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Abstract: This research paper delves into an innovative utilization of neurosymbolic programming for
forecasting wear rates in aluminum-silicon carbide (Al/SiC) metal matrix composites (MMCs). The
study scrutinizes compositional transformations in MMCs with various weight percentages of SiC
(0%, 3%, and 5%), employing comprehensive spectroscopic analysis. The effect of SiC integration on
the compositional distribution and ratio of elements within the composite is meticulously examined.
In a novel move for this field of research, the study introduces and applies neurosymbolic program-
ming as a novel computational modeling approach. The performance of this cutting-edge methodol-
ogy is compared to a traditional simple artificial neural network (ANN). The neurosymbolic algo-
rithm exhibits superior performance, providing lower mean squared error (MSE) values and higher
R-squared (R2) values across both training and validation datasets. This highlights its potential for
delivering more precise and resilient predictions, marking a significant development in the field.
Despite the promising results, the study recognizes that the performance of the model might vary
based on specific characteristics of the composite material and operational conditions. Thus, it encour-
ages future studies to authenticate and expand these innovative findings across a wider spectrum
of materials and conditions. This research represents a substantial advancement towards a more
profound understanding of wear rates in Al/SiC MMCs and emphasizes the potential of the novel
neurosymbolic programming in predictive modeling of complex material systems.

Keywords: neurosymbolic artificial intelligence; wear rate; metal matric composites; neural networks

1. Introduction

Aluminum and its alloys have gained significant prominence and widespread utiliza-
tion across various technical fields. These versatile materials find extensive applications
in industries such as aerospace, space, military, automotive, and electronics. The unique
combination of desirable properties exhibited by aluminum makes it an attractive choice
for diverse applications.

In the aerospace industry, aluminum and its alloys are employed in the construction
of aircraft structures, including fuselages, wings, and engine components. The lightweight
nature of aluminum contributes to improved fuel efficiency and enhanced performance of
aircraft.

Similarly, in the space industry, aluminum plays a vital role in the construction of
satellites, rockets, and spacecraft. Its lightweight properties, along with good strength and
corrosion resistance, make it an ideal material for space exploration missions.

The military sector extensively utilizes aluminum and its alloys due to their strength,
durability, and resistance to harsh environmental conditions. Applications range from
armored vehicles and aircraft to defense equipment and weaponry components.

Lubricants 2023, 11, 261. https://doi.org/10.3390/lubricants11060261 https://www.mdpi.com/journal/lubricants

https://doi.org/10.3390/lubricants11060261
https://doi.org/10.3390/lubricants11060261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com
https://orcid.org/0000-0003-4939-359X
https://orcid.org/0000-0001-7949-2551
https://doi.org/10.3390/lubricants11060261
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com/article/10.3390/lubricants11060261?type=check_update&version=1


Lubricants 2023, 11, 261 2 of 19

In the automotive industry, aluminum is widely used to manufacture engine blocks,
cylinder heads, chassis components, and body panels. Its high strength-to-weight ratio
helps to reduce the overall weight of vehicles, leading to improved fuel efficiency and
lower emissions.

Composite materials, either engineered or naturally sourced, consist of two or more
distinct materials possessing substantially different physical or chemical characteristics.
These constituent elements retain their individuality at either macroscopic or microscopic
scales within the final structure. The earliest instances of human-engineered composite
materials were bricks formed from straw and mud for construction purposes [1–4].

Constituent materials, of which at least a percentage of each type is required, are used
to make composite materials. By maintaining their relative locations, the matrix material
encases and stabilizes the reinforcing materials [5–7]. The specific mechanical and physical
features of the reinforcement materials help to improve the matrix’s qualities.

In recent years, metal matrix composites have attracted significant attention due to
their superior characteristics. Although the reinforcement often contributes many sought-
after mechanical properties, these composites demonstrate anisotropic behavior and their
production using traditional techniques can be challenging [8–12].

Presently, particulate-reinforced aluminum matrix composites are receiving increasing
attention due to their cost-effectiveness and beneficial isotropic properties. Aluminum
alloys, due to their low weight and excellent thermal conductivity, have become a fa-
vored engineering material in industries such as automotive and aviation [13–17]. These
industries utilize such alloys for various high-performance components in numerous appli-
cations.

