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Abstract: A fast local refinement algorithm based on feature extraction is developed. In the mesh-
based Reynolds equation solutions, two refinement features based on the physical parameters of
fluid lubrication are firstly defined, namely, pressure value feature and pressure gradient feature.
Then, a fast adaptive strategy different from the traditional methods based on residuals or recovery
errors is constructed according to the features, which are expected to determine the element needed
to be refined. Considering the update requirement of the feature parameters, an adaptive update
strategy for feature parameters is also developed. Finally, the feasibility of the scheme is verified on a
single-cylinder gasoline engine. Results show that the current algorithm can effectively reduce the
computational scale while ensuring the computational accuracy of the mesh-based model, compared
with the traditional global and local refinement strategy.

Keywords: feature extraction; Reynolds equation; mesh-based model; adaptive refinement

1. Introduction

The state of lubrication has a great influence on the performance of the whole machine,
and it accounts for the major sources of mechanical noise and vibration [1], especially
in the piston–cylinder system. The piston–cylinder system is a less stable rigid system,
consisting of the piston inertial dynamics model and the lubrication oil film model. The
integral method with a variable stepsize at each integration step adaptive time-setup size
is generally used to ensure the solution accuracy. In a simulation of the piston–cylinder
system, the solving process of the lubrication film pressure will be repeated for millions
of times in the solution of a whole workflow [2]. Obviously, a method that performs
well in terms of solution speed while maintaining high accuracy can significantly reduce
computation time.

Stable and efficient numerical solutions to fluid problems have always been a focus,
and plenty of methods have been developed, which can be divided into mesh-based
methods and mesh-free methods [3] based on the way of the computational domain
discretization. These include finite element method [4] (FEM), finite difference method [5]
(FDM), finite volume method [6] (FVM), and isogeometric analysis method [7] (IGA), which
belong to the former. These methods discretize and solve the computational domain and
governing equations based on the mesh as the basic unit [8]. Usually, they have high
algorithmic stability when dealing with fluid problems with fixed boundary or small
deformation, but due to the strict mesh deformation conditions, these methods are not
effective or are even unapplicable when dealing with large deformations or free flows [9].
Mesh-free methods have been introduced into fluid solutions. These methods use points
or particles as the basic unit for discretization, instead of mesh, and can effectively handle
problems such as large deformations [10], free flows [11], and multiphase flows [12]. One
typical method is the smoothed particle hydrodynamics [13,14] (SPH) method, which uses
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a set of freely movable particles to discretize the fluid and related control equations. This
flexible handling method can directly satisfy mass conservation in flow and is applicable
to fluid problems in complex spaces [15]. However, it should be pointed out that the
position and distribution of points or particles used in the method will seriously affect
the solution accuracy, and there are certain limitations in model adaptation. Specifically,
in the simulation analysis of piston–cylinder friction pairs studied in this paper [16], the
lubrication area is usually described by the Reynolds equation (a second-order partial
differential equation) with a simple form of boundary, which is very suitable for mesh-based
methods to solve, and related works include FDM [17], FEM [18], FVM [19], IGA [20], etc.

Generally, the mesh scale directly determines the model’s calculation time and accu-
racy. In order to improve efficiency, the adaptive subdivision method is widely used in
classic mesh-based methods [21], which has tried to build a “proper” mesh [22] to reconcile
the conflict of the decrease in solving efficiency and the increase in accuracy with the in-
creasing of mesh size. These methods mainly use residual posterior error [23] and recovery
posterior errors [24] for error estimation. As the core parts of the adaptive refinement
process, the selection of the super convergence points has great influence on the calculation
of the residual posterior error, making it very inefficient. While the recovery posterior
error depends heavily on the equation’s form, the variable coefficients of the Reynolds
equation making it cannot be directly applicable [25]. It should be noted that it is quite
complicated for FVM to handle the control volumes and the boundary conditions between
them in refinement.

In this paper, IGA, known as “the next generation of FEM” because of its efficiency, is
used to solve the Reynolds equation, and PHT splines that support the local subdivision
are used to mesh. Based on this, a feature-extraction-based adaptive refinement strategy is
proposed in this paper. As the target is solving the distribution of lubrication film pressure,
the physical features of the film were taken into consideration for the refinement strategy,
such as the pressure value and its variation. It is obvious that the two parameters indicate
the distribution trend of the lubrication film pressure. Thus, the refinement strategy is
proposed in this article based on the following empirical assumption: the calculation results
of the regions with large pressure value or rapid variation in pressure value have greater
influence on the accuracy of the calculation of the mechanical parameters of the friction sub.
Furthermore, the calculation accuracy of the regions also impacts the calculation accuracy
of the whole system greatly. Thus, it is crucial that these regions are be refined. Particularly,
for the JFO boundary condition [26], the calculation of cavity regions is absolutely different
from the fully lubricated areas. The cavity feature is defined to mark the elements in cavity
regions particularly. In other words, the refinement method can make the solving of the
Reynolds equation with JFO boundary conditions easier. All the definitions of abbreviations
in this paper can be find in Table 1.

Table 1. Abbreviations and definitions.

