrectly predicted for other friction coefficient classifications. A potential
reason for this discrepancy lies in the fact that, despite employing three different denoising
methods on the texture data in this study, there remains the likelihood of noise persisting
in both the macro-texture and micro-texture when separating them from the original
texture. Consequently, this residual noise may affect the accuracy of friction classification
predictions. Another possible reason is that when we collect texture data for the same test
slab (having experienced the abrasion process at different times), the scanning equipment
has a small degree of deviation due to artificial placement.
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4.3. Comparison of Conventional Convolutional Networks

We chose the traditional convolutional network from the literature [26] for comparison,
aiming to demonstrate Incep-FrictionNet’s effectiveness further. The network mainly
consists of two convolutional layers, three fully connected layers, and one output layer.
Setting the batch normalization, hyperbolic tangent activation function, and one layer of
average pooling operation after each pass through the convolutional layer. The Flatten
operation flattens the feature map before entering the fully connected layer. A dropout rate
of 0.25 is applied between the fully connected layers. L2 regularization is set to prevent
overfitting, and the activation function adopts the hyperbolic tangent function to avoid
gradient instability, whose expressions are as shown in Equations (10) and (11) respectively.
The last output layer undergoes the SoftMax activation function to output the anti-skid
level classification. Table 2 shows its structural layers and parametric quantities.

L2 Regularization Term =
λ

2n∑
w

∣∣∣∣∣∣ω2
∣∣∣∣∣∣ (10)

where
∣∣∣∣ω2

∣∣∣∣ is the second norm of the weight parameters. The second norm of the weight
parameters of all network layers is regularized as part of the loss function, and λ is a
penalty factor greater than 0.

tanh(x) =
ex − e−x

ex + e−x (11)

The “()” numbers indicate the parameters resulting from batch normalization.
The training set with a 70% proportion was fed into the comparison model for training.

The initial preset hyperparameters of the model were kept consistent with the proposed
network structure model. Following training, the optimal parameters were saved. Sub-
sequently, the test set was fed into the model to calculate accuracy. As can be seen from
Figure 13, the comparison model has a large number of training iterations and stops iterat-
ing at the 83rd Epoch, while the model proposed in this study reaches the best performance
at the 42nd epoch under the same training configuration (as shown in Figure 10). The
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final test set accuracy of the comparison model is 85.95%, which is lower than the model
proposed in this study (i.e., 97.89%), as expected. Possible reasons are as follows:

(1) The number of network layers in the comparison model is much lower than that of
the model proposed in this study, which means there is a difference in the number
of parameters in the network structure. Although a larger number of parameters
consumes more computing resources, the model can mine the features of the input
data deeper.

(2) The comparison model only applies a symmetric convolution kernel of size 3 × 3 in
the same layer network, which means a limited receptive field. The comparison model
requires more iterations to achieve optimal performance, which also proves that the
features learned by the comparison model are still not enough to finely distinguish the
anti-skid level of texture data. The model proposed in this study combines asymmetric
convolution kernels of different sizes and small-size convolution kernels in the same
network layer. While increasing the receptive field, it also incorporates features from
different angles of texture data to improve anti-skid level classification accuracy.

(3) A sufficient amount of data were provided in this study, that is, 155,648 pairs of data
samples, which are more than twice the amount of data provided by the comparison
model (i.e., 63,000 pairs). Sufficient and diverse samples allow the model to learn
more detailed features.

Table 2. Structure and parameters of the compared model.

Network Structure Layer Output Size Number of Parameters

Convolution layer_1 43 × 43 × 64 640 (256)
Average pooling layer_1 21 × 21 × 64 0

Convolution layer_2 19 × 19 × 96 55,392 (384)
Average pooling layer_2 9 × 9 × 96 0

Dense layer_1 64 497,728
Dense layer_2 96 6240
Dense layer_3 32 3104
Output_layer 9 297

Total parameters – 564,041
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5. Conclusions

Based on the InceptionV4 module, this study builds a deep convolution model called
Incep-FrictionNet based on the asphalt mixture surface texture data after noise removal
preprocessing to predict the anti-skid level. After discussion and analysis, the following
conclusions are drawn:

(1) The noise removal methods proposed in this study include the threshold method,
MAD method, and Gaussian filtering method. The use of these methods can filter out
most of the outliers in the original pavement texture data.

(2) For the network model constructed in this study, when the texture data training set
accounts for 70%, the test set accuracy corresponding to the optimal model is 97.89%.

(3) The network model constructed in this study achieves better performance in classi-
fying pavement texture anti-skid levels than the traditional convolutional network
model. Under the same initial training parameter configuration, the accuracy of the
proposed model on the test set is 11.94 percentage points higher than that of the
comparison model.

However, the method proposed in this study still has some limitations. First of all,
the pavement texture data collected in this article all come from indoor experimentally
molded specimens, which, to a certain extent, cannot truly simulate road surfaces that have
experienced different loads and environmental effects on site. And there are omissions of
texture data with extremely low anti-slip properties. In addition, when measuring the anti-
skid value in this study, the temperature-corrected BPN value was used, which means that
the effect of temperature was ignored. However, the non-contact skid resistance evaluation
method of pavement proposed in this study is still competitive. To make the application
of the model more consistent with real-life scenarios, future research will mainly include
three aspects:

(1) We will consider asphalt pavement textures of different gradation types, including
texture data from the laboratory and field, and will correspond to the skid resistance
level expanded to a very low anti-skid level range to help the model train better.

(2) Consider multi-modal inputs for anti-skid performance evaluation. For the same
texture data, in addition to converting it into image data as input, it also combines
characteristic parameters related to anti-skid performance, representative water film
thickness (representing rainfall), contact depth (representing tire action), temperature,
etc. Modal parameters serve as another set of equivalent inputs to the model. The
output is the anti-skid value at the road design speed.

(3) Adopt more advanced deep learning technology.

In summary, we can use more advanced models to predict the anti-skid performance of
pavement textures under various environmental effects, providing a reference for pavement
maintenance management decisions.
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