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Abstract: Surface quality has a significant impact on the service life of machine parts. Grinding is
often the last process to ensure surface quality and accuracy of material formation. In this study, a
high-quality surface was developed by determining the coefficient of friction in grinding a quartz
fiber-reinforced silica ceramic composite. By processing the physical signals in the grinding process, a
multi-objective function was established by considering grinding parameters, i.e., surface roughness,
coefficient of friction, active energy consumption, and effective grinding time. The weight vector
coefficients of the sub-objective functions were optimized through a multi-objective evolutionary
algorithm based on the decomposition (MOEA/D) algorithm. The genetic algorithm was used
to optimize the process parameters of the multi-objective function, and the optimal range for the
coefficient of friction was determined to be 0.197~0.216. The experimental results indicated that when
the coefficient of friction tends to 0.197, the distribution distance of the microscopic data points on
the surface profile is small and the distribution uniformity is good. When the coefficient of friction
tends to 0.216, the surface profile shows a good periodic characteristic. The quality of a grinding
surface depends on the uniformity and periodicity of the surface’s topography. The coefficient of
friction explained the typical physical characteristics of high-quality grinding surfaces. The multi-
objective optimization function was even more important for the subsequent high-quality machining
of mechanical parts to provide guidance and reference significance.

Keywords: surface quality; coefficient of friction; distribution uniformity; periodic components;
signal processing

1. Introduction

Quartz fiber-reinforced silica ceramic composite has been successfully used in build-
ing materials, the chemical industry, national defense, and other sectors [1,2] due to its
low thermal conductivity, small expansion coefficient, and high-temperature resistance.
However, low mechanical strength and high brittleness make it a difficult-to-cut material
with poor surface quality [3]. In surface processing of this material, grinding is one of the
most widely employed machining processes due to its high precision and stable surface
quality. The range of force ratios taken during grinding is crucial due to the brittleness of
the ceramic composite. In comparison with other machining processes, grinding consumes
high amounts of energy with a low efficiency for the same level of material volume re-
moval [4]. Some strategies have been used to improve the quality of grinding surfaces, such
as surface modification or the application of coating techniques on the substrate surface [5].
However, both surface modification and surface application coating technologies pose
some environmental problems to a greater or lesser extent [6]. Under the strategic target of
“carbon neutrality”, energy saving and carbon emission reduction have become part of a
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global consensus in the surface machining process. Therefore, it is particularly important
to investigate the physical mechanisms of molding for high surface quality.

With the advancement of science and technology, intelligent monitoring technology
has developed rapidly [7,8]. By analyzing and processing the signals collected by vari-
ous sensors, the grinding process can be better monitored. Wang et al. [9] innovatively
proposed a signal processing method based on fuzzy C-average clustering. This method
can accurately predict the subsurface damage depth and surface quality in ultra-precision
grinding of single-crystal silicon. Wang et al. [10] utilized multiple transformation forms
of raw AE signals to monitor materials’ surface behavior and developed a force model
to explain forces under different removal modes. Ling et al. [11] used different types of
new sandpaper to grind the surface of an alloy and investigated the effect of the grinding
treatment on the surface properties and deformation microstructure. Zhang et al. [12] intro-
duced a novel data-driven model using an optimized pruned extreme learning machine.
Real-time quantitative monitoring of abrasive belt conditions can be achieved in robotic
grinding systems by a novel method based on acoustic signals. Tian et al. [13] developed a
portable power monitoring system for grinding signal acquisition, feature extraction, and
data calculation to improve the surface quality achieved by grinding.

To characterize the actual wear state of micro-grinding wheels, a novel monitoring
method was proposed based on the variable cutting stiffness with a fusion analysis of
forces and system vibration signals [14,15]. Warren et al. [16] applied a discrete wavelet
decomposition procedure to extract discriminative features from original acoustic emission
(AE) signals. And the state of the grinding wheels was monitored through the wavelet-
based AE signal. Based on the physical characteristics of grinding, some achievements
have been made in ensuring surface quality, saving energy, and improving efficiency.
Ma et al. [17] first proposed the concept of “relative extreme value error” to judge the
influence sensitivity of technical factors on surface roughness. Based on the analysis of
cracks and grinding kinetics, Yao et al. [18] established a relationship between surface
roughness and subsurface crack depth. Kong et al. [19] introduced an effective feature
extraction method through the combination of PCA and KPCA_IRBF, which can be utilized
for surface roughness prediction. Meng et al. [20] presented an innovative dynamic force
model for precision grinding with micro-structured grinding wheels. Li et al. [21] modeled
grinding temperature with a genetic association analysis tool (PGA) and regarded it as the
main constraint for the inverse problem while modeling the grinding surface roughness
and grinding continuity as auxiliary constraints. The ability of high-accuracy Artificial
Neural Networks (ANNs) regarding feature classification, especially on nonlinear patterns,
was considered [22]. Dai et al. [23] studied the effect of grinding speed on grinding
temperature and power consumption and analyzed the grinding surface performance from
the perspective of undeformed chip thickness. Wang et al. [24] developed a nonparametric
model based on an improved adaptive Artificial Neural Network (aANN) to predict surface
quality, machining time, total power consumption, and effective power consumption.

