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Abstract: This paper proposes an innovative methodology to estimate the thermal behaviour of
the cylindrical gearbox system, considering, as a thermal source, the power loss calculated under
transient operating conditions. The power loss of the system in transient conditions is computed
through several approaches: a partial elasto-hydrodynamic lubrication model (EHL) is adopted to
estimate the friction coefficients of the gears, while analytical and semiempirical models are used to
compute other power loss sources. Furthermore, considering a limited set of operating condition
points as a training set, a reduced-order model for the evaluation of the power loss based on a neural
network is developed. Using this method, it is possible to simulate thermal behaviour with high
accuracy through a thermal network approach in all steady-state and transient operating conditions,
reducing computational time. The results obtained by means of the proposed method have been
compared and validated with the experimental results available in the literature. This methodology
has been tested with the FZG rig test gearbox but can be extended to any transmission layout to
predict the overall efficiency and component temperatures with a low computational burden.

Keywords: gear transmission system; efficiency of transmission; numerical simulation; neural
network; partial EHL

1. Introduction

In a general context of fuel consumption reduction and emission minimisation, the
evaluation and enhancement of components efficiency have been key in the design and de-
velopment of mechanical systems. Power loss is strongly affected by the thermal behaviour
of the system. Therefore, it is crucial to provide reliable and efficient predictive models to
assist engineers in the design phase.

The thermal assessment of closed equipment is generally based on the balance between
different sources of energy loss and the heat transmitted to the environment [1]. Gearbox
power losses are made up of gear, bearing, seals, and auxiliary losses. Gear and bearing
losses can be divided further into no-load losses which occur even without power transmis-
sion (bearing drag, gear churning, and windage losses) and load-dependent losses (sliding
and rolling for both gears and bearings) which are a function of the power transmitted [2].
A plethora of studies are available in the literature on each power waste mechanism that
occurs in gearboxes. The gears, generally the major loss component, must be accurately
modelled to provide precise modelling of transmission losses. Deep knowledge of the
contact force models is needed to estimate the power loss correctly. In general, the contact
force depends on the contact surfaces and the material properties. In the literature, several
contact force models can be found [3,4]. To this extent, many researchers provide gear
models for the evaluation of contact force and efficiency for ordinary [5] and epicyclic [6,7]
gear trains.

Regarding the thermal characterisation of mechanical transmission, the thermal net-
work approach represents one of the most commonly adopted methods. Changenet et al. [8]
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proposed the thermal network method coupled with analytical models of power loss pre-
dictions to establish the efficiency of a six-speed manual transmission. Their methodology
was even applied to the FZG test rig [9], validating experimental results under steady-state
and transient operating conditions. More recently, Zhou et al. [10] define a novel thermal
network model to predict the tooth contact temperature of the teeth, establishing that
contact temperatures decrease with increasing tooth width, pressure angle, and module,
but increase with increasing rotation velocity and input torque.

Considering power loss as a thermal source requires the use of simplified models that
can be easily incorporated into thermal simulations to avoid unacceptably increasing the
computational burden. These shortcomings could be prevented by using machine learning
(ML) algorithms in the form of artificial neural networks (ANN). The network is made up
of layers, each of them consisting of multiple nodes (or neurons). The connection between
nodes represents a linear transformation of information by weights. The main objective
of ANN is to find the best weights to optimise the performance of neural networks. To
describe and represent complex nonlinear problems, one can consider deep neural networks
(DNNs) that contain multiple hidden layers [11]. Recently, ML techniques are employed
in geared systems to predict whine noise generation [12], estimate power loss [13], detect
root cracks [14], and forecast faults [15]. Moreover, ML has already been used in tribology
from wear predictions [16] to tribodynamic simulation of machine elements [17], where
the numerical approach of solving partial differential equations [18] is used to provide
a training set for a neural network that can be used in fast and precise guessing. Thus,
using this methodology, the power loss prediction models can be as complex and accurate
as necessary.