Abbreviations Definitions

PDE Partial differential equation
FDM Finite difference method
FVM Finite volume method
FEM Finite element method

NURBS Non-uniform rational B-Splines
JFO Jakobsson–Floberg–Olsson
IGA Isogeometric analysis
CAD Computer-aided design
DOFs Degrees of freedom
SPH Smoothed particle hydrodynamics
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2. PHT-Based IGA and the Oil Lubrication Film Model

Although there are many different lubrication models, the typical oil lubrication film
considering the classical Reynolds boundary condition in the piston–cylinder system is
taken as an example in this article. Additionally, the method in the presented works
can be extended to others. Before introducing our refinement method, it is necessary to
introduce some relevant fundamentals in this section to help with understanding, which
include brief introductions of the refinement method of the PHT spline, the widely used
lubrication model of the piston–cylinder system, and the basic steps of the discretization
of the Reynolds equation based on IGA. Schematic diagram for cylinder-piston-rod-crank
system is shown in Figure 1, and the definitions of parameters are shown in Table 2.
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Figure 1. Schematic diagram for cylinder–piston–rod–crank system. (a) Piston-connecting rod-crank
system. (b) Parameters of connecting rod. (c) Parameters of crank. (d) Parameters of piston.

Table 2. Parameters and their definitions in piston–cylinder system.

Parameters Definitions

r Piston skirt radius
R Cylinder liner radius

LSK Piston skirt length
a The long half axis of the ellipse in horizontal cross section of piston
et Eccentricity of the upper end of the piston skirt
eb Eccentricity of the lower end of the piston skirt
det Derivative of et with respect to time
deb Derivative of eb with respect to time
Cb Vertical distance from piston pin to top of piston
Cc Distance from piston pin to piston centerline
v Piston reciprocating speed
h Film thickness

2.1. IGA and Local-Refinable PHT Spline

IGA is a new numerical method for solving PDE. Different from FEM, IGA uses the
same basis functions as CAD representation rather than the shape functions in meshes
approximating to the geometric model in analysis, making it more efficient and accurate.
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Actually, there are many splines in graphology that can be used to characterize one geometry
model, and all of these spline functions [27] can be used in the IGA.

PHT is a typical local subdividable spline widely used in IGA. It is an example of
vertex insertion for local refinement on a PHT [28] mesh. In Figure 2, the blue points
represent the boundary vertices, and the green points represent the T nodes, which are
generated when refining adjacent elements of different levels. The main work flow of
IGA refinement based on PHT spline is shown in Table 3. It should be noted that the
T-connection does not change the basis function before the transition to the intersection
vertex, and the intersection vertex is represented by the red points. In summary, PHT mesh
can be subdivided by inserting crosses in the element, and all meshes have the same degree
of calculation accuracy. More details can be found in reference [29].
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the local subdivision in the accompanying element.

Table 3. PHT-based IGA refinement work flow.

Steps Parameters Remarks

pretreatment geometric space calculate the parameterized P(u, v) of
PHT on Ω

solution parameter space calculate the results of model on PHT
mark parameter space mark the target elements

recalculate PHT spline PHT spline construct PHT spline on subdivided
elements

2.2. The Reynolds Equation for Lubrication of Piston–Cylinder Interface

The oil lubrication film between the interfaces of the piston skirt and cylinder forms is
shown in Figure 3a, which is always obtained by solving the specific simplified Reynolds
equation [30], based on the Navier–Stokes equation and the mass continuity equation.

∂

∂x

(
ρh3

12η

∂p
∂x

)
+

∂

∂y

(
ρh3

12η

∂p
∂y

)
=

∂

∂x
(u0 − uh)ρh

2
+

∂

∂y
(v0 − vh)ρh

2
+

∂(ρh)
∂t

(1)

In Equation (1), ρ is lubricant density, p is oil film pressure, η is dynamic viscosity,
u0 and uh are the film circumferential velocities, respectively, on the piston and cylinder
surfaces, v0 and vh are the axis velocities of oil film, respectively, on the piston and cylinder
surfaces, h is film thickness, and t is time.

As shown in Figure 3a, LSK is the length of the piston skirt; r is the crank radius; and
et and eb are the distance between the center at the top and bottom of the skirt’s center
axis and the cylinder’s axis. The film lubrication region is always simplified for analysis,
as in Figure 3b. The oil lubrication film can be divided to the left lubrication area and
the right area, and both of which are symmetrical about plane ϕ = 0; so, only the front
part is an example. To further simplify Equation (1), the density and viscosity are taken as
constants [31], and we assume that there is no leakage of the lubrication.
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Take v0 = 0, vh = v,

∂

∂x

(
h3

12η

∂p
∂x

)
+

∂

∂y

(
h3

12η

∂p
∂y

)
= −v

2
∂h
∂y

+
∂h
∂t

(2)

In order to normalize the domain D into [0, 1]× [0, 1], make the following transforma-
tions (take the right side as an example):

x = Rϕ, ϕ = ϕR, y = LSKY
D = { ϕ|0 ≤ ϕ ≤ ϕR} × {y|0 ≤ y ≤ LSK}, 0 < ϕR < π

2
∂

∂X

(
− h3

12ηR2 ϕ2
R

∂p
∂X

)
+ ∂

∂Y

(
− h3

12ηL2
SK

∂p
∂Y

)
= v

2
∂h
∂y −

∂h
∂t , (X, Y) ∈ [0, 1]× [0, 1]

(3)

The film thickness h is the distance between the piston and the cylinder liner at point
(ϕ, y) in the simplified lubrication model, which can be calculated through the ellipse
method as in Equation (4). Other models considering the microform of the piston skirt
and other conditions can be calculated in a similar way, with slight differences in certain
parameters, which can be found in [32].

h(ϕ, y) = R−
x0r2cos(ϕ) + ar

√(
a2 − x2

0
)
sin2(ϕ) + r2cos2(ϕ)[

a2sin2(ϕ) + r2cos2(ϕ)
] (4)

where
a =

rLSK√
LSK

2 − (et − eb)
2

, x0 = eb +
y

LK
(et − eb)

In particular, it should be noted that IGA is deficient in dealing with complex geometric
models, and is only available for regular-shaped geometric models. The oil lubrication film
area is transformed into a rectangular area after normalization for solving, satisfying the
requirement of IGA.