The methodological strategies adopted in the above studies have optimized the grind-
ing surface quality to varying degrees, but few investigations have been conducted to
evaluate the superiority and inferiority of the microscopic data on the machined surface.
This study intends to explore the typical physical characteristics of high-quality surfaces
through the coefficient of friction, under the premise of non-pollution to the environment
and controllable operation. A multi-objective numerical function for comprehensive evalu-
ation of the grinding surface was established. The value of the coefficient of friction directly
affects workpiece surface quality, which is conducive to the improvement of the service
performance of processed parts. Within a suitable range of the coefficient of friction, a
uniformly distributed and periodic machined surface profile with a Ra of about 0.3 µm
can be obtained. This research has great significance for solving problems of high surface
quality and low energy consumption in grinding.
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2. Materials and Methods
2.1. Experimental Equipment

A grinding experimental platform was established for multi-feature signal acquisition;
see Figure 1a. It mainly consisted of a CNC surface grinder (SMART-B818III, Falcon
Machine Tools Co., Ltd., Changhua County, Taiwan), a portable power cell (PPC-3, Load
Controls Inc., Sturbridge, MA, USA), and a multicomponent dynamometer (Type 9527B,
Kistler Holding AG, Winterthur, Switzerland). The PPC-3 has three Hall-effect current
sensors and three voltage sensors. The outputs of the PPC-3 are 0–20 mA in current and
0–10 V in voltage. The in-process current and voltage signals were measured by the PPC-3,
and effective powers were calculated from the measured data. The dynamometer, the
measurement error of which is one percent, can simultaneously measure force and torque
in the X, Y, and Z axes of the grinder. Power signals and force signals were collected online
at 1000 Hz and 2000 Hz, respectively. The surface roughness Ra and surface profile curve
were measured by a roughness tester (TIME3200, TIME Group Inc., Beijing, China). After
each grinding test, six positions on the machined surface were selected to measure the
roughness Ra; see Figure 1b. Ignoring the maximum and minimum values, the other four
measured data points were averaged for each set of experiments. The workpiece material
was a quartz fiber-reinforced silica ceramic composite with dimensions of 50 × 50 × 25 mm.
A resin-bonded diamond flat grinding wheel was used with an outer diameter of 200 mm
and a thickness of 10 mm. The basic size of abrasive grains was about 20 µm [25].
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Figure 1. Grinding test configuration and data measurement.

2.2. Experimental Scheme

The grinding surface quality, energy consumption, force, and cost are influenced by
the linear speed of the grinding wheel vs (m/min), workpiece infeed speed vw (mm/min),
and grinding depth ap (µm). In this work, a full factorial experiment with these three factors
and five levels was designed, and three-fifths of the total tests were randomly selected.
The linear speed of the grinding wheel was varied from 1000 m/min to 1800 m/min, the
workpiece infeed speed was varied from 1000 mm/min to 5000 mm/min, and the grinding
depth was varied from 4 µm to 12 µm, as listed in Table 1.

Table 1. Experimental parameters of grinding tests.

Parameters Values

The linear speed of the grinding wheel vs (m/min) 1000(S1), 1200(S2), 1400(S3), 1600(S4), 1800(S5)

Workpiece speed vw (mm/min) 1000(F1), 2000(F2), 3000(F3), 4000(F4), 5000(F5)

Grinding depth ap (µm) 4(D1), 6(D2), 8(D3), 10(D4), 12(D5)
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2.3. Signal Processing
2.3.1. Grinding Force Signal Processing

The surface quality and energy consumption can be affected by grinding forces directly.
It is critical to analyze and process three-component force signals. The normal force is
closely related to the compressive strength of the grinding wheel and system rigidity. The
tangential force has a direct impact on effective power in grinding. The axial force is
the force along the axis of the grinding wheel. Insufficient contact signal removal, drift
signal correction, signal denoising strategy, and effective normal force signal acquisition
have been elaborated on in previous work [26]. Figure 2 shows the processing method of
grinding force signals. It is observed in Figure 2a that the signals of tangential force and
normal force are oppositely distributed along the time axis. The negative value of tangential
force indicates the direction of the force. A discrete-time Fourier transform (DTFT) was
employed to monitor the frequency domain curves of the force as follows:

X(ejω) = ∑n−1
n=0 x[n] · e−jωn (1)

where X(ejω) is the frequency domain function of the grinding force signal, x[n] is the
time series of the grinding force signal, n is the index of the position of the grinding force
data point, j is the imaginary unit, and ω is the grinding force signal frequency variable.
The frequency distribution was analyzed to establish a low cut-off frequency value. The
Chebyshev filter transfer function is as follows:

|GM(jω)|2 =
1

1 + ε2T2
M(ω/ω0)

(2)

where ω0 is the grinding force signal’s expected cut-off frequency, ε is the grinding force
signal wave coefficient which is a positive number less than 1, and TM is a Chebyshev
polynomial of order M.

Lubricants 2023, 11, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 2. The processing method of grinding force signals (vs = 1000 m/min, vw = 1000 mm/min, ap = 10 

μm). 

2.3.2. Grinding Power Signal Processing 

Grinding wheel abrasives with a large negative angle make the grinding process con-

sume more energy than other machining processes under the same material removal rate 

[27,28]. Visualization of energy consumption by monitoring power signals online is bene-

ficial to the energy conservation of machine tools. The active power is the actual and irre-

versible power of the machine tool. It reflects the amount of electric energy converted into 

other energy in unit time. The extraction strategy of the active power signal is crucial for 

the analysis of power signals detected during grinding. 

In order to fully collect the power signal during grinding, PPC-3 was used to measure 

the power signal online in advance; see Figure 3a. The power signal was filtered through 

Equations (1) and (2) in the air grinding stage to achieve a denoising operation; see Figure 

3b. The power signal segments during grinding were obtained by longitudinal line selec-

tion. The non-grinding power signal under the longitudinal line was removed. The mini-

mum effective power during grinding was determined by a horizontal line; see Figure 3c. 

All arrays in the power signal larger than the value were extracted by the program to form 

an effective power array; see Figure 3d. Based on the effective power and time arrays, the 

grinding active energy consumption can be obtained by numerical integration: 

active
0

= ( )
T

E P t dt  (3) 

where Eactive is the active power, P(t) is the power signal, and t is the time. 