In this framework, this study aims to provide a procedure to efficiently simulate
gearbox components temperatures using, as a thermal source, the components’ power
loss estimated by reduced-order models based on DNN. First, the novel methodology
is briefly explained in Section 2. Then, in Section 3, the power loss models used are
analysed and the whole predictive model is tested against experimental data to prove
its reliability. In Section 4, the structure of the predictive neural network is thoroughly
examined, highlighting the creation of the data set. Furthermore, the thermal network
approach is reported (Section 5) and the results of the thermal model under transient
operating conditions are shown (Section 6).

2. Method

The methodology presented can be divided into three main steps:

1. Power loss evaluation for a single operating condition.
2. Deep neural network training.
3. Insert the trained neural network into a thermal network.

The first phase requires the implementation of models to precise evaluate of each
power loss component. These models should be sensitive with respect to component
temperature, where possible, to capture the temperature effect on power losses. Once the
power loss models are implemented, a design of experiment (DOE) is performed to create
a data set, as depicted in Figure 1. This data set (divided into training, validation, and test)
is employed in the neural network training. More information about this phase is available
in Section 4.

In this way, a reduced-order model (ROM) for power loss estimation (ROM-PL) is
created. This ROM-PL can be inserted into a thermal network to reduce the calculation time
and guarantee results comparable to an approach that uses the complete power loss model.

This new approach is investigated with the test gearbox of the FZG efficiency rig
presented in [19], but it is applicable to any transmission geometry. A scheme of the FZG
test rig is depicted in Figure 2. It is made up of a test gearbox and a slave gearbox linked
together to generate a power loop. Torque is applied externally using a lever and a set of
weights, while rotational speeds are controlled by an electric motor that compensates for
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losses in the mechanical system. By employing a torque sensor on the motor shaft and
measuring the rotational speed, the total power losses can be determined.
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It is important to clarify that the methodology is intended to be applicable to predict
power loss varying only operating conditions (input speed, input torque, and component
temperatures), imagining the transmission to be fully defined. Varying the gears, the
bearings or the oil type necessarily leads to the creation of a new neural network. Having
said that, given the efficient methodology, the process can be repeated for different layouts
or varying the oil type, making this procedure useful in the design phase as well.

3. Power Loss Predictions

In gear transmissions, power losses are often divided into load-dependent and no-load
contributions. The precise estimation of all power loss addenda is crucial for predicting the
heat generated by each component during its operation. According to ISO/TR 1419-2 [21],
the total power loss of a geared transmission can be evaluated as

PTOT = PVZ0 + PVZP + PVL0 + PVLP + PVD + PVX , (1)

where PVZ0 is the churning/windage/squeezing losses of gears, PVZP is the loss associated
with tooth friction, PVL0 the load-independent loss associated to roller bearings, PVLP is
the load-dependent loss of roller bearings, PVD is the power loss due to seals, and PVX
represents all the other losses. The power losses considered in this study are described in
the following, highlighting the model implied for each term.

3.1. PVZP-Gears Load-Dependent Losses

The losses in meshing involve two components: sliding friction and hydrodynamic
rolling. Sliding friction is due to relative motion between gear surfaces, while hydrody-
namic rolling loss refers to the power needed to move and compress the lubricant, forming
a pressurised oil film that separates the gear teeth. The second is a significant part of the
overall system loss, particularly under light loads [22], while at medium to high contact
pressures, the first dominates.

Instantaneous power loss due to sliding ( PVZPs) at a generic point along the line of
action (x) can be written as

PVZPs(x) = µ(x)Fn(x)vsl(x), (2)