When reinforced with ceramic particles, aluminum alloys demonstrate superior me-
chanical properties compared to their non-reinforced counterparts, thereby making them
an ideal choice for engineering applications. The production of aluminum metal matrix
composites can be achieved through casting or powder metallurgy. The former method
offers the benefits of lower production costs and the ability to produce larger components.

However, the casting process is not without its challenges. These include the non-
wettability of ceramic particles by liquid aluminum, particle segregation, higher levels
of porosity, and significant interfacial reactions due to elevated processing temperatures.
The wettability of the particles can be improved through various methods, such as coating
the particles with metals such as nickel and copper, introducing active elements such as
magnesium into liquid aluminum, or preheating the particles prior to their integration into
the liquid aluminum.

In the field of tribology, aluminum–silicon composites are of considerable importance
and have garnered extensive interest for both their practical uses and fundamental at-
tributes [18–21]. Over the past decade, these composites have seen substantial growth in
their application within structural engineering, including use in the automotive, aerospace,
and marine industries. The high strength-to-weight ratio of Al-Si composites makes them a
favorable material choice. Furthermore, aluminum–silicon alloys form a significant group
within aluminum foundry alloys.

Despite the extensive application and promising properties of aluminum–silicon com-
posites in various industries, predicting their wear rates remains a significant challenge.
This difficulty stems from the complex nature of the composites and the effects of various
compositional transformations, particularly those involving the integration of silicon car-
bide (SiC). Existing forecasting models, such as simple artificial neural networks (ANNs),
have shown some success in this area [22–25], but there is a pressing need to explore new
and potentially more accurate computational modeling approaches for predicting wear
rates in these Al/SiC metal matrix composites (MMCs). The previous literature has focused
on the implementation of using conventional machine learning models for predicting wear
rate [26–30].

The problem extends to the inherent variability in composite materials, particularly
when it comes to the distribution and ratio of elements within them. This variability means
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that the performance of any given model could change based on the specific characteristics
of the composite material and the operational conditions under consideration. Thus, there is
a need for a robust, adaptable, and accurate model to predict wear rates in these composites,
which not only considers the specific material characteristics and operational conditions
but also accommodates the integration of different weight percentages of SiC.

The potential application of neurosymbolic programming, as a novel computational
modeling approach in this field, represents an exciting avenue for exploration. However,
this approach needs to be thoroughly tested and compared with existing methods to
ascertain its effectiveness and adaptability across various materials and conditions. This
need for a robust and resilient predictive model for wear rates in Al/SiC MMCs forms the
basis of our research problem.

This research paper presents a significant contribution by employing neurosymbolic
programming to predict wear rates in aluminum–silicon carbide (Al/SiC) metal matrix
composites (MMCs). What sets this study apart from similar works in the field is its
innovative application of the neurosymbolic algorithm, which combines the interpretability
of decision trees with the learning capabilities of neural networks. By doing so, it enables
a comprehensive analysis of compositional transformations and spectroscopic analysis
findings, leading to improved predictive accuracy.

The evaluation between the neurosymbolic algorithm and a conventional simple
artificial neural network (ANN) is a crucial component of this research. The outcomes
emphasize the superior performance of the neurosymbolic approach, which is supported
by reduced mean squared error (MSE) values and greater R-squared (R2) values through-
out both training and validation datasets. This advantage highlights the neurosymbolic
approach’s ability to deliver more accurate and durable forecasts, marking a significant
leap in the field.

2. Materials and Methods

This section presents the experimental procedure employed in the current research
work. The aluminum alloy HE-30 has a high tensile strength among all Al-Mg alloys,
with good corrosion resistance, good machinability and good weldability. The primary
constituent in this alloy is magnesium and Table 1 gives the detail chemical composition of
HE-30 Al alloy as measured via Spectro analysis.

Table 1. Spectro analysis of base material.

Cr Cu Fe Mg Mn Ni Pb

<0.005 <0.005 0.172 0.441 0.0206 0.0075 <0.05

Si Sn Sr Ti V Zn Zr Al

0.46 0.0216 <0.01 0.0167 <0.005 0.00558 <0.005 98.8

In this investigation, silicon carbide was employed as a reinforcing material. Particles
of silicon carbon of around 25 m in size were purchased on the open market. Tetrahedral
carbon and silicon atoms are bonded tightly together to form silicon carbide, which is its
chemical name. This results in a material that is exceedingly strong and hard. Up to 800 ◦C,
no acids, alkalis, or molten salts can attack silicon carbide. This material has remarkable
thermal shock resistance due to its strong thermal conductivity, minimal thermal expansion,
and high strength.