  
(a) Original signal (b) Filtered signal 

  
(c) Effective normal force (d) Effective tangential force 

 

0 10 20 30 40 50

-5

0

5

10

15

20

25

30

-10

34

 Normal force  Tangential force

G
ri

n
d

in
g 

fo
rc

e 
(N

)

Time (s)
0 10 20 30 40 50

-10

-5

0

5

10

15

20

25

30
 Filtered normal force  Filtered tangential force

G
ri

n
d

in
g 

fo
rc

e 
(N

)

Time (s)

0 5 10 15 20 25 30

8

12

16

20

Ef
fe

ct
iv

e 
n

o
rm

al
 f

o
rc

e
 (

N
)

Effective grinding time (s)

Minimum value Fmin=8 N

Effective grinding time 29.899 s 

0 5 10 15 20 25 30
-3.2

-2.8

-2.4

-2.0

-1.6

-1.2
Maximum value Fmax = -1.2 N

Ef
fe

ct
iv

e 
ta

n
ge

n
ti

al
 f

o
rc

e 
(N

)

Effective grinding time (s)

Figure 2. The processing method of grinding force signals (vs = 1000 m/min, vw = 1000 mm/min,
ap = 10 µm).
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The original force signals were filtered at an expected cut-off frequency, as shown
in Figure 2b. Afterwards, a local amplification component function was used to find the
minimum normal force and maximum tangential force. The signals far away from the
mini/max value were extracted by the for loop. For tangential force, the absolute value
of the extracted signal was taken. By removing invalid interval signals, an effective force
signal was formed; see Figure 2c,d. The effective grinding time for each test can be obtained
from the effective force signals. The mean coefficient of friction was calculated from the
average ratio of the effective tangential force to the effective normal force.

2.3.2. Grinding Power Signal Processing

Grinding wheel abrasives with a large negative angle make the grinding process
consume more energy than other machining processes under the same material removal
rate [27,28]. Visualization of energy consumption by monitoring power signals online is
beneficial to the energy conservation of machine tools. The active power is the actual and
irreversible power of the machine tool. It reflects the amount of electric energy converted
into other energy in unit time. The extraction strategy of the active power signal is crucial
for the analysis of power signals detected during grinding.

In order to fully collect the power signal during grinding, PPC-3 was used to measure
the power signal online in advance; see Figure 3a. The power signal was filtered through
Equations (1) and (2) in the air grinding stage to achieve a denoising operation; see Figure 3b.
The power signal segments during grinding were obtained by longitudinal line selection.
The non-grinding power signal under the longitudinal line was removed. The minimum
effective power during grinding was determined by a horizontal line; see Figure 3c. All
arrays in the power signal larger than the value were extracted by the program to form
an effective power array; see Figure 3d. Based on the effective power and time arrays, the
grinding active energy consumption can be obtained by numerical integration:

Eactive =
∫ T

0
P(t)dt (3)

where Eactive is the active power, P(t) is the power signal, and t is the time.
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3. Results
3.1. Experimental Results

A full-factor experiment of vs, vw, and ap was designed in five levels. A total of
125 sets of experimental parameters were obtained. Three-fifths of experimental groups,
i.e., 75 groups, were selected stochastically to generate irregular samples. The processed
force signal and power signal were analyzed and the experimental results are listed in
Table 2. It includes surface roughness Ra (µm), coefficient of friction u (Ft/Fn), active energy
consumption Ea (J), and effective grinding time T (s).

Table 2. Grinding parameters and output results.

No.
Inputs Outputs

vs (m/min) vw (mm/min) ap (µm) Ra (µm) u Ea (J) T (s)

1 1000 1000 4 0.333 0.196 520.824 29.945
2 1000 1000 10 0.400 0.227 538.088 29.690
3 1000 1000 12 0.423 0.120 626.641 29.963
4 1000 2000 4 0.426 0.159 119.739 14.982
5 1000 2000 6 0.419 0.236 147.500 14.956
6 1000 2000 8 0.424 0.181 168.877 15.019
7 1000 3000 6 0.433 0.106 72.429 10.004
8 1000 3000 8 0.465 0.132 83.263 9.987
9 1000 3000 12 0.513 0.116 116.740 9.934
10 1000 4000 4 0.427 0.130 58.609 7.510
11 1000 4000 10 0.436 0.164 95.176 7.389
12 1000 4000 12 0.529 0.156 115.372 7.481
13 1000 5000 6 0.462 0.069 72.429 5.975
14 1000 5000 8 0.466 0.177 76.690 6.342
15 1000 5000 12 0.539 0.144 96.517 5.958
16 1200 1000 4 0.305 0.140 486.283 30.353
17 1200 1000 6 0.390 0.140 511.823 30.042
18 1200 1000 8 0.401 0.134 567.206 29.926
19 1200 2000 8 0.411 0.148 167.374 11.738
20 1200 2000 10 0.453 0.251 216.624 15.019
21 1200 2000 12 0.467 0.124 317.837 15.034
22 1200 3000 4 0.440 0.053 63.669 9.980
23 1200 3000 10 0.464 0.112 71.240 9.780
24 1200 3000 12 0.479 0.111 202.890 9.967
25 1200 4000 6 0.469 0.126 69.445 7.453
26 1200 4000 8 0.501 0.127 102.964 7.454
27 1200 4000 12 0.491 0.126 108.551 7.365
28 1200 5000 4 0.445 0.112 44.026 5.310
29 1200 5000 10 0.481 0.230 46.059 5.754
30 1200 5000 12 0.533 0.126 69.332 5.961
31 1400 1000 6 0.376 0.107 518.141 29.710
32 1400 1000 8 0.400 0.167 544.445 28.751
33 1400 1000 12 0.415 0.135 568.541 28.738
34 1400 2000 4 0.313 0.071 136.096 12.854
35 1400 2000 10 0.397 0.303 146.993 13.189
36 1400 2000 12 0.437 0.260 159.001 14.559
37 1400 3000 6 0.394 0.060 162.067 9.769
38 1400 3000 8 0.432 0.149 189.511 9.805
39 1400 3000 12 0.440 0.131 144.624 9.943
40 1400 4000 4 0.349 0.180 73.428 7.117
41 1400 4000 10 0.416 0.269 91.638 7.341
42 1400 4000 12 0.475 0.149 130.246 7.446
43 1400 5000 4 0.418 0.096 43.957 6.001
44 1400 5000 6 0.430 0.218 67.381 5.984
45 1400 5000 8 0.452 0.155 84.441 5.334
46 1600 1000 4 0.237 0.205 468.124 29.853
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Table 2. Cont.