where µ is the friction coefficient, Fn the normal contact force, and vsl the sliding speed
all evaluated instantaneously along the contact line. Therefore, to accurately evaluate
load-dependent power loss, a loaded tooth contact analysis (LTCA) must be performed to
assess the instantaneous contact condition in terms of speed and pressure (i.e., normal force)
along the line of action. There are different approaches to calculate the mesh stiffness and,
consequently, the contact force along the line of action [23,24]. The semi-analytical model
presented in [24] is used to calculate the variation of stiffness along the mesh line and the
load shared between the gear teeth. All gear kinematics can be found in the classic gear
literature [25]. For the friction coefficient between gears, researchers proposed a plethora
of semiempirical models [26]. Among all others, the models by Benedict and Kelley [27]
and Höhn [28] are among the most utilised, but in this work, the partial EHL approach
presented by Arana et al. [29] is used. The least mentioned focusses on two key aspects:
the fluid friction coefficient and the iterative thermal power loss prediction methodology.
The friction coefficient is determined using a non-Newtonian rheological model and covers
a wide range of viscosity grades. The model is extended to account for partial EHL using
the Tallian [30] asperity load share functions. According to Tallian, partial EHL exists when
0.5 < λ < 4, where λ is the specific film thickness ratio, defined by the ratio between
central film thickness hc, and the composite root mean square roughness of the surfaces.
Loaded gears (i.e., non-idle) are often assumed to operate under this lubrication regime [29].
This occurrence is the thermal power loss prediction methodology calculates the contact
and film temperatures to estimate the traction and film thickness precisely. The models
are validated with experimental results, demonstrating accuracy within 10% error. Their
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work emphasises the importance of accurately characterising the high-pressure viscosity
behaviour of the lubricant for predicting friction coefficients and power losses in gears.

In particular, the friction coefficient µ for partial EHL regimes is defined as

µ = εµs + (1 − ε)µ f . (3)

Here, µ f and µs represent the coefficients of fluid and solid friction, respectively. The
parameter ε represents the ratio of the real contact area to the apparent (Hertzian) contact
area and is strictly dependent on λ. For this study, the Doleschel model [31] was used
to correlate λ and ε, which is found to be more consistent with experimental data. The
common assumption is that the boundary friction coefficient µs is unaffected by varying
operating conditions [29]. In this application, a value of µs = 0.0863 was assumed, in
accordance with the experimental observation reported in [19].

Conversely, the fluid friction coefficient µ f can be written, with all the assumptions
made in [29], as

µ f = min
[

2·Λ
α·p ·sinh−1

(
η·α·Vs

2·Λ·ΦT ·hc

)
, Λ

]
, (4)

where Λ is the limiting-stress pressure coefficient (i.e., twice the product of limiting shear
stress and pressure viscosity coefficient), α is the local piezo-viscosity coefficient (evaluated
at Hertz contact pressure according to Bair and Winer, [32]), p is the mean contact pressure,
η is the dynamic viscosity evaluated at the mean contact temperature and pressure (using
the so-called “Modulus equation”), Vs is the sliding velocity, and ΦT is a factor that accounts
for the thermal effect on film thickness. All the aforementioned parameters strongly depend
on the type of oil and operating conditions. For the equations and the flowchart required
for the calculation, the reader can refer to [29].

Regarding rolling traction, the model proposed by Anderson [22] is used. According
to his studies, the power loss due to rolling is computed as:

PVZPr (x) = C[ΦT(x)h c(x)vr(x) FW], (5)

where C is a constant of proportionality, vr is the rolling velocity (i.e., sum of profiles
velocity), and FW is the gear face width.

Once the instantaneous loss along the line of action has been calculated, it is possible
to evaluate the average power loss as the integral average along the path of contact.

3.2. PVZ0-Gears No-Load Losses (Spin Losses)

Gear no-load power losses can be divided into churning losses, windage losses, and
squeeze (or pocketing) losses. Both windage and churning occur in geared transmissions
and are complementary to each other. Churning refers to the generation of losses in all oil-
bath lubricated gearboxes. At the same time, windage involves the significant involvement
of air along with the lubricant, particularly in cases such as large gears lubricated with a
thin layer of grease or high-speed gears with injected lubrication. Additionally, squeezing
or pocketing is a lesser magnitude phenomenon compared to windage and churning. It
occurs when there is a sudden reduction in the volume between the mating surfaces, which
causes the lubricant or lubricant mixture to be squeezed out [33]. Niemann [34] provides
an estimate of power waste due to churning in dip lubrication conditions i, which can be
written for each gear as

PZ0 = ω

(
ev1.5

t FW
2.72·10−6

)
, (6)

where ω is the rotational speed, e is the immersion depth, vt the tangential speed, and FW
is the gear face width.
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3.3. PVL-Bearing Losses

