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Abstract: Pivoted pad thrust bearings are common machine elements used in rotating mechanisms
in order to support axial loads. The hydrodynamic lubrication of such bearings has been a major
subject of many investigations over the years. However, the majority of these investigations are based
on full film lubrication models, when, in fact, incomplete oil film profiles appear during various
operating conditions, such as startups and shutdowns. The lack of lubricant during operations
can have severe impact on the bearing’s performance, affecting its ability to carry the applied axial
load. The scope of the current investigation is to combine numerical analysis and machine-learning
techniques in order to create a model that predicts the thrust bearing’s performance in terms of the
pad’s load-carrying capacity. For this purpose, the 2-D Reynolds equation is solved numerically for
a variety of angular velocities and three different lubricants: SAE 20, SAE 30 and SAE 10W40. The
position of the lack of lubricant within the oil film’s control volume is studied and evaluated, together
with the percentage of oil film coverage in the inlet of the pad. The results of the numerical analysis
are used as input, in order to train and evaluate three different machine-learning models: Quadratic
Polynomial Regression, Quadratic SVM Regression and Regression Trees. The results showed that
the position of the film incompleteness affects the ability of the bearing to carry the axial load. At the
same time as less lubricant entered the domain, the pressure drop could reach lower values, up to
93%. From the studied lubricants, SAE 10W40 was the one that showed the best performance results
during incomplete oil film operation. Finally, the Quadratic Polynomial Regression model showed
the best fit and 99% accuracy in predicting the pad’s load-carrying capacity.

Keywords: thrust bearing; hydrodynamic lubrication; numerical analysis; machine-learning;
polynomial regression; SVM; regression trees

1. Introduction

Over the years, hydrodynamically lubricated tilting pad thrust bearings have been
widely used in many applications, such as agriculture, electrical generators, mining, naval
and automotive industry. They are designed to carry axial loads of rotating machinery
based on the hydrodynamic principals. A wedge created from the stationary thrust pads
and the rotor, as well as the relative motion of these two friction surfaces with the lubri-
cation film flowing in the middle, describe the fundamental principal of operation for
such bearings. Many researchers have built computational algorithms in order to model
the flow of the lubricant inside these mechanisms and calculate the major tribological
parameters that affect the operation of the bearings [1–4]. At the same time, a wide variety
of lubricants, surface profiles, texturing and coatings have been investigated in order to
improve pad thrust bearings’ operation targeting to maximize the load-carrying capacity
with the minimum possible power losses [5–8]. The majority of these studies are based on
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the assumption of a full lubricant film along the pad’s surface. However, in many applica-
tions, the lubricant’s flow in the inlet of the pad is not sufficient enough to cover the full
width, resulting in incomplete oil film operating conditions. Such operating conditions can
occur in several occasions, such as in startups and shutdowns, as well as in cases of direct
lubrication, regardless of the supply method. This oil film incompleteness can result in
severe pressure drop inside the pad, reducing the bearing’s load-carrying capacity. To begin
with, Etsion et al. [9] used the finite difference technique to solve the Reynolds equation
for a flat, sector-shaped pad thrust bearing with incomplete oil film. By calculating and
comparing the bearing’s load-carrying capacity and power loss with the results of a com-
plete fluid film bearing, they concluded that the bearing’s performance was affected by the
location of the lubricant’s supply. Furthermore, Heshmat et al. [10] performed a parametric
study on thrust bearings with insufficient oil supply. They investigated different numbers
of pads and inner and outer radii, as well as multiple degrees of starvation for tapered land
bearings. The results showed that 12-pad thrust bearings with (R2 − R1)/R2 = 1

2 were the
optimum geometry under starved conditions. Finally, Artiles and Heshmat [11] performed
an analysis on starved thrust bearings that included temperature effects. They used a finite
difference mesh in order to solve the 2-D temperature and pressure fields. The investigation
was performed for tapered land thrust bearings for different minimum film thicknesses and
levels of starvation. It was found that the effects of starvation were small when the bearing
was flooded with lubricant, but accelerated rapidly below 50% of starvation level. The start
of the film was mainly independent of geometric characteristics, but directly dependent on
the starvation level.