No.
Inputs Outputs

vs (m/min) vw (mm/min) ap (µm) Ra (µm) u Ea (J) T (s)

47 1600 1000 10 0.328 0.233 548.139 30.351
48 1600 1000 12 0.403 0.175 564.990 30.643
49 1600 2000 6 0.366 0.098 138.741 15.092
50 1600 2000 8 0.388 0.343 151.043 15.099
51 1600 2000 12 0.419 0.135 178.248 15.042
52 1600 3000 4 0.311 0.064 97.888 9.906
53 1600 3000 10 0.400 0.108 111.350 9.979
54 1600 3000 12 0.440 0.081 125.653 9.958
55 1600 4000 4 0.341 0.102 27.717 7.381
56 1600 4000 6 0.434 0.112 37.726 7.533
57 1600 4000 8 0.432 0.143 89.867 7.475
58 1600 5000 8 0.450 0.141 47.901 6.010
59 1600 5000 10 0.480 0.146 63.151 5.969
60 1600 5000 12 0.471 0.141 76.120 5.944
61 1800 1000 6 0.371 0.142 492.783 30.104
62 1800 1000 8 0.393 0.154 510.063 29.023
63 1800 1000 12 0.344 0.059 688.878 30.22
64 1800 2000 4 0.287 0.139 116.907 14.702
65 1800 2000 10 0.373 0.469 144.436 14.891
66 1800 2000 12 0.416 0.174 165.680 14.857
67 1800 3000 4 0.297 0.203 71.907 9.950
68 1800 3000 6 0.393 0.355 74.378 10.046
69 1800 3000 8 0.402 0.227 75.018 10.102
70 1800 4000 6 0.426 0.106 66.879 7.464
71 1800 4000 8 0.404 0.147 69.806 7.546
72 1800 4000 12 0.419 0.137 112.556 7.619
73 1800 5000 4 0.326 0.197 45.776 5.534
74 1800 5000 10 0.413 0.228 62.568 6.008
75 1800 5000 12 0.466 0.103 78.477 5.927

3.2. Interaction among Evaluation Indicators

The evaluation indicators include surface roughness, coefficient of friction, active
energy consumption, and effective grinding time, as listed in Table 2. Exploring the
relationship between evaluation indicators is beneficial to promoting the grinding process
toward a goal of high surface quality with high efficiency and low energy consumption.
The coefficient of friction is a comprehensive reflection of tangential force and normal force,
which may affect the surface quality. Another parameter that has a big influence on surface
quality is the grinding depth. It is significant to investigate the relationship between the
coefficient of friction and surface roughness under changes in the grinding depth for the
same linear speed of the grinding wheel and the same workpiece infeed speed. A total of
21 sets of experimental data from seven groups were selected and plotted; see Figure 4.
It shows that with an increasing grinding depth, the coefficient of friction increased and
then decreased, and the surface roughness increased. It is clear that a high coefficient of
friction leads to bad surface roughness. The smallest surface roughness is not related to
the smallest coefficient of friction for each group. Therefore, it is crucial to analyze the
correlation between the coefficient of friction and surface roughness.
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Figure 4. The relationship between coefficient of friction and surface roughness.

Compared with the linear speed of the grinding wheel and grinding depth, the
workpiece infeed speed has a greater impact on the active energy consumption and effective
grinding time [29]. The relationship between active energy consumption and effective
grinding time was analyzed. A total of 21 experimental sets in seven control groups were
selected and plotted in Figures 5 and 6. It was found that the smaller the infeed speed of
the workpiece, the more active energy and grinding time were consumed. Better surface
roughness was always associated with a larger active energy consumption or a longer
effective grinding time.
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Figure 5. The relationship between active energy consumption and surface roughness.
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Figure 6. The relationship between effective grinding time and surface roughness.

3.3. Mathematical Modeling

In the controllable numerical control range, the different interaction patterns between
the evaluation indicators show different expression forms under different processing con-
ditions. Based on the grinding input elements, the output results of surface roughness,
coefficient of friction, active energy consumption, and effective grinding time were nu-
merically modeled. Multiple nonlinear regression refers to the unknown independent
variables and unknown dependent variables presenting nonlinear characteristics upon
regression. Realizing the optimal collocation of multiple independent variables to predict
or evaluate dependent variables can improve the validity of the prediction results. In
the grinding process, the input parameters and the evaluation results are nonlinear rela-
tionships. In this work, a novel method was proposed to judge and identify the function
types of independent variables of grinding regarding the grinding evaluation indicators. In
order to determine the multivariate nonlinear functional form, logarithms were taken on
both sides of functions and transformed into a linear correlation function. The correlation
level statistics were then calculated to determine the parameters under the corresponding
mathematical mapping model. The parameter was confirmed and numerical modeling
was established. The matrix calculation process is shown in Equation (4).

lgδ ε1 ε2 ε3
lgη α1 α2 α3
lgγ β1 β2 β3
lgτ ρ1 ρ2 ρ3




1
lgvs
lgvw
lgvp

 =


lgRa
lgu
lgEa
lgT

 (4)

where the 4 × 4 matrix contains the relevant parameters of each evaluation indicator to
be identified. The determination of parameters can be calculated from statistical data and
bias regression coefficients by Minitab. Taking 65 groups of grinding experimental data as
training samples, the multivariate nonlinear numerical functions of surface roughness Ra,
coefficient of friction µ, active energy consumption Ea, and effective grinding time T were
constructed. The multivariate nonlinear numerical model of the four evaluation indicators
is shown below.