2.2.1. The Reynolds Boundary Condition

There are several lubrication models for the study of the piston–cylinder system, of
which the Reynolds boundary condition is a classic one. It considers that the oil film is
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discontinuous, and the rupture at the end of the oil film is a natural phenomenon, as shown
in Equation (5).

P(ϕ, y)|ϕ=ϕ1
= 0, P(ϕ, y)|y=0 = 0, P(ϕ, y)|y=LSK

= 0,
∂P(ϕ, y)

∂ϕ

∣∣∣∣
ϕ=0

(5)

where ϕ = ϕ1 is the boundary of the oil film lubrication area in circumferential direction;
y = 0 is the bottom boundary and y = LSK is the top boundary; and ϕ = 0 is the
symmetrical plane. After normalization comes the following:

P(X, Y)|X=0 = 0, P(X, Y)|Y=0 = 0, P(X, Y)|Y=1 = 0,
∂P(X, Y)

∂X

∣∣∣∣
X=0

(6)

2.2.2. The JFO Boundary Condition

However, the Reynolds boundary ignores the presence of cavities in the oil lubrication
film, which have been confirmed to have a great influence on the lubrication condition.
In fact, the lubrication state between the piston cylinder sleeves is very complicated.
Cavitation is a complex phenomenon, which usually occurs in the regions where the
liquid pressure is below the cavitation pressure. Jakobsson, Flober [26], and Olsson [33]
proposed the JFO (Jakobsson–Floberg–Olsson) boundary condition, which is based on
the mass conservation of the oil film boundary. JFO theory incorporates the Reynolds
boundary condition and provides the oil film reformation boundary condition. The mass
conservation model based on the JFO boundary condition [34] is shown as follows:

∂

∂x

(
h3

12η

∂p
∂x

)
+

∂

∂y

(
h3

12η

∂p
∂y

)
= −v

2
∂((1− θ)ρh)

∂y
+

∂((1− θ)ρh)
∂t

(7)

Additionally, the JFO boundary is
p > 0⇒ θ = 0
θ > 0⇒ p = 0

0 ≤ θ ≤ 1
(8)

where h is the oil film thickness; ρ is the oil film pressure; and θ is the cavitation factor,
affected by the oil film pressure p.

From the above equation we can see that the effect of the JFO boundary condition
will be directly expressed in the pressure of the oil film. So, the refinement strategy based
on the physical features of the pressure value and its variation is still suitable for this
lubrication model. Despite different lubrication models considering different states of
oil film lubrication, they share the same core which is that the differences in all models
are reflected in the distribution of the oil film, and we can capture these features quite
clearly through the values of oil film pressure and its gradient. Then, we can conclude
that the refinement strategy based on the physical parameters is suitable for different
lubrication models.

3. IGA Approach for Solving the Reynolds Equation

Before using PHT in solving the Reynolds equation, it is necessary to introduce
the discretization of the Reynolds equation in a weak form, which mainly includes the
normalization of the general form of the Reynolds equation, the transformation of the
solution domain to the element interval to facilitate the solution of the equation, and the
assembling of the final stiffness matrix. As the boundary condition makes little difference in
the discrete process, the Reynolds boundary condition is used as an example in this section.

Let

k1 = − h3

12ηR2φ2
R

, k2 = − h3

12ηL2
SK

, f = − v
∂y

∂h
2

+
∂h
∂t

(9)
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Then, Equation (1) can be converted to

∂

∂x

(
k1

∂p
∂x

)
+

∂

∂y

(
k2

∂p
∂y

)
= f or ∇(k∇p) = f (10)

Introduce the derivative of the stiffness matrix of the Reynold equation; then, Equation
(3) can be transformed into the following form:

a(p, v) = −
x

D

∇P
T

C∇vdxdy (11)

If the physical domain D has been transformed via geometric mapping, the transfor-
mation method is as follows:

F : D0 → D, F(u, v) =
(

x
y

)
Use PHT spline functions to define F in IGA

F(u, v) = ∑m
i=1 ∑n

j=1 Rij(u, v)Cij (12)

where Nij is the basis function whose value is 0 on Γ and Cij ∈ D
Based on the chain rule of P(x, y) = P(F(u, v)), the differentiation form can be written

as
∇(x,y)P(x, y) = DF(u, v)−T∇(u, v)P(u, v) (13)

where DF(u, v) is a 2× 2 Jacobian matrix.

