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Abstract: This paper evaluates the ability of some state-of-the-art Machine Learning models, namely
SVM (support vector machines), DT (decision tree) and MLR (multiple linear regression), to predict
pavement skid resistance. The study encompasses both regression and classification tasks. In the
regression task, the aim is to predict the coefficient of friction values, while the classification task
seeks to identify three classes of skid resistance: good, intermediate and bad. The dataset used in
this work was gathered through an extensive test campaign that involved a fifth-wheel device to
measure the coefficient of friction at different slip ratios on different road surfaces, vehicle speeds, tire
tread depths and water depths. It was found that the RBF-SVM model, due to its ability to capture
non-linear relationships between the features and the target for a relatively small dataset, is the
most adapted tool compared with, on one side, MLR, linear SVM and DT models for the regression
task and, on the other side, linear SVM and DT models for the classification task. The paper also
discusses the strengths and weaknesses of the investigated models based on the underlying physical
phenomena related to skid resistance.

Keywords: skid resistance; machine learning; regression; classification; SVM; decision tree; multiple
linear regression

1. Introduction

Road safety heavily relies on the skid resistance of road surfaces, as it plays a crucial
role in vehicle stability and braking performance [1–3]. In order to ensure user safety
and vehicle dynamic stability, technical solutions commonly referred to as advanced
driver assistance systems (ADAS) have emerged in recent years [4–6]. Using data from
various sensors and advanced algorithms, these systems interpret the vehicle’s surrounding
environment to alert the driver or to take control of the vehicle in order to mitigate potential
hazards. While ADAS technologies based on object detection (vehicle, pedestrian, traffic
signs, and others) have been extensively studied [7–10], the specific area concerning the
interaction between the vehicle and road surface has received less interest. Among the
reasons that might explain this observation, the following two points can be highlighted:

• The complexity and variability associated with skid resistance prediction, which
involves multiple factors, such as vehicle dynamics, environmental conditions, road
surface characteristics, and tire characteristics [11].

• The availability of direct skid resistance sensors, which usually include tire mounted
systems [12]. The integration of such devices is unviable for commercial vehicles.

The absence of skid resistance consideration in the development of ADAS makes these
technologies incomplete solutions, particularly in degraded conditions (adverse weather,
presence of contaminants, etc.). Indeed, skid resistance, which represents the contribution
of road surfaces to tire/road friction, allows drivers to control their vehicles. A low skid
resistance can induce accidents (lane departure, collisions). Predicting skid resistance
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may contribute significantly to enhancing road users’ safety and optimize maintenance
operations (that would, in turn, mitigate turn environmental impacts).

The literature commonly refers to the following two approaches for modeling pave-
ment skid resistance: (1) analytical models and (2) numerical models [13].

• Analytical models rely on simplified theoretical equations that describe the interaction
between the tire and the road surface. One well-known example is the Penn state
model, forming the basis of the International Friction Index (IFI), which correlates skid
resistance with pavement macro-texture and tire slip speed [14]. Another significant
model is the Pacejka “Magic formula” widely used for analyzing the frictional behavior
of tire rubber in vehicle engineering [15].

• On the other hand, numerical models [16–18] are more sophisticated than analytical
techniques. Generally based on finite element solvers, these models can simulate
the tire–pavement interaction with great accuracy by considering various factors,
such as inflation pressure, tire load, tire tread depth, water depth, slip speed, surface
temperature and more.

Although these both approaches are valuable, their practical deployment is still limited
due to the difficulty of finding a balance between the consideration of the involved mecha-
nisms and ensuring that the models can operate within a reasonable computational time.
A promising alternative to the current methods consists of developing Machine Learning
(ML) techniques, in which models are able to learn from data. While research on this topic
is still limited, recent studies have demonstrated the potential of ML models to predict skid
resistance and its evolution over time [19–22]. ML involves two main tasks: regression
and classification. Previous ML studies on skid resistance have predominantly focused
on regression. Nevertheless, a classification approach, such as labeling road surfaces as
“good” or “bad,” would be more beneficial for non-expert users, including road authorities
and drivers.

The aim of this work is to evaluate the ability of some state-of-the-art ML models to
predict pavement skid resistance through regression and classification studies. As shown
in Figure 1, the investigated models take as inputs the influencing factors and provide as
outputs the tire/road coefficient of friction or classes of skid resistance. In this study, the
influencing factors were selected based on their significant effect on skid resistance and
available data: the vehicle speed (as part of the vehicle dynamics), the water depth (as
part of environmental conditions), the road surface macrotexture (as part of the pavement
characteristics) and the tire tread depth (as part of the tire characteristics).
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Three models were examined in this study: (1) multiple linear regression, (2) support
vector machines and (3) decision trees. The selection of these models was guided by the
following criteria:

• Considering the size of the dataset (Section 3), we prioritized simpler models over
complex ones (such as neural networks, random forests, etc.). Complex models,
characterized by a large set of parameters, tend to be more prone to overfitting [23],
especially when dealing with a relatively small dataset.

• Model interpretability: The SVM algorithm, as the following section will illustrate,
is based on a solid theoretical foundation. On the other hand, the DT is more easily
interpretable for non-experts.

• The necessity to evaluate both non-linear and linear models.



Lubricants 2023, 11, 328 3 of 20

In the next section, the theory of the models studied is presented. A description of the
database is also given. The results are then presented and discussed.