Composite specimens were created using a liquid metallurgical process. The most
cost-effective way to create composites with irregular or discontinuous fibers is with this
technique. To maintain the matrix alloy in the semi-solid state, the temperature of the alloy
is first raised to its melting point and then gradually decreased until it is below the liquidus
temperature. The preheated SiC particles are introduced to the slurry and stirred at this
temperature. The temperature of the composite slurry was then raised to a fully liquid
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state, and an automatic stirring mechanism was then used. The hot melt was finally poured
into the permanent cast iron mold.

After being cleaned to eliminate surface imperfections, an identified amount of
HE-30 alloy bars were loaded into an oil-fired furnace and heated to 760 ◦C. In order
to dry out the silicon carbide particles, they were also warmed to 800 ◦C. Hexa-chloro-
ethane tablets were used to purge the molten aluminum alloy of any trapped gases in order
to reduce porosity. The aluminum alloy was then melted and degassed. To get rid of the
slag content, the slag powder was sprayed. The base metal was strengthened with warmed
silicon carbide particles by weight ratio. With the aid of a stirrer, the melt was stirred. The
churning was maintained for 10 min at a 400 rpm impeller speed. The melt temperature
was kept at 720 ◦C while the silicon carbide particles were added.

The permanently heated metallic molds were filled with the molten alloy containing
reinforced particles. At 700 ◦C, the pouring temperature was held constant. After that, the
melt was allowed to set up in the molds. Three and five weight percents of silicon carbide
were used to make the composite. The specimens were machined to the necessary size for
wear tests after being removed from the molds that gave them their cylindrical shape.

The dry sliding wear properties of the composite specimens were assessed using
DUCOM pin-on-disc sliding wear testing equipment (Manufacturer: DUCOM, Bangalore,
India) as shown in Figure 1. The dry sliding wear tests were carried out in accordance
with ASTM G99-95 guidelines. Acetone was used to clean the pin, and a digital electronic
balance was used to determine its initial mass. Afterward, during the test, the pin was
kept placed against a rotating EN-32 steel disc (counter face) with a hardness of 65 HRC.
Variations in the applied normal load, sliding speed, and sliding distance were made
during the testing. Following acetone cleaning, the pin’s final mass was determined at
the conclusion of each test. The pin’s mass loss from sliding wear was determined by the
difference between its original and final masses. The pin’s associated density measurements
were used to compute the volume loss due to wear. The composite pins’ wear rate was
then determined.
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Figure 1. Wear test-Pin on disc.

The procedure for conducting the wear test is as follows:
Initially, the test specimen is precisely weighed using an advanced digital balance,

and its initial mass is meticulously logged. Subsequently, the specimen is fastened securely
using the notch, and its surface is tactically aligned to make contact with the disc. This is
followed by an adjustment of the track radius in line with the test’s specific needs. Once the
specimen is correctly positioned, predetermined normal loads are applied, and the sliding
velocity is established in accordance with the test specifications. The test is then carried
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out over a calculated time interval to traverse the defined distance. Upon completion
of the testing period, the worn specimen is gently detached, and its concluding mass is
measured and documented. The disparity between the initial and concluding weights
gives an accurate indication of the extent of wear endured by the specimen during the test.
This procedure is subsequently reiterated for additional specimens that exhibit different
volume percentages and may be subjected to diverse test parameters. This approach allows
for the comparative analysis of wear characteristics under a range of conditions.

Table 2 displays the wear parameters that were selected for the tests in accordance
with the pilot trials, literature analysis, and machine capacity. To determine the realistic
limitations of the aforementioned factors in order for the wear to happen in steady state,
pilot experiments were carried out following ASTM G99-95. The pin utilized for the wear
test has an 8 mm diameter and a 25 mm length.

Table 2. Process parameters with their values.

Level Sliding Speed (m/s) Load (N) Sliding Distance (m) Wt% Sic

1 0.314 9.81 500 0

2 0.942 29.43 1000 3

3 1.570 49.05 1500 5

Through robust experiment design, the Taguchi technique seeks to minimize variation
in a process. The method’s overarching goal is to generate high-quality output at a cheap
cost to the maker. Dr. Genichi Taguchi of Japan created the Taguchi method, and he has
continued to use that variant. Therefore, poor process quality has an impact on society
as well as the producer. In order to explore how various parameters influence the mean
and variance of a process performance characteristic that indicates how well the process is
doing, he created a system for designing experiments.

