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Abstract: The axle box bearing is a crucial component of high-speed electric multiple units (EMU)
and is exposed to harsh working conditions, making it susceptible to subsurface-induced rolling
contact fatigue (RCF) under long-term alternating stress. The objective of this paper is to develop a
damage-coupled elastic–plastic constitutive model that can accurately predict the RCF life of EMU
axle box bearings made from AISI 52100 bearing steel. The total damage is divided into elastic
damage related to the shear stress range and plastic damage associated with plastic deformation.
Material parameters are determined based on experimental data from the literature, and validation is
conducted to ensure the validity of the model. Finally, the RCF behavior of the EMU axle box bearing,
including crack initiation, crack propagation, and spalling, is simulated, and reasonable results are
obtained. This study provides valuable insights into the RCF behavior of EMU axle box bearings and
contributes to the accurate prediction of the fatigue life.

Keywords: rolling contact fatigue; damage mechanics; constitutive model; lifetime prediction;
bearing; high-speed EMU

1. Introduction

Rolling bearings play a crucial role in various industries such as aerospace, trans-
portation, and wind power generation, making them an essential component in equipment
manufacturing. In particular, high-end precision bearings are regarded as the “crown jewel
of manufacturing” by the industry. Over time, rolling bearings have undergone continuous
improvement and optimization due to technological advancements. However, under opti-
mum surface and lubrication conditions, subsurface contact fatigue has gradually become
an inherent and ultimate reason of rolling bearings’ failure, which hampers their further
development [1,2]. One specific area where this issue is of great concern is the axle box
bearings in high-speed electric multiple units (EMU). These bearings are subjected to harsh
working conditions and are prone to rolling contact fatigue caused by long-term alternating
stress, posing a significant threat to the normal operation of trains. Therefore, conducting
research on subsurface-induced rolling contact fatigue (RCF) and accurately predicting
failure information is of paramount importance.

Since cyclic contact stresses are the primary cause of RCF [3,4], accurately describing
contact stresses is of the utmost importance. Currently, the most commonly used method
to determine the distribution of rolling contact stresses is Hertzian elastic contact theory.

However, an increasing number of scholars are acknowledging that local plastic
deformation occurs in the contact area [5–9]. Although many tests have demonstrated that
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the compressive ultimate strength of materials is higher than their tensile ultimate strength,
the stress level of micro-yield plastic deformation under compressive loading is somewhat
lower than that under tensile loading [10]. Consequently, local plastic deformation is more
likely to occur under compressive loading, leading to damage accumulation, material
properties’ deterioration, crack initiation, and propagation until surface spalling, which
ultimately results in RCF failure. Additionally, elements of bearings, such as balls, rollers,
or raceways, typically experience asymmetric cyclic loading as depicted in Figure 1, which
generally leads to accumulated plastic deformation known as the ratcheting phenomenon.
Hence, it is more realistic to take plastic deformation into consideration when simulating
the contact stress state.
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Considering the complexity of contact, such as highly localized critical zone, multi-
axial and non-proportional loading, and plastic deformation, it is advisable to establish a
reasonable elastic–plastic constitutive model that can accurately describe the mechanical
response of the material under contact.

In order to characterize the evolution process of fatigue damage and incorporate the
coupling relationship between fatigue damage and stress–strain response, the continuum-
damage-mechanics-based (CDM-based) approach [11–14] has been utilized to investigate
the damage process. Walvekar et al. [15] embedded a fatigue damage model into a mi-
crostructure topology model with Hertzian pressure applied based on elastic deformation
to study the RCF of large bearings. Similarly, Li et al. [16] also employed the same damage
evolution equation and programmed it into the FE user subroutine to simulate the RCF
behavior of cylindrical roller bearings. Although both studies exhibited good agreement
with experimental results, they did not account for plastic deformation, despite the contact
pressure exceeding the yield stress level of the material. Additionally, the coupling rela-
tionship between the fatigue damage and the stress–strain response was not considered.
Warhadpande et al. [17] investigated the impact of plasticity on RCF spalling failure using
a Voronoi tessellation-based FE model. The damage factor was incorporated in a bilinear
elastoplastic constitutive model. He et al. [18] proposed an elastic–plastic contact fatigue
model with damage to study the fatigue performance of a megawatt wind turbine gear.
The contributions of elastic damage and plastic damage were differentiated using different
damage laws. Analogously, Shen et al. [19,20] developed a coupled model that incorporates
damage, plasticity and wear to predict fretting fatigue life. The total damage was also
divided into two parts, elastic damage and plastic damage, which were associated with
cyclic shear stress and accumulated plastic deformation, respectively. More recently, they
further developed the model to investigate the initiation and propagation behavior of
spalling in bearings under rolling contact fatigue loading [21]. This method, utilizing a
damage-coupled elastic–plastic constitutive model that distinguishes elastic damage from
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plastic damage, considers the coupling relationship between the fatigue damage and the
stress–strain response, and can accurately predict the varying subsurface stresses. This
approach shows great promise in simulating the initiation and propagation processes of
spalling and predicting the failure lifetime of rolling bearings in a more reasonable and
reliable manner.