DF(u, v) =

(
∂F1
∂u

∂F1
∂v

∂F2
∂u

∂F2
∂v

)
(14)

The approximate solution p can be expressed as the following form through the PHT
basis function and the point qij ∈ R

P(u, v) =
m

∑
i=1

n

∑
j=1

Rij(u, v)qij (15)

As the physical domain D has been normalized to [0, 1]× [0, 1], the element stiffness
matrix Ae can be calculated as follows:
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where

C =

k1

(
h
(

u(e)
p , v(e)q

))
0

0 k2

(
h
(

u(e)
p , v(e)q

))
Finally, the stiffness matrix Ae can be derived as

A = ∑e,p,q we,p,qΦ
(

u(e)
p , v(e)q

)
= ∑e,p,q we,p,q

(
c11,e,p,qUe,p,qUT

e,p,q + c22,e,p,qVe,p,qVT
e,p,q

)
(17)
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where we,p,q is the weight of the Gauss point in element e at
(

u(e)
p , v(e)q

)
, ue,p,q and ve,p,q

are the constructive vector quantities, and c11,e,p,q and c22,e,p,q are the coefficients for the
calculation of the thickness of the oil film at the point.

Accordingly, the right-hand-side vector b = (〈 f , RI〉) can be calculated as

f , RI =
x

D0
( f RI)(F(u, v))|detDF(u, v)|dudv, I = 1, 2, · · · , mn. (18)

4. Refinement Feature Based on Oil Lubrication Film Pressure Distribution

The final purpose of solving the Reynolds equation is to obtain the pressure distri-
bution of the lubrication film. Thus, the fundamental principal of the strategy in this
article is to refine the critical area adaptively signed by the features’ extraction from current
solving film pressure distribution. Usually, regions with large overall pressure values or
large variation in pressure values contribute more to the calculation error related to the
physical properties of the oil film. So, the refinement features should be recognized based
on the parameters of the pressure values and their variation. For convenience, all of the
parameters and their concise meanings used in this chapter are listed in Table 4.

Table 4. Parameters and their meanings.

Parameters Definitions

Tθ Cavity indicator
θ Cavity factor
Se Element size
L Mesh level
Fe Element type

pe, p′e Element pressure value in present mesh and last mesh, respectively

wx,y,z, w′x,y,z
Element pressure gradients in different directions in present mesh

and last calculation, respectively
Dp Parameter for measuring the magnitude of pressure values

Dwx,wy,wz Parameter for measuring the magnitude of pressure gradients
Ep Calculation error of pressure value
Eps Calculation error of average pressure value

Ewx,wy,wz Calculation error of pressure gradient

4.1. Refinement Feature Based on Pressure Values

For a certain oil film pressure distribution, the pressure value is the most intuitive
parameter. An example of refinement according to the pressure is shown in Figure 4, where
the depth of the grayscale and the number represent the magnitude of the pressure value.
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Figure 4. A certain pressure distribution of oil film and its expected refinement mesh.

In order to achieve the desired refinement effect, the following parameters were taken
into consideration. As mentioned above, the pressure value of each point in the domain
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can be calculated as in Equation (15), and then the integration of the pressure value pe of
each element can be calculated as follows:

pe =
s

De
P(u, v)qijdudv

= ∑
e,p,q

Rewe,p,qUe,p,qVe,p,q (19)

Firstly, a base value pa is introduced here to help assess the magnitude of the pressure
value. Then, Dp is defined to characterize the magnitude of the pressure value in the
present element.

Dpm =
|pe| − |pa|
|pa|

, Dp =

{
Dpm

(
Dpm > 0

)
0

(
Dpm ≤ 0

) (20)

where

pa = λp′N p′N =

s
D P′(u, v)qijdudv

N
=

s
D P′(u, v)qijdudv

S
Se

Here, pa is the criterion of pressure value in Dp. It is suggested as λp′N . λ is a constant
depending on the accuracy requirement; p′N is the average pressure value of the element
normalized to Se size.

The accuracy of the calculation result of the pressure value of the element has an
impact on the overall result not only in terms of its value, but also in terms of the size of the
element. Thus, Se is introduced to indicate the size of the element. Then, there are many
other parameters to be considered, such as L, the level of the present mesh (depending on
the mesh step), Fe, the element type (the level of the element or the size of element), and
whether the element is subdivided into the last mesh.

Additionally, a special parameter Tθ is introduced here to indicate whether the element
region is a cavity area or not for the JFO boundary condition. Tθ = 0, θ = 0 means that the
element is in a fully lubricated area; Tθ = 1 means that the element is in the cavity region.
θ is a unique parameter for cavity elements. In order to accelerate the solving speed, the
Fischer–Burmeister–Newton–Schur (FBNS) equation [35] is used in this article. Then, the
constraint Equation (8) can be modified as follows:

p + θ −
√

p2 + θ2 = 0 (21)

Since the presence of cavities has a large effect on the distribution of oil film pressure,
the cavity region needs to be sufficiently refined to meet the accuracy requirements. Thus,
Tθ is a primary parameter to be considered in the judgement of the refinement process.
The parameter θ can be solved according to reference [36,37], and the details about cavity
elements are discussed in Section 5.2.