By organizing the variables influencing the procedure and the magnitudes at which
they should be shifted using orthogonal arrays, Taguchi’s experimental design can collect
the data required to identify the variables that have the greatest influence on product
quality with the least amount of experimentation, saving time and resources. Analysis of
variance was utilized to determine the important process parameters. As shown in Table 3,
an L9 orthogonal array with 9 rows and 4 columns was selected for the current experiment.

Table 3. Orthogonal array for L9(34) Taguchi design for wear test.

Standard Run Sliding Speed (m/s) Load (N) Sliding Distance (m) Wt% of SiC

1 0.314 9.81 500 0

2 0.314 29.43 1000 3

3 0.314 49.05 1500 5

4 0.942 9.81 1000 5

5 0.942 29.43 1500 0

6 0.942 49.05 500 3

7 1.570 9.81 1500 3

8 1.570 29.43 500 5

9 1.570 49.05 1000 0

In order to facilitate smooth integration on the Google Colab platform, the experi-
mental data collected was translated into a CSV file format. Then, to process the data, the
neurosymbolic programming method was used. The dataset was artificially enlarged to
include a substantial 1000 data points in order to improve the model’s precision.
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The neural nets and symbolic AI are combined in the neurosymbolic programming
method. The neural network structure consists of layers with 32 and 16 hidden units
that are closely connected and end in a single output neuron. By using a rectified linear
unit (ReLU) activation function, nonlinearity is incorporated into the model. The mean
squared error (MSE) loss function directs the optimization process when utilizing the Adam
optimizer for training. The model is trained using training and validation datasets over
2000 epochs with a 32-person batch size. The learnt features are subsequently extracted
from the input data using a trained neural network model. A decision tree, built with the
DecisionTreeRegressor provided by the scikit-learn module, serves as the model’s symbolic
representation. The decision tree’s maximum depth is four in order to avoid overfitting. As
a result, the trade-off among complexity of models and generalization ability is balanced.

The choice of our prediction model, neurosymbolic programming, and the associated
parameters were influenced by several critical elements to ensure reliable, robust outcomes.
The selection of neurosymbolic programming was driven by its distinct ability to merge
symbolic reasoning with deep learning, enabling superior generalizations from limited
data and yielding more interpretable predictions.

The chosen parameters were carefully identified based on a thorough spectroscopic
analysis and exhaustive review of relevant literature. They were believed to significantly
influence the wear rates in aluminum–silicon carbide (Al/SiC) metal matrix composites
(MMCs). Aspects such as the weight percentages of SiC (0%, 3%, 5%) within the composites,
and the distribution and ratio of constituent elements within the MMCs were diligently
taken into account during the modeling phase.

Moreover, we used a strategic approach for parameter tuning to maximize our model’s
performance. Our data was partitioned into training, validation, and testing sets. The
training set facilitated learning the model parameters, whereas the validation set aided
in refining these parameters and selecting the optimal model configuration. The final
appraisal of the model, based on mean squared error (MSE) and R-squared (R2) values,
was conducted using the test set. These metric features were then juxtaposed against those
of a basic artificial neural network (ANN) model for comparative analysis.

For the purposes of this investigation, our dataset was meticulously divided into two
interconnected but separate subsets: training and validation datasets. We utilized a signifi-
cant portion, 80%, of the entire dataset to establish and instruct both the neurosymbolic
programming model and the simple artificial neural network (ANN). This training dataset
facilitated model learning by enabling the recognition of patterns and correlations inherent
in the data.

The remaining 20% of the total data functioned as the validation (or testing) dataset,
which was not revealed to the models during the training phase. This segment of the
data was critical in appraising the performance of the models, specifically in gauging their
predictive proficiency with respect to new, unseen data.

By segmenting the data into training and validation subsets, we ensured that our
models were resistant to overfitting and retained their ability to yield accurate predictions
when presented with new data. While both subsets are drawn from the same comprehensive
dataset and exhibit similar characteristics, they were kept distinct to prevent the models
from merely committing the training data to memory. Instead, the models were encouraged
to extrapolate from learned patterns to make predictions.