Modern technological advances in the field of computer engineering and networks
have already positively affected the more traditional mechanical engineering in many
aspects. The so-called 4th Industrial Revolution has provided researchers with impressive
computational power and digital tools, such as AI, machine-learning and IoT: enough to
support more revolutionary investigations and applications. In the field of tribology, and
specifically in bearings, researchers have mainly applied these tools for fault diagnosis,
prognosis and residual life estimation. It was not until recently that progress was reported in
applying such techniques on the design and performance prediction of bearings. First of all,
A. Moosavian et al. [12] proposed a diagnostic method that can reliably separate different
fault conditions for the main journal bearings of an internal combustion engine. Vibration
signals of three different operating conditions were examined (normal, oil starvation and
extreme wear) and then used as inputs to train two classifiers: K-nearest neighbor and
artificial neural network. The artificial neural network showed better performance in
journal bearing fault diagnosis compared to the K-nearest neighbor classifier. Furthermore,
Alves et al. [13] presented promising results for training machine-learning algorithms with
simulated data in order to perform ovalization fault diagnosis in hydrodynamic journal
bearings. They built a numerical model to simulate the ovalization fault conditions; then,
they used the numerical analysis results as a training data set for a deep convolutional
neural network algorithm that was able to predict the fault conditions. Moreover, S. Poddar
and N. Tandon [14] developed an application that takes acoustic emission data as input and
diagnoses the category of faults in journal bearing operation. To do so, they used acoustic
emission signals from journal bearings operating under normal conditions, cavitation,
particle contamination and oil starvation. These data were then used in order to train
different decision tree and K-nearest neighbor machine-learning models. The weighted
k-NN classifier model showed the best prediction results and was eventually used for the
application. R.L. Lorza et al. [15] proposed a combined Finite Element and Data Mining
method to determine the maximum load-carrying capacity in tapered roller bearings. The
FE model was run for different input loads and the corresponding contact stresses were
obtained. This training data set was then used to train a regression model. Linear regression,
Gaussian processes, artificial neural networks, support vector machines and regression
trees were investigated in this study. The best combination of input loads was achieved
by applying evolutionary optimization techniques based on genetic algorithms to the best
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regression models. In addition, K.P. Katsaros and P.G. Nikolakopoulos [16] proposed a
combination of numerical and machine-learning techniques in order to identify optimal
designs in hydrodynamically lubricated pivoted pad thrust bearings. A 2-D Reynolds-
based finite difference numerical model was solved for three different lubricants and
multiple operating conditions. The obtained tribological data were then used to train
linear, quadratic and SVM regression models. AWS 100 was found to be the most efficient
lubricant; it showed the maximum load-carrying capacity and the minimum friction force
for the thrust pad. Moschopoulos et al. [17] developed a machine-learning procedure in
order to predict journal bearings’ performance characteristics. To this end, they recorded
sound and vibration signals, applying the one-third octave filter to post process them. With
this data set, they trained three ML algorithms: K-nearest neighbor, random forest classifier
and gradient-boosting regressor. The investigation showed that ML algorithms that used
sound signals had better prediction accuracy compared to those based on vibration signals.
Finally, Zavos et al. [18] proposed a machine-learning approach, in order to design piston
rings and thrust bearings with optimum coating selection. For this purpose, analytical
results from the friction models of both assemblies were used as input data in order to train
quadratic polynomial regression and support vector machine models. By predicting the
minimum friction coefficient, the investigation showed that, in the case of piston rings, the
TiN2 and TiAlN were the best design selection. On the other hand, in the case of the tiling
pad thrust bearing, the DLC was the optimum coating selection.

The aim of this study is to combine numerical and machine-learning algorithms in
order to create a model that predicts the performance of tilting pad thrust bearings that
operate under various incomplete oil film profiles. Focusing on the load-carrying capacity
of the pad as a critical performance characteristic, the pad bearing’s operation is simulated
for rotational velocities from 2000 up to 12,000 rpm. Three lubricants are used during
the investigation: the mono-grade oils SAE 20 and SAE 30, as well as the multi-grade
SAE10W40. Three different machine-learning methods (quadratic polynomial regression,
support vector machine, regression trees) are applied and compared in terms of predictions
accuracy. The novelty of this study lies in the fact that no similar work can be found in
literature combining numerical and ML methods for incomplete oil film study and design
of hydrodynamically lubricated tilting pad thrust bearings.