2. Algorithm Description
2.1. Multiple Linear Regression

Multiple linear regression (MLR) can be seen as a generalization of a simple linear
regression model in order to address problems with multiple independent variables. It
assumes that the relationship between the input’s features X =

{
X0, X1, . . . , Xp

}
and the

predicted value Y can be approximated by a linear equation, as shown by Equation (1).

Y = β0 + β1.X1 + β2.X2 + . . . + βp.Xp + ε, (1)

where

• β =
{

β0, β1, . . . , βp
}

are unknown constants representing the model parameters;
• ε is the model error;
• β j quantifies the association (weights) between the variable Xj and the desired re-

sponse Y. Thus, β j can be seen as the average effect on Y of a one-unit increase in Xj,
holding all other features fixed.

Different methods can be used to estimate the model parameters (β) using a training
dataset. The most common approach involves minimizing the least squares criterion, by
choosing β̂ =

{
β̂0, β̂1, . . . , β̂p

}
which minimizes the sum of squared residuals (SSR).

SSR =
n

∑
i=1

(
yi − β̂0 − β̂1.xi1 − β̂2.xi2 − . . .− β̂p.xip

)2
, (2)

where yi represents the ith target (prediction) data.
This linear regression based on the minimization of the least square criterion is fre-

quently called OLS (ordinary least square) linear regression.

2.2. Support Vector Machine

The support vector machine (SVM) algorithm is a method for classification and regres-
sion tasks [24]. For classification applications, the algorithm tries to find a hyperplane that
separates the training observations according to their class labels with a maximum margin.
Figure 2a shows a separating hyperplane corresponding to a “hard-margin” linear SVM
(L-SVM) for a two-dimensional data space.
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In this example of n training observations split into two classes (y1, . . . , yn ∈ {−1, 1}
where −1 represents one class and 1 the other class), the training process consists of finding



Lubricants 2023, 11, 328 4 of 20

the hyperplane (defined by β = {β0, β1, β2} such as β0 + β1.X1 + β2.X2 = 0), which is
able to separate the training observations perfectly, as shown below.{

β0 + β1.xi1 + β2.xi2 > 0 i f yi = 1
β0 + β1.xi1 + β2.xi2 < 0 i f yi = −1

, (3)

which is equivalent to

yi.(β0 + β1.xi1 + β2.xi2) > 0, ∀ i = 1, . . . , n (4)

A test observation x∗ is classified based on the sign and the magnitude of
f (x∗) = β0 + β1.x∗1 + β2.x∗2 as follows:

• If f (x∗) is positive, the test observation is assigned the label 1;
• If f (x∗) is negative, x∗ is assigned to class −1;
• If f (x∗) is far from zero, this means that x∗ is located far from the hyperplane. Thus,

we can be confident about the class assignment for x∗;
• If f (x∗) is close to zero, this means that x∗ is located near to the hyperplane. Thus, we

are less certain about the class assignment for x∗;

Ideally, observations that belong to two classes are perfectly separable by a hyperplane
(Figure 2a). In this case, the maximal margin hyperplane is the solution of the constrained
optimization problem in Equation (5).

minimize
β0, β1, β2

1
2 (β1.X1 + β2.X2)

subject to
yi.(β0 + β1.xi1 + β2.xi2) ≥ 1 ∀ i = 1, . . . , n

, (5)

However, observations that belong to two classes are not always perfectly separable by
a hyperplane (Figure 2b). In such cases, the separate hyperplane should be able to separate
most of the training observations, while tolerating some misclassifications. This gives the
constrained optimization problem in Equation (6).

minimize
β0, β1, β2, ξ1 , . . . , ξn

1
2 (β1.X1 + β2.X2) + C. ∑n

i=1 ξi

subject to
yi.(β0 + β1.xi1 + β2.xi2) ≥ (1− ξi), ∀ i = 1, . . . , n

ξi ≥ 0

, (6)

where

• C is a tuning parameter;
• ξi are slack variables, allowing individual observations to be on the wrong side of the

margin or the hyperplane;

The Radial Basis Function-Support Vector Machine (RBF-SVM) is a variant of the SVM
algorithm. Contrary to the linear SVM based on a linear kernel, (i.e., a dot product between
the feature vectors of two data points), the RBF-SVM uses a radial basis kernel (also known as
a Gaussian kernel) to map the input data into a higher-dimensional feature space, in order to
create more complex decision boundaries than can capture non-linear relationships between the
features and the output. This gives the constrained optimization problem in Equation (7).

minimize
β0, β1, β2, ξ1 , . . ., ξn

1
2
(

β2
1 + β2

2
)
+ C. ∑n

i=1 ξi

subject to
yi.
(

β0 + ∑n
j=1 β j.K

(
xi, xj

))
≥ (1− ξi), ∀ i = 1, . . . , n

ξi ≥ 0

, (7)
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where

• C is a tuning parameter;
• ξi are slack variables, allowing individual observations to be on the wrong side of the

margin or the hyperplane;
• K

(
xi, xj

)
= exp(−γ.‖xi − xj‖2) measures the similarity between the feature vectors xi

and xj;
• γ is the kernel parameter that controls the influence of the RBF kernel;

Drucker et al. extend the SVM algorithm in order to process regression tasks [25]. In
this case, the algorithm does not intend to find a hyperplane to split the data into distinct
classes. Instead, its aim is to identify a hyperplane that is as close as possible to the target
values (yi). For example, the optimization problem in Equation (8) represents the specific
case of a linear soft margin regression.

minimize
β0, β1, β2, ξ1 , . . ., ξn, ξ*

1 , . . ., ξ*
n

1
2 (β1.X1 + β2.X2) + C. ∑n

i=1
(
ξi + ξ∗i

)
subject to

yi − (β0 + β1.xi1 + β2.xi2) ≤ ε + ξi, ∀ i = 1, . . . , n
(β0 + β1.xi1 + β2.xi2)− yi ≤ ε + ξ∗i , ∀ i = 1, . . . , n

ξi ≥ 0, ξ∗i ≥ 0, ∀ i = 1, . . . , n

(8)

where

• C is a tuning parameter;
• ξi, ξ∗i are slack variables.