It is crucial to note that, despite their similarities, the validation dataset was not used
in any capacity during the training process. This practice was maintained to guarantee
an impartial evaluation of the models’ capabilities and their effectiveness in extrapolating
to unseen data. This rigorous methodology allowed us to reliably assess the efficacy of
our models, corroborating their potential for practical application in the realm of wear rate
prediction in Al/SiC MMCs.

The generation of our data sets was based on nine sets of experimental data. From
these data, we synthetically created 1000 data points using established scientific principles
and statistical methodologies. These newly formed data points maintain the integrity of
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the original experimental data while providing sufficient volume for effective machine
learning processes.

We divided this expanded dataset into training and validation subsets, ensuring a
robust evaluation of our model’s performance. The synthetic generation of data points
enabled us to build an adequately sized training set, allowing for substantial learning
and pattern recognition for the models. Simultaneously, a meaningful validation set was
reserved for unbiased assessment of the model’s ability to generalize to unseen data.

3. Results
3.1. Spectroscopic Analysis

Spectroscopic analysis was performed to explore the proportion of various constituent
materials within the composite. This investigation specifically examined samples contain-
ing 0%, 3%, and 5% weight percentages of silicon carbide. The results are shown in Table 4
and Figure 2. Upon examining the spectroscopic analysis results, several key observations
can be made concerning the distribution of elements within composites containing different
weight percentages of silicon carbide (SiC).

Table 4. % of different elements in MMC.

Elements/Composites 0%-SiC 3%-SiC 5%-SiC

Al 98.8 98.1 97.7

Cr <0.005 0.0115 0.0118

Cu <0.005 0.0281 0.0332

Fe 0.172 0.272 0.36

Mg 0.441 0.394 0.454

Mn 0.0206 0.328 0.348

Ni 0.0075 0.00839 0.0089

Pb <0.05 <0.05 <0.05

Si 0.46 0.705 0.894

Sn 0.0216 0.0199 0.0209

Sr <0.01 <0.01 <0.01

Ti 0.0167 <0.0201 0.0149

V <0.005 0.00924 0.00804

Zn 0.00558 0.0337 0.0361

Zr <0.005 <0.005 <0.005

The most abundant element within the composites across all samples was aluminum
(Al), making up between 97.7% and 98.8% of the total weight. Notably, the percentage
of aluminum decreased as the weight percentage of SiC increased, indicating a possible
displacement effect by the added SiC.

Interestingly, the presence of silicon (Si), an element in silicon carbide, increased as the
weight percentage of SiC increased, suggesting a direct correlation between SiC addition
and Si content. This increase was from 0.46% at 0% SiC to 0.894% at 5% SiC.

Minor elements such as chromium (Cr), copper (Cu), iron (Fe), magnesium (Mg),
manganese (Mn), nickel (Ni), and zinc (Zn) also exhibited an increasing trend with the
addition of SiC, with iron and manganese showing the most significant increase. This
suggests that the introduction of SiC may have some influence on the dispersion of these
minor elements within the composite.

Certain elements, including lead (Pb), strontium (Sr), titanium (Ti), vanadium (V), and
zirconium (Zr), were present in such small amounts that they fell below the detection limit
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in some or all samples. For these elements, it was challenging to ascertain any clear trends
relative to the SiC content.
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3.2. Microstructural Analysis

Figure 3 displays optical micrographs of an unreinforced alloy, as well as composites
with 3% and 5% volume fractions of reinforcements. These specimens’ microstructure
study reveals that the SiC particles are evenly dispersed throughout the matrix. Porosity
was found to be present around the SiC particles, nevertheless. This observation might be
explained by the way aluminum alloy wets. Additionally, it can be shown from the optical
micrographs that adding more volume fractions of the particle reinforcements causes the
specimens’ porosity to grow.
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Figure 3. Microstructure of composites.

3.3. Wear Test Analysis

A pin-on-disc apparatus was used to conduct the dry sliding wear test. The important
parameters were identified using the signal-to-noise (S/N) ratio and analysis of variance
approaches. The impact of noise elements on performance characteristics is assessed using
the S/N ratios. S/N ratios assess both the degree of variation in the response data and
how closely the average response comes to the target, and three of them are regarded as
common and commonly used. The better of them are nominally better, higher better, and
smaller better. In this study, wear rate was minimized by using the rule of smaller is better.
The observed values for the L9 (34) orthogonal array are shown in Table 5.