From another perspective, the calculation error of the pressure values in the results
of the two adjacent steps can also be helpful to determine the calculation accuracy of the
element. Thus, the calculation results of all of the elements of the last mesh are stored in
a vector. If the element has not been subdivided by the last time, then p′e is the result of
the last calculation result of the pressure value, and S′e is the size of the element; otherwise,
p′e is the pressure value of the parent-level element, and S′e is the size of the parent-level
element. Thus, for the element which has been subdivided by the last time, the error Ep of
the pressure values and the error Eps of the average pressure values can be calculated as
follows:

Ep =

∣∣∣∣ pe − p′e
p′e

∣∣∣∣, Eps =

∣∣∣∣∣∣
pe
S −

p′e
S′

p′e
S′

∣∣∣∣∣∣ (22)
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In particular, for the element which has not been subdivided by the last time, the error
Ep of the pressure is calculated as follows:

Ep =

∣∣∣∣ pe − kp′e
p′e

∣∣∣∣ (23)

where k depends on the type of grid element and the refinement method of the element. It
can be seen in Figure 2 that k = 4 in PHT meshes.

4.2. Refinement Feature Based on Variation in Pressure Value

Meanwhile, regions with rapid variation in pressure are taken into consideration too,
as the calculation accuracy of these regions also has a great impact on the final results.
Unlike the previous approach with a single scalar value, variation is often in the form of a
vector. So, refinement feature evaluating needs to be calculated from multiple directions.
For the simplicity of the algorithm and the computational efficiency, the variations in
pressure values are calculated as the gradient of pressure in the x direction, y direction, and
in the joint direction (represented by z), as follows:

wx =
∂P
∂u

= ∑
∂R
∂u

DF(u, v)−T∇(u, v)P(u, v)cij (24)

wy =
∂P
∂v

= ∑
∂R
∂v

DF(u, v)−T∇(u, v)P(u, v)cij (25)

wz =

√(wx
X
)2

+
(

wy
Y

)2

X2 + Y2 (26)

wa is introduced here as the base value, which is suggested to be set according to the
results of the last calculation, and wax is for the x direction; way is for the y direction and wz
is for the joint direction. Dw is defined here to measure the degree of the pressure gradient
value, and Dwx, Dwy, and Dwz are the parameters for the x direction, the y direction, and
the joint direction, respectively.

Dwx = |wx |−|wax |
|wax | , Dwy =

|wy|−|way|
|way| , Dwz =

|wz |−|waz |
|waz |

Dwm = max(Dwx, Dwy, Dwz), Dw =

{
Dwm(Dwm > 0)

0 (Dwm ≤ 0)

(27)

Accordingly, the calculation errors of the pressure gradient in two adjacent steps are
taken to help. Additionally, the error of the pressure gradient in the adjacent steps is
shown below:

Ewx =

∣∣∣∣wx

w′x

∣∣∣∣, Ewy =

∣∣∣∣∣wy

w′y

∣∣∣∣∣, Ewz =

∣∣∣∣wz

w′z

∣∣∣∣ (28)

where w′x, w′y, and w′z are the pressure gradient values at the last time calculated in different
directions, respectively.

5. Adaptive Refinement Strategy

Several parameters are listed based on pressure characteristics in Table 5 to help to
judge whether an element should be subdivided or not. From the discussion in the precious
section, the final refinement strategy should be developed from two perspectives. The basic
principles are proposed here.
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Table 5. Parameters in refinement strategy.

Parameters Type Definitions

pa Base value Base value of pressure value
wa Base value Base value of pressure gradient
a Hyperparameters Weight of pressure value error in Principle 1
b Hyperparameters Weight of Eps in Principle 1
d Hyperparameters Weight of pressure gradient error in Principle 2

τ1, τ2 Hyperparameters Judgement threshold in Principle 1 and 2, respectively
α τ1, τ2 uning parameter Weight of the whole pressure value part
β Tuning parameter Weight of the whole pressure gradient part
ξ Hyperparameters Judgement threshold in adaptive refinement strategy

5.1. Basic Principles

Principle 1 : n1 = Dp + a ·
(
Ep + b · Eps

)
, n1 > τ1 (29)

Principle 1 is a judgment criterion for the pressure-based refinement feature. n1 is a
composite parameter that measures the magnitude of the element pressure value. τ1 is
proposed as the criterion value. In Equation (29), a is the weight for the whole error part,
and b is the weight of Eps. τ1 is the criterion value to be compared with n1; if n1 > τ1, it
means that the element is of a larger pressure value than the others, and the element should
be marked and subdivided in the next step.

Principle 2 : n2 = Dw + d · Ew, n2 > τ2 (30)

where Dw = max(Dwx, Dwy, Dwz), Ew = max(Ewx, Ewy, Ewz).
Principle 2 is based on the pressure gradient value referred to as the refinement feature

based on the variation in pressure value. Equation (30) shows that n2 is also a composite
parameter measuring the magnitude of the pressure variation in the element. d is the
weight of the calculation error of the pressure variation. τ2 is the criterion value to support
the judgement; if n2 > τ2, which means that the pressure variation in the element is larger
than the others, then the element will be marked.

As can be seen above, in Principle 1, elements with a large value will be marked, while
elements with a large variation in pressure value will be treated by Principle 2. Additionally,
all of the marked elements according to the two principles should be subdivided in the
next refinement step. Thus, a final adaptive refinement strategy is proposed to combine the
two principles for better refinement results, as shown below.

The final adaptive refinement Principle 3:

m = α ·
(

Dp + a ·
(
Ep + b · Eps

))
+ β · (Dw + d · Ew), m > ξ (31)

where α is the weight of the whole pressure value part, and β is the weight of the whole
pressure gradient part.