Bearing friction torque and spin losses are calculated according to the SKF model [35].
It enumerates several types of friction that require consideration including rolling friction
(Mrr), sliding friction (Msl), friction from seals (Mseal), and friction from drag losses (Mdrag).
The calculation for the total friction torque is made by adding all these contributions as

Mtot = Mrr + Msl + Mseal + Mdrag. (7)

All torque loss addenda are heavily dependent on bearing type, lubrication condition,
and size and for each component one can refer to [35] for all the calculation procedures. To
ensure that the model considers the variations in bearing temperature, the oil properties
are evaluated at the average temperature between the bearing housing inlet (ϑin) and outlet
temperatures (ϑout). It is possible to consider the inlet bearing temperature equal to the oil
temperature, while for the output temperature, following the SKF instructions available
at [36], one can write:

ϑout = ϑin +
PL − Ws(ϑB − ϑamb)

27·Q , (8)

where PL represents the power loss in [W], WS is the total heat dissipation per degree above
ambient temperature in [W/◦C], ϑB the bearing temperature in [◦C], ϑamb the ambient
temperature in [◦C], Q the oil flow into the bearing. For the oil flow into the bearing, it is
possible to use the maximum value, calculated as:

Qmax =
DB

12500
. (9)

Indicating with D the bearing outer diameter in mm and with B the bearing width
in mm.

3.4. PVD: Seal Losses

Radial shaft seals (RSS) are commonly used to seal the shaft end in geared transmission.
Their sliding and the consequent power loss depend on various factors, such as the hardness
of the shaft surface roughness, the type of sealing, the lubricant type, and temperature [37].
Various manufacturers provide diagrams to determine the friction torque related to RSS. A
generally valid relation can be found in [38] where the power loss due to seals (PVD) in W
is computed as:

PVD =
[
145 − ϑoil + 350log

(
log
(

VGgrade + 0.8
))]

d2n ∗ 10−7, (10)

where ϑoil is the oil operating temperature in ◦C, VGgrade is the oil viscosity grade (i.e.,
nominal kinematic viscosity at 40 ◦C in mm2/s, and n is the rotational speed in rpm.

3.5. Model Validation

Power loss prediction models are tested with experimental data available from [19],
where the FZG test rig is tested with different rotational speeds and torque and with three
different gear pairs.

For sake of conciseness only the spur gear pair presented in [19] is taken as reference,
and the pair geometry and all the gearbox parameters are reported in Table 1, while the
models employed for the correlation are summarised in Table 2.
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Table 1. FZG rig characteristics reported in [19].

Gears

Name Pinion Wheel

Center distance (mm) 91.5
Number of teeth 16 24

Normal module (mm) 4.5
Normal pressure angle (◦) 20

Helix angle (◦) 0
Face width (mm) 14

Addendum modification coefficient 0.182 0.172
Flank surface roughness (µm) 0.174 0.157

Material 16MnCr5

Bearings

Bearing type Cylindrical roller NU406

Seals

Input shaft diameter (mm) 24
Output shaft diameter (mm) 54

Oil

Oil type Mineral
Kin. Viscosity@40 ◦C (mm2/s) 32.63

Kin. Viscosity@100 ◦C (mm2/s) 5.45
Density@15 ◦C (kg/m3) 876.8

Table 2. Calculation model for each source of power loss.

Power Loss Model

Gear sliding Partial EHL [29]
Gear rolling Anderson [22]

Gear Churning Niemann [34]
Bearings SKF [35]

Seals Simmering model [38]

As it can be seen in Figure 3, the proposed model shows a good correlation with
the experimental data especially at high torque values. On the other hand, at low to
medium torque, the model underestimates the loss at high values of rotational speed. This
occurrence can be explained by the higher uncertainty of the no-load-dependent losses
of both roller bearings and gears. In fact, experimentally derived models such as the
one provided by Niemann could be used only as a rough estimate, while a CFD analysis
would be required for the most accurate calculation [33]. As a proof, the error remains
approximately constant as the torque increases.