The signal-to-noise ratio (S/N ratio) measures how sensitive the quality feature under
inquiry is to uncontrollable circumstances in the experiment. A higher S/N ratio is always
preferred because it shows that the product will vary less from the desired value. Table 5
makes it clear that experiment number 7 has the highest S/N ratio and the smallest wear
rate. The sliding speed, followed by the load, has the greatest influence on the wear rate,
according to an analysis of the response table.

The most effective combination of factors and their respective amounts for producing
the lowest wear rate can be identified by consulting the primary impact plots for the S/N
ratio (Figure 4). The best configuration is determined to be A3B1C2D2, which corresponds
to sliding speeds of 1.57 m/s at level 3, a load of 9.81 N at level 1, a sliding distance of
1000 m at level 2, and a SiC weight percentage of 5 wt% at level 2. It is anticipated that
using these parameter settings will effectively reduce the wear rate.
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Table 5. Orthogonal array of Taguchi for wear L9 array [31].

Standard Run Sliding Speed (m/s) Load (N) Sliding Distance (m) SiC wt% Wear Rate 10−11 (m2/N) S/N Ratio

1 0.314 9.81 500 0 9.330 −19.39

2 0.314 29.43 1000 3 6.370 −16.08

3 0.314 49.05 1500 5 4.598 −13.25

4 0.942 9.81 1000 5 0.111 19.09

5 0.942 29.43 1500 0 2.160 −6.68

6 0.942 49.05 500 3 0.100 20

7 1.570 9.81 1500 3 0.050 26.02

8 1.570 29.43 500 5 0.453 6.87

9 1.570 49.05 1000 0 0.141 17.01
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Table 6 depicts the response table for wear rate, sliding speed, load weight % of SiC
followed by sliding distance which affects the wear rate.

Table 6. Response table for wear rate [31].

Level Sliding Speed Load Sliding Distance Wt.% of SiC

1 −16.244 8.572 2.493 −3.024
2 10.801 −5.298 6.675 9.979
3 16.638 7.921 2.027 4.240

Delta 32.882 13.87 4.648 13.003
Rank 1 2 4 3

Analysis of variance is used to determine which design factors have a significant
impact on a quality feature. To do this, the contributions from each of the design parameters
and the error are divided into the overall variability of the S/N ratios, which is calculated
as the sum of the squared deviations from the total mean S/N ratio. First, a calculation is
made to determine the total sum of squared deviations (SST) from the overall mean S/N
ratio. The sum of squared deviations (SST) is then broken down into its two constituent
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parts: the sum of squared deviations (SSd) resulting from every design parameter and the
sum of squared error (SSe). The ratio of the sum of squared deviations (SSd) attributable
to each design parameter to the total sum of squared deviations (SST) represents the
percentage contribution made by each design parameter to the total sum of squared
deviations. The Fisher F-test is a statistical method used to pinpoint the parameter that
significantly affects a quality attribute. The mean of squared deviations (SSm) resulting
from each design parameter must be computed prior to running the F-test. The sum of
squared deviations (SSd) divided by the total number of degrees of freedom associated
with the design parameter gives us the mean of squared deviations (SSm). The F-value is
then just the ratio of the mean squared deviations (SSm) to the mean squared error for each
design parameter. F generally indicates that a modification in the design parameter has a
considerable impact on the quality feature if it is more than four.

Tables 7 and 8 show the result of analysis of variance for the influence of various oper-
ating parameters on the wear loss. This analysis was carried out at a level of significance of
5% (i.e., the level of confidence 95%). The result showed that the sliding speed (84.46%) has
major influence on wear rate. Load (4.65%) and SiC wt% (8.31%) have moderate influence
on wear rate and sliding distance (2.39%) has negligible influence on wear rate.

Table 7. Summary of ANOVA [31].

Factors Degree of Freedom Sum of Squares Mean Square % Contribution

Sliding speed 2 78.960 39.480 84.46

Load 2 4.341 2.171 4.65

Sliding distance 2 2.236 1.118 2.39

SiC wt% 2 7.757 3.879 8.31

Error 0 - -

Total 8 93.294

Table 8. Summary of pooled ANOVA [31].