It worth noting that Equation (8) can be generalized to the p dimensional space and
process regression using multiple parameters, as shown in Equation (9).

minimize
β0, β1,. . ., βp, ξ1 , . . ., ξn, ξ*

1 , . . ., ξ*
n

1
2
(

β1.X1 + . . . + βp.Xp
)
+ C. ∑n

i=1
(
ξi + ξ∗i

)
subject to

yi −
(

β0 + β1.xi1 + . . . + βp.xip
)
≤ ε + ξi, ∀ i = 1, . . . , n(

β0 + β1.xi1 + . . . + βp.xip
)
− yi ≤ ε + ξ∗i , ∀ i = 1, . . . , n

ξi ≥ 0, ξ∗i ≥ 0, ∀ i = 1, . . . , n

(9)

where

• C is a tuning parameter;
• ξi, ξ∗i are slack variables.

2.3. Decision Tree

Decision trees can be applied to both regression and classification tasks [26,27]. They consist
of a series of splitting rules (Figure 3a), starting at the top of the tree in order to make predictions
by subdividing the feature space. As shown in Figure 3b, the aim of the decision tree is to divide
the feature space (X) into N distinct and non-overlapping regions, where R = {R1 , . . . , RN }.
During the training process, the splitting process is guided by metrics such as Gini index Equation
(10) and entropy Equation (11), which measure the impurity or the disorder of a set of samples.

The test observations that fall into a region (Ri) receive the same prediction, which
corresponds to the mean of the target values of the training observations.

Gini index = 1−∑(pi)
2 (10)

Entropy = −
(
∑ pi.log2(pi)

)
(11)

where

• pi is the proportion of samples belonging to class i.
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3. Dataset Description

The data for this study were obtained from an extensive test campaign, carried out
within the European VERT project [28]. These tests involved using a fifth-wheel device to
measure the coefficient of friction on different road surfaces at different slip ratios, vehicle
speeds, tire tread depths and water depths (Table 1). The test surfaces, named S1 and S2
respectively, are characterized by their macrotexture, expressed in terms of Mean Profile
Depth (MPD). S1 is a surface dressing with an MPD of 0.48 mm; S2 is an asphalt concrete
with an MPD of 0.72 mm. Pirelli summer tires 195/65 R15, inflated at 0.22 MPa, were used.
Ambient temperature was not recorded but all tests were performed within a few days
to maintain the same weather conditions. For each experiment, values of the coefficient
of friction at 100% of the slip ratio (µ locked, Figure 4) were extracted and formed the
target prediction data. The data set containing 102 samples was split into a training set of
71 samples and a validation set of 31 samples.

Table 1. Experimental conditions investigated.

Parameters Unity Values

Speed km/h 20–40–50–60–80–90

MPD mm 0.48–0.72

Water depth mm 1–3–8

Tire tread depth mm 2–4–8
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It should be noted that the analysis of peak coefficients of friction could be more
intuitive, considering the fact that vehicles nowadays dispose of ABS systems. However, as
the locked-wheel coefficient of friction better highlights the effect of influencing factors, it
was thought that locked µ values would be more relevant to compare ML algorithms.

The investigation of skid resistance prediction from a classification perspective in-
volves splitting the target data (friction coefficient values) into three classes (Figure 5), with
threshold values chosen based on the literature [29–31]:

• The low-skid resistance class corresponding to friction coefficient values below 0.4;
• The medium-skid resistance class corresponding to friction coefficient values between

0.4 and 0.6;
• The high-skid resistance class corresponding to friction coefficient values higher than 0.6.
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The distributions of the three classes (low–medium–high) between the training
(71 samples) and the testing (31 samples) data set are presented in Figure 6 and sum-
marized in Table 2.
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Figure 5. Coefficient of the friction histogram and the thresholds of the three classes. 

The distributions of the three classes (low–medium–high) between the training (71 
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in Table 2. 
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Table 2. Distribution of skid resistance classes between the training and testing data set.

Class Low Medium High

All data 34 34 34

Training 24 24 23

Testing 10 10 11

Certain ML algorithms (SVM, neural networks, etc.) can be sensitive to the scale of
data values, which may affect their performance. To address this issue, the dataset was
normalized using min–max scaler function Equation (12). This pre-processing stage ensures
that all features are appropriately scaled to lie within the range of 0 and 1.

Xscaled =
X− Xmin

Xmax − Xmin
, (12)

where

• X and Xscaled represent the original and transformed feature values, respectively.
• Xmin, Xmax represent the minimum and maximum feature values, respectively.

4. Results Analysis

The following calculations were made using the ML toolbox scikit-learn implementa-
tion [32]. The paragraphs below present the results of the regression study, divided into
linear (MLR, linear SVM) and non-linear (D.T, RBF-SVM) methods.