Ra = 0.8112 · v−0.2893
si · v0.1277

wi · α0.2014
pi (i = 1, 2 . . . 65) (5)
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µ = 0.0114 · v0.4675
si · v−0.0236

wi · α−0.3164
pi (i = 1, 2 . . . 65) (6)

Ea = 18234879 · v−0.0901
si · v−1.4878

wi · α0.2436
pi (i = 1, 2 . . . 65) (7)

T = 30370.3 · v0.0016
si · v−1.0054

wi · α−0.0004
pi (i = 1, 2 . . . 65) (8)

Taking the other 10 experimental sets as test samples, the predicted surface rough-
ness, coefficient of friction, active energy consumption, and effective grinding time were
compared with the actual evaluation results, as shown in Figure 7.
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Figure 7. Validity verification of numerical model. (a) Validation of the surface roughness numerical
model. (b) Validation of the coefficient of friction numerical model. (c) Validation of the active energy
consumption numerical model. (d) Validation of the effective grinding time numerical model.

It can be seen that the predicted results of the established multivariate nonlinear
numerical model were in good agreement with the experimental data. The correlation
coefficients of surface roughness, coefficient of friction, active energy consumption, and
effective grinding time were all high, being 0.89, 0.94, 0.97, and 0.98, respectively. The es-
tablished numerical model has high reliability and can be used for the following modeling.

3.4. Mathematical Modeling Integration

Based on the multivariate numerical model, an optimized evaluation strategy for
grinding-based machining was proposed and constructed to solve a multi-objective op-
timization problem in this work. In general, a single solution cannot guarantee optimal
performance on multiple objectives. And the conflicting nature of the objectives makes it
impossible for the algorithm to have a single optimal solution but, instead, a set of relatively
good solutions, i.e., Pareto front. The MOEA/D algorithm provides an idea to decompose
a multi-objective optimization problem (MOP) into multiple single-objective subproblems
through a set of weight vectors. These objectives are optimized simultaneously and each
subproblem is optimized by itself using the adjacent population of each subproblem. The
algorithm first assigns weight vectors to all individuals randomly generated and uniformly
distributed in the population to determine the neighborhood of each subproblem. The
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subproblem selects individuals in a determined neighborhood for crossover variation to
generate new solutions. The individuals of the parent generation in the neighborhood are
updated using a specific aggregation function for the next cycle. The best non-dominated
individual in each generation is selected and retained as an optimal solution. All opti-
mal solutions are filtered out through continuous iterations of solutions to produce an
optimal solution.

An objective function F(x) was established and minimized by considering the following
parameters: Ra, µ, Ea, and T. In this study, the number of decision variables was set to
be three (vs, vw, and ap), and the number of target variables was four (Ra, µ, Ea, and T).
The mathematical description of minimizing MOP under unconstrained conditions can be
written as: 

Minimize F(x) =[Ra(x), µ(x), Ea(x), T(x)]

subject to :


1000 ≤ x1 ≤ 1800
1000 ≤ x2 ≤ 5000

4 ≤ x3 ≤ 12

T

(9)

where x = (x1, x2, x3)∈R3 is a three-dimensional decision variable and F(x)∈R4 is a four-
dimensional objective variable. The sub-objective function preferences are in order from
heavy to light. It is worth noting that the coefficient of friction is a two-level trend. Therefore,
the numerical objective function for the coefficient of friction is optimized by seeking the
maximum and minimum as an objective for multi-objective optimization.

3.4.1. Weight Vector Generation and Aggregation Method for MOEA/D Algorithm

The MOEA/D algorithm uses a simplex lattice point design method to generate the
weight vectors of individuals in the population [30]. And it is particularly critical for the
algorithm to find an optimal solution, and a relatively uniformly distributed weight vector
corresponds to a higher-quality solution. The simplex lattice point design method needs
to determine the parameter H (a positive integer) that affects the weight vector. Some
uniformly distributed points are selected on the plane composed of w1 + w2 +... + ws = 1,
where s is the number of objective functions. The generated weight vector requirements are
given by

wr
1 + wr

2 + · · ·wr
s = 1 (10)

wr
i ∈

{
0
H

,
1
H

,
2
H

, · · ·H
H

}
, i = 1, 2, · · ·, sr = 1, 2, . . . , N (11)

where H is a parameter that affects the weight vector and is defined by the decision maker,
s is the target number/weight vector dimension, wi

j is the i-th component of the j-th weight
vector. The number of population size/weight vectors satisfies the following equation:

N = CS−1
H+S−1 (12)

The generation of weight vectors in MOEA/D algorithm requires the generation of
a neighborhood by calculating the Euclidean distance of individuals in the population
and the subsequent update of the solution based on the neighboring individuals in the
neighborhood. The strategy used to update the solution is to calculate the value of the
same aggregation function to retain both solutions on merit. The Tchebycheff approach is a
nonlinear multi-objective aggregation method [31] with an aggregation function defined
as follows: {

Minimize gTA = (x|w, z∗ ) = max
1≤i≤m

{
wi
∣∣Fi(x)− z∗i

∣∣}
subject to x ∈ Ω

(13)

where z* = min{F(x)|x∈Ω}, i∈{1,2, . . ., s}, w = (w1,w2, . . ., wm)T is the weight vector that
satisfies wi ≥ 0. Each solution derived by Equation (13) maps to a Pareto optimal solution x*
in the original MOP. The decision maker can choose a different weight vector. When dealing
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with high-dimensional problems, the TA method can limit the convergence-receiving area
and better ensure the convergence of the population.