2. Theory
2.1. Hydrodynamic Lubrication Model

The 2-D Reynolds Equation (1) is used in the current study in order to calculate the
hydrodynamic characteristics of the lubricant’s flow. The pivoted pad under consideration
is approximated and considered to be a center-pivoted rectangle. A schematic of the
rotor–pad conjunction is presented in Figure 1. The film thickness is assumed to be small
compared to the length and the width of the pad. To add to that, Newtonian, incompressible
lubricants are assumed to follow a laminar and isothermal flow inside the pad- rotor
conjunction. Cavitation effects, although important in specific pad geometries and high
rotational velocities, are not taken into consideration for the current investigation, based
on the assumption that the minimum pressure is not reaching the vapor pressure value.
In the rotor-lubricant interface, the oil is assumed to gain the velocity of the wall that it
comes in contact with; thus, the no-slip condition is applied [19]. Moreover, the viscosity is
considered to be constant throughout the film thickness. The film thickness h is assumed to
be a function of the pad’s length and is calculated from equation (2), while any change in the
radial direction and the corresponding misalignment issues are not taken into consideration.
Normally, the inclination of the pad and the minimum film thickness are calculated at the
equilibrium position, so that the pad can carry the applied load. In this study, given the
specific minimum film thickness and the inclination value, the load-carrying capacity of the
pad is calculated in the equilibrium position by integrating the pressure p over the bearing
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pad area (3). In the cases of incomplete oil film, the lubricant’s width (l) is calculated based
on the continuity of the flow (4).
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Figure 1. Pivoted pad thrust bearing schematic.

2.2. Viscosity Model

During operation, the rise in temperature leads to a decrease in the lubricant’s viscosity
value. As mentioned, from Nacer Tala-Ighil and Michel Fillon [20], the concept of the “effec-
tive temperature” can be considered in order to approximate the operating viscosity value
without applying complex and time-consuming THD algorithms. The effective temperature
value inside the lubricant’s domain is calculated from Equations (5) and (6) [21]. T is the
effective temperature of the lubricant, while T0 is considered to be the inlet temperature.
The constant ke is empirical and, with a value of 0.8, gives good agreement between theory
and experiment. The variation of temperature ∆T is considered to be a function of friction,
rotating velocity and average axial fluid flow. The lubricant’s density and specific heat
capacity are also taken into consideration. To add to that, the fraction lin

L is applied, in
order to define the various percentages of inlet oil coverage during the investigation. An
iterative procedure is followed, in order to define the final average effective temperature
for each simulation.

The Sutherland’s law is used to model the viscosity variation according to temperature (7), (8).
Specific coefficients are calculated as the model is adapted to fit the known dynamic
viscosity values for each lubricant. A graphical representation of the dynamic viscosity
variation according to temperature is shown in Figure 2.

T = T0 + ke∆T (5)
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2.3. Numerical Analysis

In order to numerically solve the Reynolds equation, the control domain of the lubri-
cant inside the pad-rotor tribocouple is discretized with a typical 2-D mesh of approximately
2500 finite cells; 50 in x direction, and 50 in y direction. Spatial resolution tests showed
differences in the order of 1% between typical and fine meshes. The inlet and outlet of the
lubricant’s control volume are assumed to be openings, and a constant pressure P = patm
is applied as a boundary condition. To add to that, an outflow condition is prescribed
in both inner and outer pad sides: r = Rin, Rout. In addition, no inflow is allowed in the
computational domain and the ambient pressure P = patm is applied. The rotor is assumed
to be moving with a constant rotational velocity ω, which corresponds to U = ωrmean at the
pad’s mid sector. An iterative algorithm is built based on the finite differences—central
differences—methodology. The Reynolds equation is adapted so that the algorithm is
able to swipe over the grid and compute the corresponding pressure Pij at any internal
node (9). A representation of the calculation is presented in Figure 3, where c is the node
at which the pressure is calculated and n, w, s, e are the neighboring nodes used for this
calculation. Convergence to steady-state condition is verified by monitoring the computed
nodal pressure based on the defined convergence criteria (10). In the cases of incomplete oil
film (Figure 4), the lubricant’s width limit lines LB (i), LT (i) are calculated by swiping over
the nodes in the direction of the flow (11). The amount of lubricant that enters the domain
lin flows through the pad-rotor conjunction and adapts to the inclination of the pad. As
a result, the same amount of lubricant at every step of the way through the pad (i) has to
cover more and more of its surface until (if) it reaches the pad’s sides or the end of the pad
in the flow direction. Pressure P = patm is then applied as a boundary condition on the area
where no lubricant flows. The calculation of pressure distribution in the y-direction is then
limited to the new boundary conditions. In addition, Case A refers to lack of lubricant on
the outer part of the pad, and is modeled with LB (i) placed on the inner pad border, while
LT (i) takes values within the domain. Case B refers to the lack of lubricant on the inner
part of the pad. As a result, LT (i) is placed on the outer border and LB (i) runs through the
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fluid film domain. Finally, Case C refers to the scenario where both LB (i) and LT (i) are
calculated symmetrically through the fluid film.