5.2. Refinement Work Flow

According to the principles developed above, an adaptive refinement method can be
organized. In order to explain the refinement work flow, the concise algorithm is shown in
Algorithm 1 and the adaptive refinement strategy is shown in Figure 5.
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Algorithm 1: Refinement strategy algorithm

Input: Basic parameters of PHT mesh, preliminary solution, and tolerance range
Set the base value pa, wa and load the hyperparameter a, b, d for all groups;
For each element:

Calculate the original information Se, L, Fe, pe, wx,y,z, and save these results in vector [dp];
Load the results of the last calculation p′e, w′x,y,z;
Calculate Dp, Dw and Ep, Eps, Ew;
Classify the element to the specific group and load the base values and hyperpa-rameters of the

corresponding group;
Check whether the element is in a cavity area;
Calculation for Principle 1: calculate n1 and compare it with τ1;
Calculation for Principle 2: calculate n2 and compare it with τ2;
Calculate m and compare it with ξ;
If m > ξ

mark the element;
If there are elements that fit the condition in Equations (32)–(34)

update the parameters α, β.
End if

End if
Subdivide the marked elements;
Update the mesh;
End for
Output: Subdivided mesh
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In the presented work flow, each element will be classified to a certain group based
on its size and degree. It should be noted that the initial parameters are different for
different groups. Usually, large elements have a higher weight α of pressure values and
small elements have a higher weight β of gradient variation.

As for the oil lubrication film problems using the JFO boundary condition, it is neces-
sary to check whether the element is in a cavity region. The calculation of cavity regions
is completely different from the fully lubricated area. So, the cavity parameter Tθ is the
primary consideration. Calculate Tθ and judge whether the element is in a cavity area.

Here are two strategies for the elements in the cavity regions.

(1) The cavity factor θ is introduced to the marked cavity elements, where θ ∈ 0 ∼ 1.
Once an element is marked as a cavity element, it will be calculated as in Equation
(21). However, the convergence process will be very inefficient, and it will repeat
several times with the mesh updating, which usually leads to numerical oscillations
in the solutions due to the convection-dominated terms. Additionally, the cavity
formulation based on mortar [37] or other methods [38] would help in this issue.

(2) Once the element is marked as a cavity element, it will be subdivided and its children
elements will be recalculated and executed with the same treatment. With the refine-
ment of the mesh, the cavity region could be identified with smaller sizes of elements.
Then, the cavity elements will be calculated as in Equation (21). The value of p in the
previous calculation can be adopted as the initial value p0 in the iterative process, and
then the initial value θ0 can be calculated too. With the help of these initial values, it
will make a great contribution to improving the solving efficiency.

All of the elements will be calculated according to Principle 1, Principle 2, and the
adaptive refinement Principle 3. The results of Principle 3 should be consistent with the
basic principles as supposed. Otherwise, the tuning parameters α and β will be updated
automatically, and the specific update method will be introduced in the next section.

5.3. Adaptive Update of Parameters

First, parameters n1, n2, and m must be calculated, respectively. Then, compare n1
with τ1, n2 with τ2, and m with ξ. If m > ξ, the element will be marked and subdivided
in the next mesh step. However, there may be conflicts between the adaptive refinement
strategy and the two basic principles, shown as follows: If these conditions occur, the
parameters α and β of the refinement strategy should be updated.

Condition 1 : n1〈τ1, n2〉τ2, m < ξ (32)

Condition 2 : n1 > τ1, n2 < τ2, m < ξ (33)

Condition 3 : n1 > τ1, n2 > τ2, m < ξ (34)

Here, Equation (31) is simplified as follows:

α · K1 + β · K2= 1 (35)

where K1 =
Dp+a·(Ep+b·Eps)

m , K2 = Dw+d·Ew
m .

Conflict Situation 3 can be interpreted as a rule failure for the parameters in Principle 3.
For convenience, the elements in Conflict Situation 1 and 3 are classified as the C1 element
and the elements in Condition 2 are classified as the C2 element in this chapter. So, for a
certain element class, all of the elements can be divided into subdivided elements, normal
elements (no subdivide elements), C1 elements, and C2 elements in a certain mesh. Then,
use points (K1, K2) to represent the elements; the refinement strategy can be illustrated
as in Figure 6. The solid green line αx + βy = 1 represents the refinement strategy based
on the original parameters, the points of different colors and shapes represent different
kinds of elements, and the relationship between the position of the points and the line
corresponds to the determination result of the refinement strategy. Therefore, the line
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should be shifted down to make most C1, C2 elements above the line, while the offset
distance should be as small as possible. There are three possible situations, as shown in
Figure 6. Figure 6a demonstrates that the number of C1 elements is far greater than the C2
elements. In this situation, β is the primary parameter to be updated, and the change in
the intercept of the line with the x-axis should be larger than the change in the intercept
with the y-axis. The blue dotted line α′x + β′y = 1 represents the updated target strategy.
Figure 6b represents that the number of C2 elements is far greater than the C1 elements.
Thus, α will be the primary parameter to be updated, accordingly, and the change in the
intercept of the line with the y-axis should be larger than the change in the intercept with
the x-axis. Figure 6c represents that there is no significant difference in the number of C2
elements and C2 elements. In this circumstance, the slope of the line will remain the same:
α
β = α′

β′ . The parameter updating is transformed into a typical optimization problem, which
can be solved using methods such as the least squares method with little computational
effort; for the detailed solution procedure, see [39].
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Figure 6. Strategy for parameter updates. (a) Parameter update strategy for condition 1. (b) Parameter
update strategy for condition 2. (c) Parameter update strategy for condition 3.