3.4.2. MOEA/D Algorithm Framework

The MOEA/D algorithm obtains individual neighborhoods by computing the Eu-
clidean distance between the weight vectors of individuals within the population. The
relationship between the generated neighborhoods and the subproblems was used to
perform simultaneous optimization of the subproblems, so that the individuals within
the population keep approximating the ideal Pareto optimal surface. To measure the
convergence and distribution of the algorithm, Generational Distance (GD) and Inverted
Generational Distance (IGD) were used as evaluation metrics:

GD(P, P∗) =

√
∑v∈P (d(v, p))2

|P| (14)

IGD(P∗, P) = ∑V∈P∗ d(v, p)
|P| (15)

di =
{
∑s

k=1[Fki(x)− Fkmin(x)]2
}1/2

(16)

where P* is a set of points uniformly distributed over the Pareto front, p is a set of optimal
solution sets obtained by the algorithm for approximating the Pareto front, di is the i-th
individual’s Euclidean distance in this iteration, Fki(x) is the k-th objective function value
of the i-th individual, and Fkmin(x) is the minimum value of the m-th objective function of
individuals.

The parent individual selection, the child individual crossover generation, and the
population update of the MOEA/D algorithm are all carried out within the neighborhood.
This method enables the rapid sharing of good genes with other individuals near the
individual, which greatly enhances the search efficiency of the algorithm [32]. The multi-
objective optimization strategy flow for the grinding process using the MOEA/D algorithm
is shown in Figure 8.
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Figure 8. MOEA/D algorithm multi-objective optimization process.

The initial population P0 satisfying the constraints of size Np was randomly generated.
Np initial weight vectors wi

j were generated. The set of neighbors Bi, representing the
evolved parent individuals, was selected from d according to the Euclidean distance
minimization rule. Then, the ideal point z* and the empty external file S* were set. The
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fitness function values Ra(x), u(x), Ea(x), and T(x) were calculated for the parent individual.
All fitness functions were selected as the reciprocal of the sub-objective function. A weight
vector was assigned to each sub-objective function. Genetic recombination on individual
Xi was then performed as follows: two randomly selected individuals from Bi were cross-
mutated to generate new sub-individuals. The ideal point was updated by comparing the
ideal point z* with the objective function value Fr(Xi, new) for the offspring individual. All
found non-dominated solutions were added to the external file S* during the evolutionary
process. All individuals in S* that were dominated by new individuals were removed,
leaving all solutions in S* as non-dominated solutions. The stopping criterion was satisfied
and the output S* was used as the Pareto optimal solution set for this optimization problem.

3.5. Optimization Results for the Grinding Process

The parameters set the population size as P0 = 90, the crossover probability as 0.88, the
variation probability as 0.07, the maximum number of iterations as 100, and the real-time
data update period as 1 s [33]. Based on the above parameter settings, the expert weight
values were obtained as (0.64, 0.26, 0.06, 0.04), (0.52, 0.34, 0.09, 0.05), (0.54, 0.15, 0.24, 0.07),
and (0.53, 0.20, 0.05, 0.22), respectively. Then, the equation for the coefficient of friction
of the sub-function in Equation (6) was maximized and the value of the expert vector
obtained was (0.56, 0.36, 0.05, 0.03). The weight ratio of each sub-objective numerical
function shows that the surface roughness sub-function has the largest percentage. This
indicates surface roughness is crucial in multi-objective optimization. A good sub-objective
function indicates a relatively high weight of the objective function. This is consistent with
the adversarial nature between sub-objective functions in multi-objective functions.

It is impossible that all indicators satisfy the optimum at the same condition. Based on
the weight vector proportion of each sub-function obtained by the MOEA/D algorithm,
the genetic algorithm was used to optimize the objective function. The specific parameter
settings and process of the genetic algorithm are described in our previous work [34]. The
five sets of weight vectors objectively obtained by the MOEA/D algorithm were grouped.
The results of the genetic algorithm-optimized grinding elements are listed in order from 1
to 5; see Table 3. According to the vector weight grouping category, the three optimized
input elements of grinding were brought into Equation (5) in order. The theoretical surface
roughness was 0.315 µm, 0.307 µm, 0.370 µm, 0.365 µm, and 0.311 µm. The data analysis
reveals that the surface roughness predicted under the premise of minimizing the surface
roughness sub-function (the first set of data) is not the minimum. The numerical functions
of each sub-objective were brought in turn under the optimized parameter settings as
shown in Table 3. The relevant data were obtained as shown in Figure 9. It can be seen
that the weight vectors of the third and fourth groups have the best performance in terms
of active energy consumption and effective grinding time, respectively. Attributed to the
increased proportion of the coefficient of friction sub-function, the weight vectors of the
second and fifth groups perform well in terms of surface quality. It is concluded that under
the dominance of the surface roughness numerical function, the larger proportion of the
numerical function for the coefficient is, the smaller the value of surface roughness from
multi-objective optimization is, and the better the surface processing quality is.

Table 3. Grinding element optimization results.

Grinding Elements
Weight Vector Grouping Categories

1 2 3 4 5

vs (m/min) 1560.3760 1638.3838 1753.1953 1765.5965 1724.2324

vw (mm/min) 1094.4094 1033.6033 4708.3708 4647.1647 1286.8286

ap (µm) 4.1712 4.0624 4.3400 4.1208 4.1016
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Figure 9. Sub-objective function values based on optimized parameters.

Although the weight vectors of the second and fifth groups can achieve better per-
formance, their acquisition paths are based on the minimum and maximum coefficient of
friction functions, respectively. The suitable interval for the coefficient of friction obtained
by the genetic algorithm was 0.197~0.216, in which the surface roughness was small. The
coefficients of friction obtained from the second and fifth sets of optimized parameters are
0.198 and 0.201, respectively. Both can be considered optimal coefficients of friction.