Factors Degree of Freedom Sum of Squares Mean Square F-Test % Contribution

Sliding speed 2 78.960 39.480 35.31 84.46

Load 2 4.341 2.171 1.94 4.65

SiC wt% 2 7.757 3.879 3.47 8.31

Error 2 2.236 1.118

Total 8 93.294

3.4. Wear Rate Prediction Using Neurosymbolic Algorithm

By combining the benefits of neural networks and symbolic artificial intelligence,
neurosymbolic programming creates a model that is more reliable. An initial neural
network structure with three layers—an input layer, two hidden layers, and an output
layer—was developed for this investigation. A single output neuron was reached after the
first hidden layer, which had 32 units, and the second hidden layer, which had 16 units.
The rectified linear unit (ReLU) activation function was used to provide nonlinearity to the
model, as shown in Figure 5.
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Table 9 presents the calculated MSE and R2 values for both the simple ANN and the
neurosymbolic approach-based algorithm.

Table 9. Comparison of metric features of used algorithms.

Algorithm MSE (Train) MSE (Validation) R2 (Train) R2 (Validation)

Simple ANN 0.9901 1.0296 0.8667 0.8405

Neurosymbolic 0.4608 0.5543 0.9379 0.9141

4. Discussion

The impact of sliding speed on wear rate is presented in Table 6. The table suggests
a strong correlation between the wear mechanism and sliding speed. It is evident that at
lower sliding speeds, the composite exhibits higher wear rates. However, as the sliding
speed increases from 0.314 to 1.570 m/s, a decrease in wear rate is observed compared to
the lower sliding speeds.

Both the applied load and the volume fraction of reinforcement have an impact on
the wear behavior of composite materials. The impact of load on the rate of wear for
different reinforcing percentages is shown in Table 5. It is clear that the wear rate lowers for
various reinforcing percentages as the applied stress rises from 9.81 to 49.05 N. Increased
SiC content limits the matrix material’s ability to flow and deform under stress. At lower
loads, 0% reinforcement has a higher wear rate than 5% reinforcement, which has a lower
wear rate for the same load. The wear rate for 3% reinforcement is also lower than for 0%
and 5% reinforcement. This behavior may be attributed to the weakened bonding between
SiC and the matrix material.

SiC particles, which serve as load-supporting components, are responsible for the
composite materials’ exceptional wear resistance. The impact of wear rate is shown in
Table 5 for various combinations of speed, load, and distance. With regard to speed,
load, and distance, a decrease in wear rate is seen when the percentage of reinforcement
rises from 0% to 5%. The inclusion of SiC particles makes the composite harder, further
increasing its resistance to wear.

The presence of particles from wear debris indicates that both adhesive and abrasive
wear have occurred during the wear test, causing the plastic shearing of surface irregu-
larities. The SEM micrographs shown in Figure 6 also reveal areas of damage, potentially



Lubricants 2023, 11, 261 13 of 19

resulting in flake-shaped debris. When it comes to aluminum-based metal matrix com-
posites (MMCs) that contain reinforcing phases such as SiC, the reinforcement material
tends to act as a secondary abrasive against the opposing surface, thereby increasing wear
on the counter face. Moreover, as the reinforcement material is released as wear debris, it
acts as a third-body abrasive, affecting both the matrix and reinforcement surfaces. The
matrix alloy’s worn surface exhibits more pronounced grooves, particularly in composites
with lower volume fractions of SiC reinforcement. These grooves undergo severe plastic
deformation, resulting in significant wear.
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We identified many significant findings after carefully examining the evaluation
measures for both the simple artificial neural network (ANN) and the neurosymbolic
algorithms.

The average squared difference between the estimated and true values, which is
measured by the mean squared error (MSE), was dramatically decreased in the neurosym-
bolic algorithm during both the training and validation phases. The MSE values for the
neurosymbolic algorithm were 0.4608 and 0.5543 for training and validation, respectively.
By comparison, the simple ANN reported MSE values of 0.9901 and 1.0296, which were
much higher. A lower MSE indicates a better model fit to the data, which means that the
neurosymbolic algorithm will perform better.

We also employed the coefficient of determination, or R-squared (R2), to determine
the proportion of variance in the dependent variable that could be predicted from the
independent variables. R2 values are on a scale from 0 to 1, where 1 signifies an ideal
fit. The neurosymbolic algorithm outperformed with R2 values of 0.9379 and 0.9141 for
training and validation, respectively, in comparison to the simple ANN’s R2 values of
0.8667 and 0.8405. The higher R2 values indicate a superior predictive accuracy and model
performance by the neurosymbolic algorithm.