4.1. Regression Analysis
4.1.1. Linear Methods

Figure 7 shows the regression (Figure 7a) and the residual (Figure 7b) results for both
the training and testing data sets for the multiple linear regression method. In Figure 7a (a
plot of true values versus predicted values), we observe that the training and testing values
are uniformly distributed along the diagonal line (in dot points). This is synonymous
with good regression quality for both training and testing data sets. This impression is
confirmed by the residual plot (Figure 7b) in which the majority of the residual values are
distributed within the range of −0.2 to 0.2.
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As shown in Figure 8a,b, the regression and residual plots for linear SVMs are quite
similar to those from the multiple linear regression method. This observation is confirmed
by R2 (coefficient of determination) and RMSE (root mean square error) values (summa-
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rized on Table 3), which are very close for both the training and testing data set. This is due
to the fact both algorithms assume a linear relationship between the target variable and the
features. However, the advantage of the linear SVM over OLS linear regression lies in its
ability to minimize overfitting concerns, especially when dealing with noisy data [33].
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Table 3. R2 and RMSE for linear methods.

Algorithms
R2 RMSE

Train Test Train Test

MLR 0.877 0.818 0.282 0.315
Linear SVM 0.87 0.82 0.29 0.31

4.1.2. Non-Linear Methods

Figures 9 and 10 present the results of regression and residuals for the two non-linear
methods investigated. As shown in Table 4, both algorithms provide better results than the
linear ones, which is an indication that the relationship between the features and the target
is non-linear.
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Table 4. R2.5 and RMSE for non-linear methods.

Algorithms R2 RMSE

Training Testing Training Testing

RBF SVM 0.94 0.93 0.24 0.24
DT 0.96 0.91 0.2 0.27

This assumption is confirmed by the residual plots, where most of the points are
distributed within the range of −1.2 to 1.2. Three observations can be made:

• Even the R2 and RMSE values are distributed close together for the RBF-SVM and the
decision tree and it is obvious that the RBF-SVM provides slightly better regression
results than the DT.

• A closer look at the values of the training and testing values of R2 for the RBF-SVM
(0.94 and 0.93) and the D.T (0.96 and 0.91) indicates the better generalizing capability
of the RBF-SVM compared to the decision tree from small training data sets.

• In Figure 10a, we note that the decision tree algorithm has a distinguish “signature”
compared to the other algorithms. The algorithm provides the same predicted value
for different instances. This gives the plot (true versus predicted values) a vertically
stratified aspect.

4.2. Classification Analysis

In the following paragraphs, the results of three classification algorithms ((1) linear
SVM, (2) RBF-SVM and (3) decision tree) are described in terms of visual representation,
confusion matrix, and precision–recall–f score metrics.

4.2.1. Visual Representation Analysis

In this section, classification results are presented in the form of a map representing
variations in the coefficient of friction due to changes in the water depths and vehicle speeds,
for fixed values of macrotexture and tire tread depth. As shown in Figure 11, each map is
segmented into three distinct color-coded areas (green, yellow and red), corresponding to
the high-, medium- and low-skid resistance classes, respectively.
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Figure 11. Example of map representing skid resistance classes as the water depth and the vehicle
speed vary, for a fixed tire tread depth (8 mm) and MPD (0.48 mm).

Figure 12 presents the results of linear SVM classification algorithm in the form of six graphs:

• Figure 12a–c present classification results (in the form of water depth change according
to vehicle speed change) for surface S1 (MPD of 0.48 mm) at different tire tread depths
(8, 4 and 2 mm, respectively).

• Figure 12d–f present classification results (in the form of water depth change according
to vehicle speed change) for surface S2 (MPD of 0.72 mm) at different tire tread depths
(8, 4 and 2 mm, respectively).
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The main observations are as follows:

• When the vehicle speed increases, for any water depth, the skid resistance class
changes from high (green) to medium (yellow) and then low (red). This observation
is consistent as it has been well established that the tire/wet road friction decreases
when the vehicle speed increases [34].

• The effect of water depth on the distribution of classes is less obvious to interpret but
still makes sense. At a given speed, increasing the water depth can have no effect at
low speed (for example, at 40 km/h in Figure 12a) or degrades the skid resistance
class (for example, in Figure 12a, for a vehicle speed of 80 km/h, the skid resistance
class changes from medium to low when the water depth increases).

As explained in [35], at low speeds, a tire tread element crossing the tire–wet road
contact area has enough time to descend through the water film and make contact with the
road surface; as a result, the coefficient of friction is generally high. On the other hand, as
water lubricates the tire/road interface, increasing the water depth has an adverse effect on
skid resistance mainly when the vehicle speed is high [36,37]; as a result, the skid resistance
class can degrade.

• The effect of the tire tread depth can be seen from the comparison of Figure 12a–c on
one side or Figure 12d–f on the other side; new tires help to reduce the extension of
the low-skid resistance area (in other words, low-skid resistance can only be reached
at high speeds), even if the benefit is lessened when the water depth increases.

Conversely, worn tires not only speed up the deterioration of skid resistance but also
make the transition from safe (green area) to unsafe (red area) more abrupt (Figure 12c).

• The effect of the surface macrotexture depends on the test speed. The distribution of
low-skid resistance classes is the same (comparison of Figure 12a versus Figure 12d,
Figure 12b versus Figure 12e, and Figure 12c versus Figure 12f). The main differ-
ence between the two surfaces is the relative fraction of high- and medium-skid
resistance classes.