6. Numerical Examples

In order to verify the rationality of the adaptive refinement strategy, this chapter
gives comparisons in dimensions from discretion methods (FEM and IGA), the types
of basis functions (NURBS and PHT), the types of subdivision (global equivalent and
local refinement), and the subdivision algorithms (residual-based and subdivision feature
extraction). Considering the development cycle of these algorithms, only the computational
case based on the Reynolds boundary conditions is used here. However, it should be noted
that the subdivision strategy in this paper is suitable for the Reynolds equation with the
current JFO boundary. As this paper is focused on the solution of the oil lubrication film
part of the piston–cylinder system considering the secondary motion of the piston, the
calculation of the piston–cylinder system’s dynamics section is omitted in this article. The
basic input parameters in the numerical examples are from a certain type of single-cylinder
gasoline engine, as shown in Table 6 [16].
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Table 6. Basic input parameters in the calculation example.

Parameter Description Worth Element

r Piston skirt radius 21.725× 10−3 m
R Cylinder liner radius 21.75× 10−3 m

Lsk Piston skirt length 22.5× 10−3 m
η Lubricating oil viscosity 0.01295 Pa · s
et Eccentricity of the upper end of the piston skirt 0.78565× 10−5 m
eb Eccentricity of the lower end of the piston skirt 0.24924× 10−4 m
det Derivative of et with respect to time −0.24335× 10−2 m · s−1

deb Derivative of eb with respect to time −0.84461× 10−2 m · s−1

v Piston reciprocating speed −10.6543 m · s−1

Cb Vertical distance from piston pin to top of piston 6× 10−3 m
Cc Distance from piston pin to piston centerline 0 m

Here are some calculation results of the proposed adaptive refinement strategy, as
shown in Figure 7. (a) and (b) are the calculation results based on Principle 1 from different
perspectives. Figure 7c,d are the calculation results based on Principle 2 from different
perspectives. Figure 7e,f are the calculation results based on the adaptive strategy from
different perspectives.
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Figure 7. Results of the adaptive refinement strategy (the x direction is the circumferential direction,
and the y direction is the axial direction). (a) Calculation results of Principle 1 in 2D view. (b) Calcula-
tion results of Principle 1 in 3D view. (c) Calculation results of Principle 2 in 2D view. (d) Calculation
results of Principle 2 in 3D view. (e) Calculation results of Principle 3 in 2D view. (f) Calculation
results of Principle 3 in 3D view.
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As can be seen in Figure 7, the sparseness of the grid basically corresponds to the
magnitude of the pressure value in Figure 7a,b, whose results are based on Principle 1. The
sparseness of the grid basically corresponds to the magnitude of the pressure gradients in
Figure 7c,d; they are the results based on Principle 2. However, the elements with large
pressure gradient values are ignored in Principle 1, while the elements with large pressure
values are dismissed in Principle 2. These areas are also dangerous areas that need to be
subdivided. Obviously, if these elements are to be considered, the adaptive refinement
Principle 3 is necessary. The elements with large pressure values and pressure gradients
are all refined; meanwhile, the meshes are in a coarse size in the uncritical region, as shown
in Figure 7e,f.

Table 7 shows the difference in degrees of freedom and convergence between the
solutions based on equivalent global refinement strategy and adaptive refinement strategy.
The calculation error of the pressure values is based on the calculation results of the densest
grid model. The results show that as the refinement proceeds, the pressure value gradually
converges to a stable value. The calculation value of the adaptive refinement is already
very close to the convergence value when the grid size is much smaller than that of the
equivalent global refinement.

Table 7. Calculation results based on different refinement strategies.

Refinement Strategy Global Equivalent Refinement Adaptive Refinement

DOFs Pressure
Value (N) Error (%) DOFs Pressure

Value (N) Error (%)

Model 1
Refine step

1 36 −3.8736 7.819 36 −3.8736 7.819
2 100 −3.5914 0.036 100 −3.5914 0.036
3 324 −3.5922 0.014 236 −3.5919 0.022
4 1156 −3.5927 - 648 −3.5923 0.011

Model 2
Refine step

1 36 −23.1833 0.620 36 −23.1833 0.620
2 100 −23.0347 0.025 100 −23.0347 0.025
3 324 −23.0389 0.007 220 −23.0396 0.003
4 1156 −23.0404 - 648 −23.0403 <0.001

Model 3
Refine step

1 36 −9.4180 0.772 36 −9.4180 0.772
2 100 −9.4827 0.091 100 −9.4827 0.091
3 324 −9.4938 0.026 288 −9.4937 0.025
4 1156 −9.4913 - 980 −9.4913 <0.001

Model 4
Refine step

1 36 −6.1139 1.124 36 −6.1139 1.124
2 100 −6.1706 0.207 100 −6.1706 0.207
3 324 −6.1823 0.018 272 −6.1827 0.011
4 1156 −6.1834 - 752 −6.1832 0.003