It is widely recognized that an accurate prediction of RCF life of railway bearings is of
great significance to the railway industry. Progressive prediction can cause huge safety risks
and lead to serious failure or accidents of the entire train, while conservative prediction can
result in the premature replacement of the bearing, and greatly increase maintenance costs
as well as the wastage of high-quality resources. Therefore, this paper aims to develop
a damage-coupled elastic–plastic constitutive model to accurately predict the RCF life of
EMU axle box bearings which are made from AISI 52100 bearing steel. The total damage is
divided into elastic damage related to the shear stress range and plastic damage associated
with plastic deformation. It is dedicated to incorporating the influence of local plastic
deformation based on the classical and conventional elastic damage, determining the RCF
damage accumulation rule during the repeated rolling process, and eventually simulating
the RCF behavior. Various validations are conducted to evaluate the accuracy and reliability
of the proposed model by comparing the results with experimental data.

This paper is outlined as follows. Section 2 describes the theoretical background of
related constitutive models and CDM models, and the parameters’ determination as well
as validation. Section 3 presents a rolling contact stress simulation based on the proposed
constitutive model. Subsequently, the RCF failure analysis of the EMU axle box bearing is
provided in Section 4. Finally, discussion and conclusions are presented in Sections 5 and 6.

2. Damage-Coupled Elastic–Plastic Constitutive Model
2.1. Governing Equations

According to CDM theory, the damage variable D is employed to characterize the grad-
ual deterioration of material mechanical properties when subjected to cyclic contact loading.
When D reaches the threshold Dc, the material point is considered fully damaged, rendering
it unable to withstand any further loading. Consequently, the first micro-crack initiates
at this position. Please note that the damage variable D is scalar when the anisotropy
of the material is not taken into account. Therefore, the damage-coupled elastic–plastic
constitutive model is formulated as follows.

The total strain rate can be decomposed into an elastic part and a plastic part based on
the assumption of finite deformation as follows:

.
ε =

.
ε

e
+

.
ε

p (1)

The relationship of elastic strain and stress obeys Hooke’s law, leading to the following:

σ = (1 − D)C : εe (2)

Hence, the rate form of Equation (2) can be derived as follows:

.
σ = (1 − D)C :

.
ε

e − σ

1 − D

.
D (3)

where C is the elasticity tensor. The plastic part is governed by the following equation:

.
ε

p
=

3
2

S − α

Q
.
p (4)

where α is the overall backstress and S is the deviatoric stress tensor. The size change of
yield surface, Q, is described as follows:

Q = Q0 + Q∞(1 − e−bp) (5)
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where Q0 is the original yield stress of material without damage, Q∞ signifies the saturation
of yield surface and b indicates the rate of the size change of yield surface regarding
plastic strain [22].

The yield function incorporating damage is as follows:

F =

√
3
2
(S̃ − α̃) : (S̃ − α̃)− Q̃ (6)

where p is the equivalent plastic strain and F is the yield function. ~ indicates the variable
tensor has considered the effect of material degradation resulting from damage, defined
as follows:

S̃ = S/(1 − D), σ̃ = σ/(1 − D) (7)

The backstress α comprises several items of backstress components, as follows:

α =
M

∑
i=1

α(i) (8)

where α(i) is the ith backstress component and M is the total number of backstress compo-
nents. The backstress components can be expressed as follows:

.
α
(i)

= (1 − D)

(
2
3

Ci
.
ε

p − µγiα
(i) .

p
)
− α(i)

1 − D

.
D (9)

µ = µsat + (1 − µsat)e−kp (10)

where Ci and γi are material parameters, and µ is a parameter of controlling
ratcheting deformation.