When the test speed increases, the green area is larger than the yellow one for surface
S1 and the reverse is true for surface S2. It means that moving on surface S1 is safe at low
speed (up to 40 km/h). However, as shown in Figure 12c, due to the narrow width of the
medium class (yellow), the skid resistance can significantly decrease when the vehicle speed
increases further, mainly when the tires are worn. On surface S2, the skid resistance is most
of the time part of the medium class and the transition from medium to low is smoother.

The behavior of the two test surfaces can be explained by their macrotexture, expressed
as a Mean Profile Depth, and their microtexture, which was not a variable of the test
program. Using a low-speed coefficient of friction, which is a common indirect indicator of
road surface microtexture, we obtained 0.69 and 0.48 for surfaces S1 and S2, respectively [38],
which means that S1 has a higher microtexture than S2. Surface S1 is, therefore, a high-
microtexture (0.69)/low-macrotexture (0.48) surface, whereas S2 is a low-microtexture
(0.48)/high-macrotexture surface (0.72).

As mentioned in the work of Hall et al. [39], a high-microtexture surface (S1) has a
high-skid resistance at low speeds (until 40 km/h); however, if its macrotexture is low, skid
resistance can significantly decrease when the vehicle speed increases further. The lower
skid resistance of surface S2 is due to its low microtexture; however, it remains stable with
respect to the vehicle speed thanks to its high macrotexture.

Most of the observations made previously concerning the distribution of skid resis-
tance classes can be applied to the RBF-SVM classification algorithm (Figure 13). The minor
differences are as follows:

• The transition from high- to low-skid resistance class is less abrupt for worn tires
(Figure 12c versus Figure 13c).
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• On surface S2, the effect of water depth is more visible on the extension of the high-
skid resistance class (reduction in the green area when the water depth increases)
(Figure 13d–f).
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Figure 13. RBF-SVM classification results when the water depth and the vehicle speed change:
(a–c) present the classification result for tire tread depths of 8, 4 and 2 mm and an MPD of 0.48 mm;
(d–f) present the classification result for tire tread depths of 8, 4 and 2 mm and an MPD of 0.72 mm.

Concerning the decision tree classification algorithm, the results seem less relevant
than the two SVM algorithms:

• In fact, when the vehicle speed increases with new tires on surface S2 (Figure 14d),
the change in skid resistance classes is unexpected at water depths of around 5–6 mm:
based on the lubrication action of water at the tire–road interface, the coefficient of
friction cannot increase with the vehicle speed.

• Another point is that Figure 14e,f are identical, which means that the algorithm
provides the same prediction for two different driving conditions: (1) tire tread depth
= 4 mm, MPD = 0.72 mm and (2) tire tread depth = 2 mm, MPD = 0.72 mm. A similar
observation was made in the regression study results (Section 4.1.2, Figure 10a).



Lubricants 2023, 11, 328 14 of 20Lubricants 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 14. Decision tree classification results when the water depth and the vehicle speed change: 
(a–c) present the classification result for tire tread depths of 8, 4 and 2 mm and an MPD of 0.48 mm; 
(d–f) present the classification result for tire tread depths of 8, 4 and 2 mm and an MPD of 0.72 mm. 

4.2.2. Confusion Matrix and Metrics (Precision, Recall, F1 Score) Analysis 
Tables 5–7 present the confusion matrices for linear SVM, RBF-SVM and decision tree 

algorithms. The results show misclassification errors of 7, 5 and 6 samples for linear SVM, 
RBF-SVM and decision tree algorithms, respectively. This leads to a mean accuracy of 0.77, 
0.84 and 0.81 for linear SVM, RBF-SVM and decision tree algorithms, respectively. 

Table 5. Confusion matrix for linear SVM. 

  Predicted Label 

Tr
ue

 la
be

l Class Low Medium High 
Low 8 2 0 

Medium 1 7 2 
High 0 2 9 

Table 6. Confusion matrix for RBF-SVM. 

  Predicted Label 

Tr
ue

 la
be

l Class Low Medium High 
Low 8 2 0 

Medium 1 9 0 
High 0 2 9 

  

Figure 14. Decision tree classification results when the water depth and the vehicle speed change:
(a–c) present the classification result for tire tread depths of 8, 4 and 2 mm and an MPD of 0.48 mm;
(d–f) present the classification result for tire tread depths of 8, 4 and 2 mm and an MPD of 0.72 mm.

This last point can be explained by the limitations inherent to the algorithm structure,
i.e., discretization of the feature space. Indeed, the decision trees partition the feature
space into distinct regions using thresholds. The predicted value within each region is
determined by the majority or average of the training samples falling into that region.

This implies that instances that are similar or present very close features will receive
the same predicted value or class. This is particularly relevant when decision trees are
trained on limited data or if the training data lack diversity in certain regions of the feature
space. In this situation, the tree structure may not have enough information to accurately
differentiate between instances with similar feature values, leading to identical predictions
for different instances.

4.2.2. Confusion Matrix and Metrics (Precision, Recall, F1 Score) Analysis

Tables 5–7 present the confusion matrices for linear SVM, RBF-SVM and decision tree
algorithms. The results show misclassification errors of 7, 5 and 6 samples for linear SVM,
RBF-SVM and decision tree algorithms, respectively. This leads to a mean accuracy of 0.77,
0.84 and 0.81 for linear SVM, RBF-SVM and decision tree algorithms, respectively.
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Table 5. Confusion matrix for linear SVM.

Predicted Label

Tr
ue

la
be

l Class Low Medium High

Low 8 2 0
Medium 1 7 2

High 0 2 9

Table 6. Confusion matrix for RBF-SVM.