Moreover, a different trend distinguishes the total losses at high torque from those at
lower torque ones. This is imputable to the dominant loss mechanism depending on the
operating condition. Figure 4 shows the total loss divided into each component to better
explain this phenomenon. The no-load losses (i.e., PZ0, PB0, and PVD) remain constant
varying the output torque, while at high contact pressure gear sliding and load-dependent
bearing losses predominate.



Lubricants 2023, 11, 303 8 of 19
Lubricants 2023, 11, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Comparison between the experimental data available in [19] and the proposed model of 
total power loss against pitch velocity at different output torques. 

Moreover, a different trend distinguishes the total losses at high torque from those at 
lower torque ones. This is imputable to the dominant loss mechanism depending on the 
operating condition. Figure 4 shows the total loss divided into each component to better 
explain this phenomenon. The no-load losses (i.e., 𝑃௓଴, 𝑃஻଴, and 𝑃௏஽) remain constant 
varying the output torque, while at high contact pressure gear sliding and load-dependent 
bearing losses predominate. 

Figure 3. Comparison between the experimental data available in [19] and the proposed model of
total power loss against pitch velocity at different output torques.

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 4. Loss brakedown for a fixed pitch velocity of 8.3 m/s at different output torques. 

4. Neural Network Predictors 
Once the power loss model is validated, it is possible to train a deep neural network 

(DNN) to rapidly estimate the power loss for a given operating condition and component 
temperature. Specifically, feedforward networks (FFNs) with hidden layers and non-lin-
ear activation functions are considered. The configuration of DNNs can be further defined 
by hyperparameters, which include factors like number of layers, number of nodes per 
layer, batch size, activation functions, and training algorithm. The effectiveness of the 
DNN is heavily dependent on making the appropriate choice for these hyperparameters. 

For this application, the supervised learning approach is employed to build a re-
duced order model for power loss prediction (ROM-PL). 

For this gearbox layout, once the geometry and the oil type are known, it is possible 
to identify 9 input parameters that have an impact on power waste during transient oper-
ation: oil temperature (𝜗௢௜௟), pinion, and gear bulk temperature (𝜗஻௨௟௞ଵ and 𝜗஻௨௟௞ଶ), four 
bearings temperature (𝜗௅௜), transmitted torque (𝑇), and rotational speed (𝑛). As it could be 
observed, not all parameters directly influence every power loss component. Therefore, as 
shown in Figure 5, three small FFNs are used in the power loss prediction: 𝑁𝑁௓௉ for gear 
sliding and rolling loss, 𝑁𝑁଴ for churning and seal losses, 𝑁𝑁஻ for bearings losses (one 
per bearing). The choice of hyperparameters is reported in Table 3 and are the same for 
each neural network. 

Figure 4. Loss brakedown for a fixed pitch velocity of 8.3 m/s at different output torques.



Lubricants 2023, 11, 303 9 of 19

4. Neural Network Predictors

Once the power loss model is validated, it is possible to train a deep neural network
(DNN) to rapidly estimate the power loss for a given operating condition and component
temperature. Specifically, feedforward networks (FFNs) with hidden layers and non-linear
activation functions are considered. The configuration of DNNs can be further defined by
hyperparameters, which include factors like number of layers, number of nodes per layer,
batch size, activation functions, and training algorithm. The effectiveness of the DNN is
heavily dependent on making the appropriate choice for these hyperparameters.

For this application, the supervised learning approach is employed to build a reduced
order model for power loss prediction (ROM-PL).

For this gearbox layout, once the geometry and the oil type are known, it is possible to
identify 9 input parameters that have an impact on power waste during transient operation:
oil temperature (ϑoil), pinion, and gear bulk temperature (ϑBulk1 and ϑBulk2), four bearings
temperature (ϑLi), transmitted torque (T), and rotational speed ( n). As it could be observed,
not all parameters directly influence every power loss component. Therefore, as shown in
Figure 5, three small FFNs are used in the power loss prediction: NNZP for gear sliding
and rolling loss, NN0 for churning and seal losses, NNB for bearings losses (one per
bearing). The choice of hyperparameters is reported in Table 3 and are the same for each
neural network.
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Table 3. DNN hyperparameters.