2.2. Damage Evolution Model

Rolling bearings used in high-speed EMU axle box are subjected to various load
conditions due to the stochastic nature of railway operations. In cases of over-loading,
plastic deformation becomes inevitable, which can accelerate the initiation of fatigue cracks.
This may accelerate the fatigue crack initiation process. Therefore, both elastic damage
related to shear stress range and plastic damage associated with plastic deformation should
be considered [13,21,23,24]. The total damage rate can be divided into two components,
as follows:

dD
dN

=
dDe

dN
+

dDp

dN
(11)

The elastic damage evolution is given by ref. [25], as follows:

dDe

dN
=

[
∆τ

τR(1 − D)

]m
(12)

where N is the number of loading cycles, τR and m are material constants, and ∆τ is the
shear stress range during a loading cycle.

The plastic damage evolution can be expressed as follows [17]:

dDp

dN
=

[
σ2

Max

2ES(1 − D)2

]q
.
p (13)

where σMax is the maximum von Mises stress suffered over a loading cycle, and S and q
are the material parameters.
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2.3. Material Parameters

In Koo’s work [26], some mechanical tests of AISI 52100 were conducted; thus, in
this work, parameters in the constitutive model are obtained based on the experimental
data from their work. In addition, the parameters in the elastic damage evolution rule
are obtained by combining the torsional fatigue S-N curve with the integration of damage
laws according to Walvekar’s work [15]. As for parameters in the plastic damage rule, the
results from Park’s work [27] were used. Therefore, all parameters in the damage-coupled
constitutive model are shown in Table 1.

Table 1. Material parameters for AISI 52100.

Parameters

C1 = 28.02 GPa, C2 = 2.14 GPa, C3 = 1.56 GPa, C4 = 3.07 GPa;
γ1 = 1180.95, γ2 = 99.4, γ3 = 52.43, γ4 = 37.04;

Q0 = 400, E = 200 GPa, ν = 0.3, µsat = 0.1, k = 25;
M = 4, Q∞ = −150, b = 15;
m = 10.1, τR = 6113 MPa;

S = 89.9 MPa, q = 3.2.

2.4. Validation

In order to assess the precision of the developed model, validation has been conducted.
The adopted FE models are shown in Figure 2. Figure 3 presents the comparison between
simulation and experimental results for the tensile test, which demonstrates a high level of
agreement. Figure 4 illustrates the cyclic behavior of AISI 52100 under different loading
conditions. As detailed cyclic testing data could not be found in the public domain, no
comparison has been made. However, it is evident that asymmetrical loading leads to
accumulated inelastic deformation and will facilitate fatigue failure. Figure 5 displays the
experimentally obtained τa- N curve reported in ref. [28], with red symbols indicating
the predicted fatigue lifetime using the proposed model in this work. The results show
great agreement with an acceptable discrepancy. Overall, it is highly convincing that the
developed model is reliable for use in RCF analysis.
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Figure 3. Tensile experimental and simulated data of the bearing steel AISI 52100.
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Figure 4. Cyclic behavior simulation of the bearing steel AISI 52100: (a) for strain-controlled condition;
(b) for stress-controlled condition (ratchetting occurs).
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3. Rolling Contact Stress Simulation
3.1. The Finite Element Contact Model

In this case, a double-row tapered roller bearing is employed in the axle box of the
high-speed EMU, and the relevant parameters are presented in Table 2. Based on the
measured data of the loading exerted on the axle box bearing during the normal operation
of the EMU, it has been determined that the maximum radial loading borne by the axle
box bearing is 66 kN, and the maximum axial loading is 12 kN, which is under the loading
condition of C/P = 2.29. According to Liu’s work [29,30], the distribution relationship of
the loading inside the bearing indicates that the maximum contact load between the roller
and the outer ring is 12.49 kN, making it the most susceptible to RCF failure. A schematic
diagram illustrating the contact between the roller and outer ring is depicted in Figure 6a.

Table 2. Related parameters of the selected bearing.

Number of Roller Rows Number of Rollers in a
Single-Row Bearing

Equivalent Length of
Roller (mm)

Contact Angle between
Roller and Inner Raceway (◦)

2 19 52.8 9

Fillet diameter of roller (mm) The maximum diameter of
roller (mm)

The maximum diameter of
roller (mm)

Contact angle between roller
and outer raceway (◦)

185 27 25 12
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(b) 2D model.