Predicted Label

Tr
ue

la
be

l Class Low Medium High

Low 8 2 0
Medium 1 9 0

High 0 2 9

Table 7. Confusion matrix for decision tree.

Predicted Label

Tr
ue

la
be

l class low medium high

low 8 2 0
medium 1 9 0

high 0 3 8

However, the mean accuracy, which gives a global view of the algorithm perfor-
mances, remains insufficient to properly evaluate the algorithm predictions. Indeed, a
misclassification due to an underestimation of the skid resistance level (for example, the
algorithm predicts the low class red, while the actual class is medium yellow) is obviously
less dangerous than an overestimation. Precision Equation (13), recall Equation (14), and
f1-score Equation (15) are the most suitable metrics for the performance evaluation of a
classification algorithm.

• Precision measures the proportion of correct predictions among all the predictions.
Precision can be seen as an indicator of quality. Indeed, a high value of precision
implies a low rate of false positive predictions. This means that the predictions
provided by the model are more likely to be correct.

• Recall refers to the ability of the model to find all the expected objects within the
dataset. Recall can be seen as an indicator of quantity. Indeed, a high value of recall
implies a low rate of false negative predictions. This means that the model is more
likely to find all the pertinent items.

• The F1-score or f-measure is defined as the harmonic mean of precision and recall.

precision =
TP

TP + FP
, (13)

recall =
TP

TP + FN
, (14)

f 1 score = 2 × precision × recall
precision + recall

, (15)

where

• TP, true positives;
• FN, false negatives;
• FP, false positives.
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The precision (Table 8), recall (Table 9) and f1-score (Table 10) values according to the
different classes show that the RBF-SVM algorithm, while performing as well as the DT
and L-SVM for low class prediction, outperforms both these algorithms when it comes to
predicting medium- and high-skid resistance classes.

Table 8. Precision values for the algorithms studied.

Class L-SVM RBF-SVM D.T

Low 0.89 0.89 0.89

Medium 0.64 0.69 0.64

High 0.82 1.0 1.0

Table 9. Recall values for the algorithms studied.

Class L-SVM RBF-SVM D.T

Low 0.80 0.80 0.80

Medium 0.70 0.90 0.90

High 0.82 0.82 0.73

Table 10. f1-score values for the algorithms studied.

Class L-SVM RBF-SVM D.T

Low 0.84 0.84 0.84

Medium 0.67 0.78 0.75

High 0.82 0.90 0.84

5. Discussion

Predicting skid resistance remains a challenging task due to the variety of factors
involved. This study conducted under controlled conditions close to the real conditions
focused on the evaluation of tire tread depth, water depth, vehicle speed and pavement
macrotexture as influencing parameters. Despite the relatively small size of the dataset,
both prediction and classification studies provide promising results. It was observed that
the RBF-SVM algorithm, due to its ability to map the features into a higher dimension space
to deal with the non-linear phenomenon, outperforms OLS linear regression, L-SVM and
decision tree algorithms for the regression task and L-SVM and decision tree algorithms for
the classification task.

In comparison to the amount of studies referring to Artificial Intelligence methods
for the detection of surface distresses (cracking, patching, potholes, surface deformation,
and others) [40–42], there is a noticeable lack of research works that address skid resistance
prediction. Furthermore, the existing studies differ from the present work in terms of
investigated inputs (features) and data set size. Consequently, it becomes quite challenging
to discuss the results of this study in the context of the available literature. To illustrate this
point, we can refer to the following studies:

• Marcelino et al. conducted a study that can be considered as a precursor in this research
field [43]. They utilized the Long-Term Pavement Performance (LTPP) database
to assess the effectiveness of two Machine Learning models (linear regression and
regularized regression with lasso) in predicting the skid resistance through regression
analysis. Making a direct comparison between their work and ours is a difficult task
due to the significant disparities in the input variables. Indeed, in our study, we
focused on the vehicle speed, pavement macro-texture, tire tread depth and water
depth, whereas Marcelino et al. utilized variables such as total monthly precipitation,
average monthly temperature, international roughness index, accumulated traffic and
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other variables. However, it should be noted that Marcelino et al. achieved a slightly
better result using the regularized regression (R2 = 0.583) than the linear regression
(R2 = 0.574).

• Zhan et al. undertook a comparative study between conventional Machine Learning
methods, such as support vector machines (SVM), k-nearest neighbors (KNN), and
Gaussian Naïve Bayes (GNB), random forest (RF), and a modified version of the
ResNets [44] architecture called Friction-ResNets, to predict skid resistance [45]. Al-
though the prediction target was friction coefficient values (obtained with a grip tester),
the input data consisted of pavement texture measurements. The work of Zhan et al.
has shown that Friction-Resnets achieve a higher level of accuracy (91%) compared to
SVM (81%), RF (78%), KNN (68%) and GNB (21%). Nevertheless, this outcome should
be put into perspective with the size of the dataset used in this study (33,600 pairs of
data divided into training (70%), testing (15%), and validation (15%) sets).

• Similarly to the approach taken by Zhan et al., Hu et al. performed a study to evaluate
the effectiveness of some various Machine Learning models (LightGBM-light gradient
boosting machine, XGBoost-extreme gradient boosting, SVM–support vector machine;
RF–random forest) in predicting pavement skid resistance based on 3D surface macro-
texture as input data [19]. Through regression analysis, their outcomes indicate that
the Bayesian-LightGBM model achieves a higher coefficient of determination (0.93)
compared to LightGBM (0.90), XGBoost (0.79), SVM (0.79) and RF (0.75).