As shown in Figure 9, the surface quality and effective machining time show an oppo-
site trend. This study optimized the weight ratio of surface roughness, coefficient of friction,
active energy consumption, and effective grinding time using the MOEA/D algorithm,
which was used as the objective function for parameter adjustment. The optimized parame-
ters can greatly reduce the effective machining time under the premise of guaranteeing high
grinding surface quality, without the need for repeated process adjustment. The advantage
of this method is that the optimal surface finish quality is achieved while minimizing the
active energy consumption and the machining time required for that surface quality.

4. Discussion
4.1. Comprehensive Evaluation of Optimization Parameters
4.1.1. Variation Coefficient and Surface Profile Autocorrelation Analysis

Workpiece surface quality is an important criterion for assessing the grinding process’s
performance [35]. Surface roughness is an important parameter of workpiece surface
quality [36]. It reflects the unevenness of a machined surface with small spacing and tiny
peaks and valleys [37]. Its measurement calculation is an average value determination of
least squares. This may lead to a situation where even if the surface roughness is small, the
peaks and troughs may differ greatly from the average roughness, indicating poor surface
uniformity. So, the idea of a variation coefficient in mathematical statistics is introduced
considering the holistic nature of the workpiece. The variation coefficient is used as an
evaluation criterion for the degree of data dispersion with the following equation:

C.V = (SD/Ra)× 100% (17)

where SD is the standard deviation of the measurement location.
The coefficient of friction reflects the ratio between the tangential force and the direc-

tional force. An appropriate coefficient of friction could make the workpiece surface profile
contain both periodic and random components. The surface profile of a workpiece is a very
complex random signal [38], and the surface roughness Ra cannot express the full informa-
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tion of its microscopic morphology. Therefore, an autocorrelation analysis of the workpiece
surface profile is used for the microscopic analysis of workpiece surface quality [39,40].
The autocorrelation calculation and digital evaluation formula are as follows:

Rxx(τ) = 1/D
∫ D

0
x(l)x(l + τ)dl (18)

where τ is the transverse displacement of the profile curve, D is the evaluation length, and
x(l) and x(l + τ) are the contour heights at corresponding coordinates. The autocorrelation
function Rxx(τ) is a similarity measure of the workpiece surface profile and usually reaches
its maximum value at τ = 0. For a completely random surface profile, Rxx(τ) tends to
zero when τ increases gradually. For a periodic profile, the Rxx(τ) curve is also periodic
and keeps oscillating steadily as τ increases. For a random surface profile mixed with
periodicity, Rxx(τ) gradually decays until it becomes a stable periodic oscillation.

4.1.2. Experimental Verification of Optimized Parameters

Under the same experimental conditions, the optimized machining parameters in
Table 3 were used as input to the grinding process. The surface profile, roughness values,
and variation coefficient of the workpiece under the above five sets of machining parameters
were plotted in Figure 10.
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Figure 10. Surface profile curve, surface roughness, and variation coefficient. (a) Experimental re-
sults under optimized parameter 1 (vs = 1560.3760 m/min, vw = 1094.4094 mm/min, ap = 4.1712 µm).
(b) Experimental results under optimized parameter 2 (vs = 1638.3838 m/min, vw = 1033.6033 mm/min,
ap = 4.0624 µm). (c) Experimental results under optimized parameter 3 (vs = 1753.1953 m/min,
vw = 4708.3708 mm/min, ap = 4.3400 µm). (d) Experimental results under optimized parameter 4
(vs = 1765.5965 m/min, vw = 4647.1647 mm/min, ap = 4.1208 µm). (e) Experimental results under
optimized parameter 5 (vs = 1724.2324 m/min, vw = 1286.8286 mm/min, ap = 4.1016 µm).

The variation coefficient is calculated from Equation (17). The profile curves are four
surface profile curves stitched together. The experimental roughness in Figure 10 has the
same change pattern as the predicted roughness values in Figure 9. Both the predicted
and experimental values of roughness reach the minimum in the second and fifth groups.
The established numerical model accuracy of the multi-objective function is verified. And
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the distribution uniformity of data points on the surface contour line is verified by the
magnitude of the variation coefficient values. It was found that the highest surface quality
cannot be achieved when the numerical functions of surface roughness, active energy
consumption, or effective grinding time were too dominant. Both the second and the fifth
groups achieved the best experimental results using the proportionally superior coefficient
of friction’s numerical function. It can be seen that an appropriate coefficient of friction is
beneficial to profile uniformity and quality of roughness.

Figure 11 illustrates the uniformity of the data point distribution on the machined
surface in terms of both the ceramic surface profile and the line texture curve. Figure 11a
shows the 3D shape of the actual machined surface, while Figure 11b shows a surface
texture curve. It can be seen from three-dimensional perspectives that the data points of
the machined surface have a good uniformity of distribution and the surface machining
quality is good. The surface profile roughness value is 0.298 µm and the line roughness
value is 0.276 µm.
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Figure 11. Ceramic surface profile and line texture curve (vs = 1638.38 m/min, vw = 1033.60 mm/min,
ap = 4.06 µm). (a) 3D topography of the machined surface. (b) Surface texture peak-to-valley curve.

Autocorrelation function analysis was performed on the experimental grinding surface
profile of the workpiece based on the optimized parameter settings. Figure 12 shows the
autocorrelation function profile curves for each optimized parameter condition, from which
the following rules can be summarized:

Rule 1: The autocorrelation function profiles of the five operating conditions reached
the maximum value at τ = 0. The maximum values for the five working conditions were
0.702, 0.561, 0.909, 1.228, and 0.670, respectively. The maximum and minimum values of
the autocorrelation coefficient were obtained for the effective machining time-dominated
and friction coefficient-dominated operating conditions, respectively. It can be inferred that
a smaller effective grinding time indicated a larger longitudinal parameter value of the
machined surface and a worse surface quality.