Hyperparameters

Num. of hidden layers 2
Num. of nodes per layer 5

Batch size 64
Num. of epochs 1000

Activation function Sigmoid
Training algorithm Levenberg–Marquardt backpropagation

A data set is created for each net evaluating the power loss associated with the varying
input parameters performing a design of experiment (DOE). The easiest way to choose
a DOE parameters combination is to create a uniform mesh for input parameters, that
is, perform a full factorial combination of them. In this way, the number of simulations
becomes unsustainable if the parameters are too many or if a good definition is required for
each parameter. For this reason, a Latin Hypercube Sampling (LHS) algorithm is utilised
for the creation of the data set. LHS is a statistical method for generating a nearly random
sample of parameter values from a multidimensional distribution [39].

The main advantage of Latin hypercube sampling (LHS) is that it produces samples
that reflect the true underlying distribution and tends to require much smaller sample sizes
than simple random sampling [40]. In Table 4, the upper and lower bounds of each input
parameter are reported.

Table 4. DOE input parameters bounds.

Parameter Bounds Parameter Bounds Parameter Bounds

n (rpm) [50, 6500] TG1 (◦C) [20, 120] TB2 (◦C) [20, 120]
T (Nm) [1, 350] TG2 (◦C) [20, 120] TB3 (◦C) [20, 120]
Toil (

◦C) [20, 120] TB1 (◦C) [20, 120] TB4 (◦C) [20, 120]

To generate a data set for each NN, a DOE consisting of 400 elements is created. This
data set is randomly divided into three groups: a training set, a validation set, and a test set.
The training set contains 80% of the data, while the validation set, and the test set contain
10% each.

Additionally, for the predictive performance evaluation of the NNs, another sample
of 400 elements is randomly generated within the parameter bounds, and the value of the
power loss prediction model is compared with the NN guesses. This set must be different
from the data set employed to train the NNs in order to better judge the performance. The
evaluation is based on the R-squared value [41] denoted by R2. After obtaining an output y
for a given test set and a ROM prediction ŷ for the same test set, the performance metric is
determined as follows:

R2(y, ŷ) = 1 − ∑n
1 (y i − ŷi)

2

∑n
1 (y i − y)2 (11)

where y = (y1, . . . , yN), ŷ = (ŷ1, . . . , ŷN), y = ∑n
1 yi/N, and N denote the number of data

samples of the output y. Here, for simplicity, we assume y is 1-dimensional. As the solution
ŷ of the ROM predicts the label y more accurately, the value R2 approaches 1.

As it is possible to observe from Figures 6–8 the neural networks provide extremely
good results. In fact, by reporting the normalised (using the min–max normalisation)
power loss predicted ( ŷ) versus the one calculated ( y), it is possible to observe an excellent
correlation for all the NNs.
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5. Thermal Network

The heat generated in cylindrical gearboxes, due to all power loss sources, is ex-
changed with the environment by conduction, radiation, and convection. The evaluation
gearbox temperatures are of great interest by the means of components durability. In a
quasi-stationary state of equilibrium, which means that all operating conditions remain
approximately constant, the heat dissipated equals the power loss generated:

PTOT = Q,

where the heat dissipated is the sum of all heat transmission phenomena.
During a transient operating condition, the presence of a non-null temperature gradi-

ent ( dT/dt) means that the balance equation must be adapted as:

PTOT = Q + mc
dT
dt

,

where m is the component mass and c is the component-specific heat capacity.
In this study, the thermal network technique presented in [9] is followed. It consists

of identifying isothermal components in the gearbox and appropriately connecting them
via thermal resistances evaluated depending on the heat transfer mechanism. The FZG
gearbox is divided into 14 isothermal elements and connected with thermal resistances as
shown in Figure 9. Each resistance connects different components (represented by lines)
and modulates the heat flux through the network.
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The thermal resistances could be of four different categories: conduction through a
metal medium, convection with oil, convection and radiation with air, and striction. The
least mentioned occurs in the teeth meshing region due to the size difference between
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the Hertzian contact zones (exchange surfaces) and the overall dimensions of the gears.
This restriction leads to heat build-up and potential temperature variations within the
gear system [42]. Each power loss represents a concentrated heat source acting directly on
the system. In particular, referring to the schematisation of Figure 9, the meshing losses
represent a heat source for level 14, the bearings losses for levels 6-7-8-9 (depending on the
considered bearing), and the no-load losses for level 5 which represent the oil sump.