The works mentioned above underscore the fact that, in the Machine Learning field,
it is difficult to clearly identify a model that consistently excels across all scenarios. In-
deed, each ML model is characterized by its strengths and limitations. Consequently, the
performance of each model can vary depending on the dataset (quantity/quality), the
features (input data), the target (output data), the task (regression/classification), the type
of learning (supervised/unsupervised), and other factors.

In summary, the outcomes of a study cannot be straightforwardly applied to other
works that utilize different input data and provide different outputs (regression versus
classification), as the used data set may differ in quantity, quality, data aggregation methods,
and contextual factors.

Recently, Roychowdhury et al. explored the concept of utilizing classification al-
gorithms to predict skid resistance. Using front-camera images, the authors develop a
two-stage classifier [46]:

• The first stage classifier consists of an artificial neural network (ANN) for the road
surface condition (RSC) classification, which is able to identify four classes of road
pavement condition: (1) dry, (2) wet/water, (3) slush, (4) snow/ice.

• The second stage consists of a road surface estimate (RFE) classification model to deter-
mine three levels of skid resistance: (1) a low RFE value corresponds to patchy snow
and dry surfaces, which can result in slippery road conditions, (2) a medium RFE value
signifies a partially patchy road and a high RFE value indicates a well-ploughed road.

Although skid resistance has been estimated indirectly (by assessing the level of con-
taminants on the road surface), this work demonstrates that a classification approach is as
relevant as a regression analysis when it comes to estimating pavement skid resistance. It is
worth mentioning the complementary aspect of the approach proposed by Roychowdhury
et al. and our study. While Roychowdhury et al.’s work did not evaluate significant factors
affecting skid resistance like tire wear or vehicle speed, our study only focused on water
as a contaminant. An intelligent fusion of the outputs of both models can lead to a more
robust and reliable model.

A critical aspect of this study lies in the relatively small size of the dataset used,
consisting of only 102 samples. This limited dataset size introduces the possibility of dataset
bias, wherein the training data may not adequately represent all real-world scenarios,
resulting in poor generalization of the model. To address this concern effectively, one
potential solution is to introduce synthetic data that accurately reflect real-world situations.
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By combining this synthetic data with the real dataset during training, we can enhance the
model’s ability to adapt to diverse situations and improve its overall performance.

The importance of the ratio of synthetic data in the training mix was demonstrated by
Jaipuria et al., who found that incorporating 40–60% synthetic data significantly enhances
the model’s precision [47]. Adopting a similar approach in our study, using the integrated
tire–vehicle–pavement modeling approach developed by Liu et al. [48] could lead to further
improvements in the model’s performance.

It is worth noting that the current work has the following two limitations:

• The first limitation is related to the non-inclusion of crucial parameters such as the
type of contaminant (water, snow, ice), road properties (slope, tilt, curvature), vehicle
type (truck, motorcycle, etc.) and other factors. Incorporating these features can lead
to a more complete, reliable and accurate model.

• The second limitation concerns the feasibility of incorporating these models into com-
mercial vehicles. Indeed, specific sensors such as water depth measurement sensors
and tire depth sensors are not available in commercial cars. However, the research on
these topics shows promising progress. For example, the tire manufacturer Continen-
tal is working on the development of a sensor that can measure tire tread depth [49].
Additionally, experimental studies are currently being conducted to evaluate the feasi-
bility of estimating water depths on road surfaces using accelerometric signals [50].
These works open new possibilities for the future of skid resistance estimation.

6. Conclusions

Despite the growing interest in applying Artificial Intelligence-based methods to
pavement studies, limited research has been dedicated to skid resistance. Another missing
gap is that users (engineers, authorities, etc.) are faced with a wide range of methods
and it is challenging to choose the appropriate ones for their application. To address
these gaps, this paper aimed to provide a comprehensive comparison of some popular
Machine Learning models used to predict wet tire/road friction through regression and
classification studies.

In the regression study, the two non-linear methods investigated (RBF-SVM and DT)
outperformed the linear methods (linear SVM and MLR). This indicates that the relationship
between the skid resistance and the features (vehicle speed, tire tread depth, water depth
and pavement macro-texture) is non-linear. Furthermore, the RBF-SVM exhibited superior
generalization capability compared to the DT.

The investigation of skid resistance prediction from a classification perspective in-
volved splitting the target data (friction coefficient values) into three classes (low-, medium-
and high-skid resistance class). The results demonstrated that the RBF-SVM algorithm
performed as well as the DT and linear SVM for low class prediction, but outperformed
both algorithms for predicting medium- and high-skid resistance classes. Additionally, this
study illustrated a weakness of decision trees, when they were trained on limited data or if
the training data lacked diversity in certain regions of the feature space. In such cases, the
tree structure may not have enough information to accurately differentiate instances with
similar feature values, leading to identical predictions for different instances.

In summary, from a relatively small dataset, this work demonstrated that the RBF-
SVM model, with its ability to map the feature space in a high dimension to handle
non-linear relationships between variables, is the most adapted tool for both regression
tasks or classification tasks. This comparison must continue to include factors like the
type of contaminants, traffic or weather conditions in order to build a more robust and
reliable model.