Rule 2: The autocorrelation function curves obtained for all five working conditions
decayed with an increase in the horizontal displacement τ. It indicated that there was
a randomness signal in all five profile curves. In contrast, the autocorrelation curves of
the workpiece surface in the first, third, and fourth groups were smooth and had very
few wave fragments. It indicated that there were small periodic signals in the profiles of
multi-objective functions dominated by surface roughness, active energy consumption,
and effective grinding time. Small periodic signals of the contour curve can also be seen in
the case of poor surface quality of the workpiece.

Rule 3: The autocorrelation function of the surface profile had a high-frequency oscil-
lation (the second and fifth groups) in cases where the coefficient of friction’s numerical
function was proportionally dominant. The machined surface profile curve has more
periodicity components, and the surface quality achieves the best results. It can be demon-
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strated that the coefficient of friction is important for the periodic variation of microscopic
dimensions of the workpiece surface profile.
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Figure 12. Surface profile autocorrelation function curves under multivariate optimization param-
eters. (a) Autocorrelation function curve under optimized parameter 1 (vs = 1560.3760 m/min,
vw = 1094.4094 mm/min, ap = 4.1712 µm). (b) Autocorrelation function curve under optimized
parameter 2 (vs = 1638.3838 m/min, vw = 1033.6033 mm/min, ap = 4.0624 µm). (c) Autocorrela-
tion function curve under optimized parameter 3 (vs = 1753.1953 m/min, vw = 4708.3708 mm/min,
ap = 4.3400 µm). (d) Autocorrelation function curve under optimized parameter 4 (vs = 1765.5965 m/min,
vw = 4647.1647 mm/min, ap = 4.1208 µm). (e) Autocorrelation function curve under optimized
parameter 5 (vs = 1724.2324 m/min, vw = 1286.8286 mm/min, ap = 4.1016 µm).

Figure 13 shows the analysis of the periodic oscillation component of the signal in
terms of ceramic surface profile and line texture curves. Figure 13a does not visualize
the periodic components, so it is expected that the periodic components are found using
the linear surface texture curve. A section of the surface texture curve (length 300 µm)
in Figure 13a was selected because too many data points in the line were not conducive
to the search for periodic oscillation signals. Figure 13b shows an enlarged view of the
linear surface texture profile in Figure 13a. From Figure 13b, it can be seen that there are
three levels of periodic oscillation signals (decreasing amplitude, light blue arrow, and blue
arrow). The existence of periodic oscillation signals makes the surface obtain better surface
quality (Figure 13a can be seen intuitively). The surface profile roughness value and the
linear surface texture roughness value are 0.314 µm and 0.288 µm, respectively.
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Figure 13. Ceramic surface profile and linear texture curve (vs = 1724.23 m/min,
vw = 1286.83 mm/min, ap = 4.10 µm). (a) 3D topography of the machined surface. (b) Surface
texture peak-to-valley curve.

The analysis in this section reveals that the coefficient of friction is related to the
roughness of the machined surface. By determining the appropriate coefficient of friction, it
is possible to control and regulate the quality of the material production process indicators,
to meet the requirements for the use of processed parts and products, which is conducive to
the normal production operations of grinding enterprises. When the value for the coefficient
of friction is taken between 0.197 and 0.216, the surface roughness of the workpiece is
taken between 0.297 µm and 0.311 µm, the value of active energy consumption is taken
between 318.769 J and 441.773 J, and effective grinding time is taken between 24.890 s
and 30.207 s. The values for the coefficient of friction directly affect the roughness of
the machined surface, the active energy consumption, and the effective grinding time,
providing important theoretical guidance for the grinding process and providing reference
significance for promoting the further development of friction mechanisms.

5. Conclusions

The performance of grinding surfaces directly affects the accuracy, service performance,
and surface integrity of workpieces. A multi-objective numerical function was established
by fusing and analyzing the collected multi-feature signals, taking into account the surface
quality, coefficient of friction, active energy consumption, and effective grinding time. The
following conclusions can be drawn:

i. The four sub-objective function models of surface roughness, coefficient of friction,
active energy consumption, and effective grinding time are established with good
accuracy. The correlation coefficients of them are high, with values of 0.89, 0.94, 0.97,
and 0.98, respectively;

ii. The weight vectors of sub-objective functions were optimized by the MOEA/D al-
gorithm in the multi-objective numerical function and two sets of optimal weight
vectors were obtained. The weight vectors of (Ra, µ, Ea, T) are (0.52, 0.34, 0.09, 0.05)
and (0.56, 0.36, 0.05, 0.03). The surface roughness Ra and coefficient of friction µ show
a relatively heavy weight;

iii. Different working parameters were optimized by GA as grinding machine inputs.
The optimal input parameters are experimentally verified to be (1638.38 m/min,
1033.60 mm/min, 4.06 µm) and (1724.23 m/min, 1286.83 mm/min, 4.10 µm). The
surface roughness, coefficient of friction, active energy consumption, and effective
grinding time obtained with the two sets of input parameters are (0.297 µm, 0.199,
441.773 J, 30.207 s) and (0.311 µm, 0.205, 318.769 J, 24.890 s), respectively;

iv. The coefficient of friction with a range of 0.197~0.216 was beneficial to the surface
quality of the workpiece. Whether the friction coefficient tends to 0.197 or 0.216
will produce knowledge of chaos and bifurcation. When the coefficient of friction
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value tends to be 0.197, the smaller the coefficient of variation of the surface profiles,
the smaller the distribution distance deviation of the microscopic data points. The
distribution of data points becomes uniform. When it tends to be 0.216, the surface
profile shows more periodic characteristics.
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