For a precise calculation step of each thermal resistance, one can refer to [8,9], while
the values of the heat transfer coefficient and all geometrical information needed for the
development of the thermal network are taken from [19] and reported in Table 5.

Table 5. Parameters for the calculation of thermal resistances.

Parameter Value

Gearbox outside surface
(
m2) 0.214

Gearbox inside surface
(
m2) 0.149

Gearbox height (m) 0.215
Wall thickness (m) 0.024

Heat transfer coefficient between oil and housing
(
W/

(
m2·K

))
950

Thermal conductivity of the housing (W/(m·K)) 40
Velocity of cooling air (m/s) 2

Temperature of cooling air (◦C) 25 ÷ 29
Contact surface of forced cooling air

(
m2) 0.214

Length of pinion shaft (m) 0.223
Diameter of pinion shaft (m) 0.024

Length of wheel shaft (m) 0.090
Diameter of wheel shaft (m) 0.055

Thermal conductivity of shafts (W/(m·K)) 46

Heat transfer coefficient and thermal conductivity are considered constant with vary-
ing operating conditions, even though they are affected by temperature and cooling air
velocity. The thermal network model of the FZG test rig is replicated in Matlab®/Simulink®

environment using the built-in SimscapeTM thermal module to simulate the gearbox tran-
sient behaviour.

6. Results

The thermal network of the FZG test rig is tested under transient operating conditions.
To highlight the improvement in computation time of the approach presented, each heat
flux generated by power loss is evaluated with both the full power loss model (F-PL) and
the reduced order model (ROM-PL). To simulate the real accuracy of the reduced model
under thermal transient conditions, a numerical test with variable input torque values and
speeds has been applied. It consists of a 600 s drive cycle characterised by speed and torque
profiles depicted in Figure 10. The initial temperature of all components is set to 20 ◦C to
simulate a cold start.

The characteristics of the gearbox under test are the same as the gearbox used for
model validation (see Table 1). In the table, details about the gears, the bearing type, the
seals, and the lubricant adopted are reported. Moreover, for the churning losses, the gears
were dip-lubricated with an oil level of 19 mm relative to the shaft axis.

The power loss during the drive cycle for both the F-PL and the ROM-PL is shown in
Figure 11. The comparison shows good agreement between the two approaches, especially
after the initial stage. In fact, in this phase, neural networks are predicting the power loss
value around the lower limit of all parameters (i.e., the temperatures of the components
are close to the lower extreme, as well as the torque and the rotation speed). As proof
of this, in the final part, where the operating conditions in terms of torque and speed
are similar to the initial ones, the predictions are more appropriate because of the higher
component temperatures.
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conditions.

Moreover, the effect of temperature variations can be appreciated in the constant
power phase. The sliding losses slightly increase with the increasing temperature as a
decrease in the result of kinematic viscosity, a consequent lubricant film thinning, and an
increase of friction coefficient. This trend is not extremely visible, while the effect on roller
bearing losses is contrary and much more noticeable. The lubricant thinning hardly reduces
the bearing rolling friction torque (Mrr) and, in addition, drag losses decrease because of
an increasing oil temperature. This effect is the same visible for no-load losses.

The temperature profile of some main components of the thermal network is reported
in Figure 12, where it is possible to see how neural networks operate effectively in tem-
perature estimation. Due to the input power profile utilised, all components experience a
heating and cooling phase. From the results, it is evident that the temperature of the gear
body is higher when the torque is significant, as the sliding losses represent the primary
source of heat. When torque levels drop throughout the cooling phase, the gear body tends
to assume the temperature of the oil. Furthermore, the input branch (Shaft 1, B1-B2, and
Pinion) exhibits higher temperatures compared to the output branch (Shaft 2, B3-B4, and
Wheel) due to the higher rotational speed, which results in greater bearings losses. Finally,
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it is observed that the temperature of the shafts is greater than the corresponding bearings
because the former are also directly heated by the gears.
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Figure 12. Component temperature during the drive cycle. Comparison between the full power loss
model and the reduced order model.