When evaluating a machine learning model such as the neurosymbolic programming
methodology, it is crucial to compare the actual and estimated values for both the training
and validation datasets. This comparison allows researchers to assess the model’s perfor-
mance, examine its ability to generalize, and ensure that it neither overfits nor underfits
the data. The actual values represent the observed target outputs in the datasets, while the
estimated values are the model’s predictions of the outputs based on the input features,
aiming to be as accurate as possible.

Analyzing these values within the training set helps evaluate the model’s capacity
to identify underlying patterns and relationships during the learning process. While
achieving a good fit within the training set is important, it does not guarantee the model’s
effectiveness. Overfitting can occur when the model excessively tailors itself to the training
data, memorizing noise or capturing irrelevant correlations. Therefore, it is essential to
scrutinize the model’s performance within the validation set, which comprises data that
the model has not encountered during training. This evaluation provides an estimation of
the model’s potential to generalize and make accurate predictions on unseen data.

The framework of the implemented NSAI algorithm in present work is shown in
Figure 7. The implementation of the neurosymbolic algorithm in this study involves an
innovative coupling of a decision tree and a neural network, aiming to improve the pre-
dictive performance on the wear rates in aluminum–silicon carbide (Al/SiC) metal matrix
composites (MMCs). In this application, the symbolic component of the neurosymbolic
algorithm, represented by the decision tree, is utilized to logically structure and decipher
the relationships and interactions between different variables that may influence the wear
rates in MMCs, such as the varying weight percentages of SiC, compositional transforma-
tions, and spectroscopic analysis findings. This approach harnesses the interpretability
and transparency of decision trees, which allows for a systematic breakdown of complex
relationships in the data.

The neural network component, on the other hand, serves as the subsymbolic or
non-symbolic element of the algorithm, focusing on detecting and learning from the subtle,
non-linear patterns in the data that are often elusive to symbolic models. In this context,
the neural network processes and learns from the information and relationships identified
and structured by the decision tree. It operates on compositional transformations and
spectroscopic findings, improving the predictive power of the model by leveraging its
capacity for high-dimensional data representation and learning from complex, non-linear
relationships.
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The fusion of these two techniques in the neurosymbolic algorithm provides a robust
forecasting tool for wear rates in Al/SiC MMCs. The combination allows the model to
handle both explicit, structured relationships, and implicit, non-linear relationships in the
data, thereby offering a powerful balance of interpretability and predictive accuracy. This
unique blend allows for a more nuanced understanding of the effects of varying SiC weight
percentages and compositional transformations on the wear rates in MMCs.

On combining the training and validation sets, a strong model should consistently
show accuracy and comparable performance. Any discrepancies between the actual and
estimated values in the validation set can point to over- or underfitting in the model, which
would make it difficult to generalize to new data. The graphs of the actual versus predicted
values for the training and validation sets for the two models, i.e., the simple ANN and the
neurosymbolic model, are shown in Figures 8 and 9.
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5. Conclusions

In conclusion, this research investigation into predicting wear rates in Al/SiC metal
matrix composites has yielded significant findings and valuable insights. Through metic-
ulous spectroscopic analysis, we successfully determined the distribution of different
material constituents within the composites containing varying weight percentages of
silicon carbide (SiC) (0%, 3%, and 5%). Our findings revealed notable changes in the
composition and distribution of multiple elements due to the integration of SiC.

The comparative analysis between the simple artificial neural network (ANN) and the
neurosymbolic algorithms demonstrated the superior performance of the neurosymbolic
approach. The neurosymbolic algorithm consistently outperformed the other model, with
lower mean squared error (MSE) values and higher R-squared (R2) values during both the
training and validation phases. These results underscore the potential of neurosymbolic
programming to generate more precise and resilient predictions, particularly for predicting
wear rates in Al/SiC metal matrix composites.

While the outcomes of this study are encouraging, it is essential to acknowledge that
the model’s performance may vary based on specific material attributes and operational
conditions. Thus, future research should focus on validating and expanding these findings
across a broader range of materials and conditions. This comprehensive investigation will
provide deeper insights into the wear behavior of Al/SiC metal matrix composites and
facilitate the development of more robust and efficient materials for diverse engineering
applications.
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