To verify the efficiency improvement in the feature-based adaptive refinement strategy,
a numerical experiment of 100 sets of data is given here to compare the solution efficiency.
A bubble-function-based [40] error estimation refinement method (one kind of residual-
based posteriori error estimation method) was used. The global equivalent subdivision
method was used for the calculation of the baseline results, and for the basic control of
the calculation results; all of the meshes were refined four times in the solution procession.
To show the results of the efficiency comparison more clearly, t represents the solution
time, N represents the degrees of freedom, and δ is the absolute value of the deviation
between the calculation result and the baseline value. The results of degrees of freedom and
solution time are shown in Figure 8; δ/N and δ/t are shown in Figure 9. The red crosses
are below the green circles in Figure 9, which means that the results of the feature extraction
refinement method carry out a lower deviation per degree of freedom or calculation time.
In other words, the calculation efficiency of the feature extraction refinement method is
better than the bubble-function-based refinement method. And the overall reduction in the
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solution time is 72.24% compared to the equivalent refinement method, and it is 10.86% for
the bubble-function-based adaptive refinement method.
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Figure 9. Results of δ/N and δ/t.

In the above discussion, it has been confirmed that the refinement effect based on
the feature-extraction-based adaptive refinement strategy basically achieves the target.
However, the fundamental aim of mesh refinement work is to improve the efficiency of the
solution while maintaining high accuracy; thus, the comparison of source consuming and
solving accuracy is shown below. The calculation results of FEM are taken as an example,
shown in Figure 10a,b, and the model is calculated using the free triangle grid in Models
1 and 2 and the free quadrilateral grid in Models 3 and 4. The results of IGA obtained
using the NURBS spline for calculation based on the equivalent global refinement strategy
are shown in Figure 10c,d, and the results of the PHT-based IGA approach based on the
adaptive refinement strategy proposed in this paper are shown in Figure 10e,f. The pressure
integral value on the domain region is taken as the judgement of solution accuracy, and the
DOFs are taken as the consuming computing source, as shown in Figure 11.
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Figure 10. Calculation results of FEM, NURBS spline, and PHT spline based on equivalent global
refinement. (a) FEM calculation results in 2D view. (b) FEM calculation results in 3D view. (c) IGA
calculation results based on NURBS spline in 2D view. (d) IGA calculation results based on NURBS
spline in 3D view. (e) IGA calculation results based on PHT spline in 2D view. (f) IGA calculation
results based on PHT spline in 3D view.
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Figure 11. Comparison of DOFs and pressure integral.

According to Table 8 and Figure 11, as the degrees of freedom increase, the two
IGA algorithms of NURBS and PHT converge faster to the exact value. The convergence
results of the PHT approach were obtained at a lower degree of freedom and under less
resource consumption. This confirms that the PHT-based IGA approach based on the
adaptive refinement strategy performs better both in calculation accuracy and resource
consumption.

Table 8. Pressure integral and DOF results of piston–cylinder model.

Method
Mesh 1 Mesh 2 Mesh 3 Mesh 4

DOFs Pressure DOFs Pressure DOFs Pressure DOFs Pressure

1
FEM 165 180.60 513 181.20 2425 181.24 3469 181.26

NURBS 49 179.10 169 181.18 325 181.18 625 181.26
PHT 36 178.54 100 181.14 240 181.26 428 181.26

2
FEM 185 158.00 917 158.02 1361 158.03 3469 158.03

NURBS 49 158.01 91 158.02 169 158.03 625 158.03
PHT 36 158.01 100 158.03 160 158.03 508 158.03

3
FEM 81 211.28 121 211.31 225 211.33 361 211.33

NURBS 28 211.27 91 211.32 169 211.33 625 211.33
PHT 36 211.31 100 211.33 148 211.33 496 211.33

4
FEM 81 195.59 169 195.62 225 195.63 289 195.63

NURBS 28 195.57 91 195.62 169 195.63 625 195.63
PHT 36 195.61 100 195.63 160 195.63 508 195.63

7. Conclusions

To accelerate the solving speed of the lubrication film in the piston–cylinder system
considering the secondary motion of the piston, a PHT-based IGA refinement method
based on the feature extraction of the lubrication film pressure was proposed in this article.
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With the help of IGA, the approach proposed has a simple calculation process with less
computational consumption than others, but the calculation accuracy can be maintained.

In this paper, the local refinement process of PDEs with variable coefficients shaped
like the Reynolds equation was implemented by means of feature extraction. The adaptive
refinement process marks the elements to be subdivided by identifying the physical param-
eters of the oil film strongly associated with calculated values such as the element pressure
value and the corresponding gradient. This approach avoided the large number of complex
calculations required to identify the residuals or to calculate the error characteristics and
directly avoided the obstacles posed by the variable coefficients to the identification of
the refinement characteristics, and simply used the oil film distribution obtained from the
current hierarchical mesh calculation, thus improving the computational efficiency, which
saved more than 70% of the solution time compared with the global equivalent subdivi-
sion method used in numerical examples. At the same time, for other similar Reynolds
equations, the different physical parameters can also be proposed as refinement features to
achieve mesh adaptive refinement. Additionally, any local refinement-supported splines
can be used in IGA for the implementation of adaptive refinement. Moreover, the adap-
tive strategy is applicable to different lubrication models, such as the widely used JFO
lubrication models.

Of course, later in the feature recognition, deep learning is expected to identify key
areas in a global way, which can further improve the recognition efficiency and help to
improve the computational efficiency in the system simulation.
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