This study has clearly established the necessity of incorporating domain expertise
into Machine Learning-based approaches. While a Machine Learning model may provide
a satisfactory overall performance, some of its individual outcomes can be inconsistent
with the underlying physics of the studied phenomenon. This work has illustrated such
inconsistencies in the classification task when the decision tree algorithm was used. By
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taking into account domain expertise, it becomes possible to assess the relevance of a
model’s predictions with respect to reality.

Author Contributions: Conceptualization, A.K. and M.-T.D.; methodology, A.K.; software, A.K.;
validation, A.K.; formal analysis, A.K. and M.-T.D.; writing—original draft preparation, A.K.;
writing—review and editing, A.K., A.E.-S. and M.-T.D.; supervision, M.-T.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was conducted within the frame of the “France Relance” plan funded by the
Ministry of Higher Education and Research and the French National Research Agency (ANR).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wei, J.; Zhang, Z.; He, Y.; Tan, Q.; Yang, X.; Wang, D.; Oeser, M. Study on the Skid Resistance Deterioration Behavior of the SMA

Pavement. Sustainability 2022, 14, 2864. [CrossRef]
2. Lin, C.; Tongjing, W. Effect of fine aggregate angularity on skid-resistance of asphalt pavement using accelerated pavement

testing. Constr. Build. Mater. 2018, 168, 41–46. [CrossRef]
3. Mataei, B.; Zakeri, H.; Zahedi, M.; Nejad, F.M. Pavement Friction and Skid Resistance Measurement Methods: A Literature

Review. Open J. Civ. Eng. 2016, 6, 537–565. [CrossRef]
4. Nidamanuri, J.; Nibhanupudi, C.; Assfalg, R.; Venkataraman, H. A Progressive Review: Emerging Technologies for ADAS Driven

Solutions. IEEE Trans. Intell. Veh. 2022, 7, 326–341. [CrossRef]
5. De Gelder, E.; Paardekooper, J.-P. Assessment of Automated Driving Systems using real-life scenarios. In Proceedings of the 2017

IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 589–594.
6. De-Las-Heras, G.; Sánchez-Soriano, J.; Puertas, E. Advanced Driver Assistance Systems (ADAS) Based on Machine Learning

Techniques for the Detection and Transcription of Variable Message Signs on Roads. Sensors 2021, 21, 5866. [CrossRef]
7. Bayoudh, K.; Hamdaoui, F.; Mtibaa, A. Transfer learning based hybrid 2D-3D CNN for traffic sign recognition and semantic road

detection applied in advanced driver assistance systems. Appl. Intell. 2021, 51, 124–142. [CrossRef]
8. Feng, D.; Harakeh, A.; Waslander, S.; Dietmayer, K. A Review and Comparative Study on Probabilistic Object Detection in

Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 9961–9980. [CrossRef]
9. Feng, D.; Cao, Y.; Rosenbaum, L.; Timm, F.; Dietmayer, K. Leveraging Uncertainties for Deep Multi-modal Object Detection in

Autonomous Driving. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13
November 2020; pp. 877–884. [CrossRef]

10. Dauptain, X.; Koné, A.; Grolleau, D.; Cerezo, V.; Gennesseaux, M.; Do, M.-T. Conception of a High-Level Perception and
Localization System for Autonomous Driving. Sensors 2022, 22, 9661. [CrossRef]

11. Rasol, M.; Schmidt, F.; Ientile, S.; Adelaide, L.; Nedjar, B.; Kane, M.; Chevalier, C. Progress and Monitoring Opportunities of Skid
Resistance in Road Transport: A Critical Review and Road Sensors. Remote Sens. 2021, 13, 3729. [CrossRef]

12. Kogbara, R.B.; Masad, E.A.; Kassem, E.; Scarpas, A.; Anupam, K. A state-of-the-art review of parameters influencing measurement
and modeling of skid resistance of asphalt pavements. Constr. Build. Mater. 2016, 114, 602–617. [CrossRef]

13. Kumar, A.; Tang, T.; Gupta, A.; Anupam, K. A state-of-the-art review of measurement and modelling of skid resistance: The
perspective of developing nation. Case Stud. Constr. Mater. 2023, 18, e02126. [CrossRef]

14. Leu, M.C.; Henry, J.J. Prediction of skid resistance as a function of speed from pavement texture measurements. Transp. Res. Rec.
1978, 666, 7–13.

15. Pacejka, H.B.; Besselink, I.J.M. Magic Formula Tyre Model with Transient Properties. Veh. Syst. Dyn. 1997, 27, 234–249. [CrossRef]
16. Srirangam, S.K.; Anupam, K.; Kasbergen, C.; Scarpas, A. Analysis of asphalt mix surface-tread rubber interaction by using finite

element method. J. Traffic Transp. Eng. Engl. Ed. 2017, 4, 395–402. [CrossRef]
17. Peng, Y.; Li, J.Q.; Zhan, Y.; Wang, K.C.P.; Yang, G. Finite Element Method-Based Skid Resistance Simulation Using In-Situ 3D

Pavement Surface Texture and Friction Data. Materials 2019, 12, 3821. [CrossRef]
18. Zheng, D. Prediction of Tire Tread Wear with FEM Steady State Rolling Contact Simulation. Tire Sci. Technol. 2003, 31, 189–202. [CrossRef]
19. Hu, Y.; Sun, Z.; Han, Y.; Li, W.; Pei, L. Evaluate Pavement Skid Resistance Performance Based on Bayesian-LightGBM Using 3D

Surface Macrotexture Data. Materials 2022, 15, 5275. [CrossRef]
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