Considering the uniformity of the loading distribution along the axial direction, the
aforementioned model can be simplified as a line contact. Under the assumption of plane
strain condition, it could be further simplified as two deformable circles with different radii
of curvature in contact with each other, which is commonly observed in roller bearings.
Based on the Hertzian contact theory, this simplified model can be represented as half a
circle in contact with an infinite half plane, as illustrated in Figure 6b. In this representation,
the half circle represents the roller, and the half plane represents the outer ring. Conse-
quently, as shown in Figure 7, the plane strain element CPE3 is utilized. To strike a balance
between accuracy and efficiency, an element size of 12 µm is employed in the contact region,
while a relatively coarser mesh is utilized away from the contact region. Since both the
roller and outer ring are made of AISI-52100 steel, the elastic–plastic constitutive model
described in Section 2 is implemented through user subroutine UMAT in ABAUQS. All the
displacements at the bottom of the outer ring are fixed, and a constant force p is applied at
the coupling reference point along the Y-axis to simulate the contact behavior.
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3.2. Simulation Results and Analysis

According to the Hertz contact theory, the maximum contact pressure between the
outer ring and the roller can be calculated assuming fully elastic deformation, resulting in
a value of 892.39 MPa with a half-contact width of 0.178 mm. However, for this FE analysis,
plastic deformation is taken into consideration. The distribution of the contact pressure
is depicted in Figure 8a, with the obtained maximum contact pressure of 817.9 MPa and
a half-contact width of 0.225 mm. This corresponds to a 7% error when compared to the
Hertz theoretical solution. It is noticeable that the maximum contact pressure of FE is lower
than the one of the Hertz theoretical solution, which is reasonable as the FE model considers
plastic deformation, resulting in a larger deformation zone and lower the maximum elastic
increment, subsequently reducing the stress level. Figures 8b and 9 illustrate the distribution
of Mises stress and stress components σxx (S11), σyy (S22), σyy (S33) and σxy (S12), which
is stereotyped in contact analysis. The normal stress components (σxx and σzz) inside
the contact body decrease with increasing depth. However, σyy is slightly different as it
reaches a peak value very close to the surface and then decreases with increasing depth.
Additionally, the shear stress component (σxy) reaches its peak value at the subsurface of
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about 0.5a depth. It is noteworthy that the distribution of σxy on both sides of the y-axis is
equal in magnitude but opposite in direction, causing the material to experience alternating
shear stress during the rolling process, ultimately leading to fatigue failure.
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In conclusion, the FE model accurately simulates the static contact between the roller
and outer ring. This model will be further utilized for the RCF analysis of a high-speed
EMU axle box bearing, as detailed in Section 4.1.

4. RCF Failure Analysis
4.1. The Finite Element Contact Model

In this study, an equivalent one-body rolling contact process is utilized to simulate the
RCF behavior of the high-speed EMU axle box bearing in order to reduce computational
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costs. This method, originally proposed by Bhargava et al. [31], is schematically illustrated
in Figure 10. As a result, the contact pressure p(x), can be expressed as follows:

p(x) = pmax

√
1 −

(
x − xc

a

)2
(14)
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Figure 10. Illustration of the one-body FE model for RCF analysis.

It will be implemented as a boundary condition that transverses across the contact
surface during a period stipulated in FE analysis. In Equation (14), x represents the
coordinate on the surface, pmax denotes the pressure at the center xc of the contact pressure
distribution, and a indicates the semi-contact width.

4.2. Results of the RCF Simulation

The simulation results of RCF are presented in Figures 11 and 12. Figure 11 dis-
plays the evolution of damage at the crack initiation point. Before reaching approxi-
mately 1 × 108 cycles, the damage remains relatively small. However, after approximately
2 × 108 cycles, the damage rapidly increases and reaches the criterion for crack initiation.
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Figure 12 demonstrates the development of the failure zone due to RCF damage as
the number of rolling contact cycles increases. It can be observed that the first element
to reach the damage threshold Dc = 0.95 is located at the subsurface, approximately at a
depth of 0.1 mm, in the region of maximum Mises stress. This number of cycles, denoted
as the initiation lifetime (Ni = 2.551 × 108 cycles), signifies the time point at which the
crack initiates, as shown in Figure 12a. Subsequently, and increasing number of elements
suffer damage accumulation. Some elements gradually reach their limit and lose their
load capacity, ultimately forming the crack. Considering D ≥ 0.2 as a significant damage
value, it can be observed that the damaged region expands gradually, foreshadowing the
path of the crack. As illustrated in Figure 12b–e, the crack propagates towards the deep
zone as well as the surface almost simultaneously. Once the crack extends to the surface,
it bifurcates, with one branch perpendicular to the surface and the other parallel to the
surface, as shown in Figure 12f. Furthermore, the crack generally propagates parallel to the
surface more quickly and eventually forms spalling. It is consistent with the experimental
observations [32]. In this work, it is defined that once the crack reaches the surface, spalling
is considered to have occurred, resulting in failure. Therefore, the corresponding number
of cycles is considered to be the total RCF lifetime. The number of cycles from the crack
initiation to the occurrence of surface spalling is regarded as the crack propagation life.