The NNs provide extremely good results while drastically reducing computational
time. For a 600 s drive cycle simulation, the F-PL thermal network model takes 6410 s to
run (average on 5 runs), while the ROM-PL thermal network model simulation lasts only
3.8 s (average on 5 runs).
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Once the numerical validation of ROM-PL within the thermal network is established,
it is possible to utilise this model to test it with experimental data. The experimental data
used for the study were obtained from [19], where numerous measurements of transient
component temperatures were conducted. The kinematic condition is as follows: the
measurements were done sequentially, beginning with the slowest circumferential speed
and gradually increasing the speed after a 3 h gap. The speed levels are reported in Table 6
for clarity. This process was repeated for three different output torque levels (T2): 0 Nm,
141 Nm, and 453 Nm.

Table 6. Kinematic condition of the experimental measurement in [19].

Kinematic Test Condition

Time (h) 0–3 3–6 6–9 9–12 12–15 15–18
Pitch line velocity (m/s) 1 2 5 8.3 15 20

Input shaft rotational speed ( rpm) 174 348 870 1444 2609 3476

Based on ISO/TR 14179-2 [21], it is anticipated that dip-lubricated gearboxes will
reach a quasi-stationary temperature with respect to oil temperature after 1–3 h, depending
on the design of the gearbox. The sensors were positioned at various locations, including
the outer housing side surface below the oil level, inner, and outer bearing rings, shafts,
gear bodies, and teeth. Furthermore, measurements were taken for the environmental
temperature and the temperature of the oil sump below the oil level. Figure 13 presents
both the calculated and measured temperatures of the housing, oil, bearing, and tooth bulk
for the gearbox under consideration.
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The calculated results for the no-load and medium-load operating conditions show
excellent correlation with the measured values for both temperature magnitude, gradients,
and distribution among gearbox components. The discrepancy at the highest load con-
dition is attributed to the approximated model used for the heat transfer coefficient, as
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already observed in [19]. However, the degree of approximation is acceptable for a lumped
parameter model. Furthermore, using the ROM-PL only 110 s of computation time were
needed to simulate 18 h of operation.

7. Conclusions

An innovative methodology to estimate the thermal behaviour of the cylindrical
gearbox system is presented by considering thermal sources calculated by power loss
under interim operational conditions. Firstly, the power loss estimation models are tested
against experimental data showing good agreement.

Once the power loss models are validated, using the Latin hypercube sampling (LHS)
technique, a design of experiment (DOE) is performed to create the training and test set for
the artificial neural networks (ANNs). The capability of predicting power loss of the ANNs
is tested, and the authors confirm the possibility of employing these estimators to enhance
simulation speed while providing accurate results. Instead of numerical simulation output,
real experimental data could be used in future to train NNs.

To verify that the reduced model (ROM-PL) works correctly, using the results provided
by the full model (F-PL) as a benchmark, a numerical test of a 600-s drive cycle is performed.
The results of the two approaches are almost identical for the power loss and component
temperatures, but the simulation time is drastically reduced. The F-PL takes 6410 s to
simulate the whole drive cycle, while the ROM-PL simulation lasts only 3.8 s on average.
The results provided also underline the dependence of individual losses on temperature
variations. In particular, for constant torque and speed values, sliding losses tend to increase
slightly with temperature due to a thinning of the lubricant film. Conversely, no-load and
bearing losses decrease due to viscosity drop.

Once the numerical test of ROM-PL against F-PL leads to satisfying results, it is
possible to validate this model against experimental data. The correlation between the
proposed approach and the measurements in [19] is very promising and demonstrates
how the implemented formulations are excellent for estimating both the components’
temperature trends and the associated power losses. Furthermore, using a neural network,
hours of real operation can be simulated in minutes. The noteworthy results obtained
by the ROM-PL show the captivating potential of reduced-order modelling. This creates
possibilities for applying this method to real-time simulations, including those associated
with digital twin applications.
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