Although the spalling is not fully formed in the simulation, it is reasonable and
acceptable to conclude the simulation at this point. There are two main reasons for this
decision: Firstly, from a computational perspective, when a large number of elements lose
their load capacity, it can lead to severe convergence problems and significantly increase
computational costs. However, the remaining propagation lifetime compared to the overall
RCF lifetime is almost negligible. Secondly, in reality, once the crack reaches the surface,
lubricants will enter the crack, forming a high-pressure chamber upon re-contacting. This
greatly facilitates crack propagation and results in spalling occurring rapidly.

Hence, based on the simulation results, the predicted crack initiation lifetime of
the EMU axle box rolling bearing is 2.551 × 108 cycles, the crack propagation life is
2.8 × 107 cycles, and the total lifetime is 2.831 × 108 cycles. In terms of mileage for
high-speed EMU, this corresponds to approximately 6.89 × 105 km, 7.56 × 104 km and
7.65 × 105 km, respectively. These results meet the specifications of the maintenance stan-
dard order for the EMU bearing and can be considered to be reasonable.
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5. Discussion

Since the RCF analysis method proposed in this study considers both elastic damage
resulting from shear stress and plastic damage arising from plastic deformation, it is
necessary to discuss the individual contributions of each to the damage accumulation.
Figure 13 illustrates the evolution of the elastic damage and the plastic damage of the
first failed elements with an increasing number of loading cycles in FEM simulations
in two cases: (a) torsional fatigue case with a semi-range stress of 106 psi, and (b) the
aforementioned contact fatigue case. It is revealed that under torsional loading (Figure 13a),
the stress state predominantly consists of pure shear stress; thus, elastic damage gradually
accumulates and dominates. The plastic damage remains at a very low level during more
than 90% of the crack initiation life, and increases dramatically near the failure point due
to the deterioration of material properties. This indicates that the contribution of plastic
damage is almost negligible. Therefore, many studies focusing on torsional fatigue lifetime
prediction only consider elastic damage related to the shear stress range and also can
achieve acceptable accuracy.
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However, in the case of contact fatigue, which is well-known for its multi-axial and
non-proportional stress state and highly localized plastic deformation, the situation is
different. As depicted in Figure 13b, it is evident that with an increase in rolling contact
cycles, plastic damage becomes dominant, while elastic damage occupies a very little
portion. If plastic damage is not taken into account, the RCF life of the bearings used in
high-speed EMU would be estimated to be around 2.5 × 107 km. Additionally, if employing
the standard of ISO 281, considering the normal operation condition of EMU, the bearing
life is calculated as 8.8 × 107 km. However, some relevant safety regulations of high-
speed EMU state that the total mileage of bearing operation shall not exceed a fourth-level
maintenance cycle, which is around 1.2 × 106 km. Therefore, it can be concluded that
the predictions made without incorporating plastic damage, as well as those based on the
standard of ISO 281, seem highly overpredicted.

6. Conclusions

In this study, a damage-coupled elastic–plastic constitutive model for a high-speed
EMU axle box bearing was developed to investigate its contact fatigue behavior. The total
damage was divided into elastic damage related to shear stress range and plastic damage
associated with plastic deformation. The proposed model was validated by comparing
the simulation results with experimental data. The main conclusions of this study can be
summarized as follows:

(1) The maximum contact pressure obtained from the proposed constitutive model is
lower than the one calculated according to Hertz contact theory. This indicates that the
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presence of plastic deformation affects the contact behavior and reduces the maximum
contact pressure.

(2) The crack initiation occurs at the subsurface, at a depth of around 0.1 mm, approxi-
mately in the region of maximum Mises stress. The crack primarily extends towards
the contact surface and then propagates parallel to the surface. This crack propagation
behavior is consistent with experimental observations.

(3) Since the contact loading is not heavy, there is only slight plastic damage generated
during the early loading cycles. However, it finally becomes considerable because of
the deterioration of material mechanical properties and gradual plastic deformation.

(4) The predicted RCF life of the high-speed EMU axle box bearing using the proposed
model is more reasonable. By considering both elastic and plastic damage, the model
provides a more accurate estimation of the bearing’s fatigue life.

Overall, the developed damage-coupled elastic–plastic constitutive model can enhance
our understanding of the contact fatigue behavior of high-speed EMU axle box bearings
and improve the prediction of their fatigue life. In the future, the influence of residual
stresses will be incorporated and microstructural alterations will be investigated in order
to enhance the RCF analysis.

Author Contributions: Conceptualization, L.M. and J.L.; methodology, L.M. and F.G.; validation,
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