Pi,j = CnPn + CwPw + CsPs + CePe + G i, j = 0, . . . , 50 (9)

Errpress =
∑N

1

∣∣∣Pj
i − Pj

i−1

∣∣∣
∑N

1

∣∣∣Pj
i

∣∣∣ ≤ 1 × 10−6 (10)

li = lin
hin
hi

(11)
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The hydrodynamic lubrication model is validated with experimental data obtained
from the paper of Bielec and Leopard [22]. Figure 5 shows that there is a good agreement
between the experimental and computed pad-specific load for different angular velocities
and film thicknesses.
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2.4. Machine-Learning

For the purpose of this study, all the data obtained from the numerical simulations
are used as input, in order to train and compare machine-learning models based on three
different methods: the Multi-Variable Quadratic Polynomial Regression, the Quadratic
Support Vector Machine and Regression Trees. These regression models are widely used in
machine-learning applications, mainly due to their simplicity and accuracy to predict the
corresponding response values. To begin with, the Multi-Variable Quadratic Polynomial
Regression model is based on the least-squares fit methodology, in which the sum of the
squares of the residuals needs to be minimized. Two independent variables, or predictors,
are used x1i: rotational velocity [rpm]; x2i: percentage of inlet oil coverage, in order to
predict the response values of one dependent variable Y: Pad’s Load-carrying Capacity [N].
For a set of n-observations, Equation (12) or, in matrix form, Equation (13), is solved, in
order to calculate the y-intercept: β0 and the corresponding slopes: β1, . . . ,β5.

Y = XB (12)

Y =


y1
y2
...

yn

 =


1 x11 x21 x11

2 x11x21 x21
2

1 x12 x22 x12
2 x12x22 x22

2

...
...

...
...

...
...

1 x1n x2n x1n
2 x1nx2n x2n

2




β0
β1
β2
β3
β4
β5

 (13)

Furthermore, the Support Vector Machine models were trained in Matlab’s Regression
Learner application, using the quadratic polynomial kernel function (14). In addition, with
the same application, regression trees were trained and evaluated accordingly. To perform
the analysis, all data were sorted in ascending order for both predictors, x1i and x2i. Then,
all the mean squared errors were calculated separately for all the response values of both
predictors (15) in each splitting candidate node t. At every iteration, the splitting node t
of the regression tree was defined as the one that provided the minimum mean-squared
error from all the examined data. The procedure continues repeatedly until each branch
reaches the pre-defined leaf size. For the current study, a leaf size equal to 4 has been
selected, as it provides the finest tree results for the Matlab’s application with the optimum
accuracy. In addition, the criteria chosen in the current study, in order to measure and
evaluate the goodness of fit for the generated machine-learning models, is the coefficient of
determination, or R2 (16). This coefficient indicates the difference between the values of
the dependent variable yfit calculated from the model and the observations ynum obtained
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from the relevant numerical simulations. The higher the value of R2, the better the model
is at predicting the data. Finally, the Matlab’s standard 5-fold, cross-validation procedure
was applied for 5 randomly chosen partitions of the original data set. All the models where
trained with 80% of the data from the data lake, while the rest 20% of the data was used for
testing. Experimental data were used for the validation of the ML model as shown in [16].

(X, Y) =
(

c + XTY
)2

(14)

MSE = ∑
1
n
(yi − yt)

2 (15)

R2 = 1 −
∑n

1

(
ynum − ˆyfit

)2

∑n
1 (ynum − y)2 (16)

3. Results

The simulations were performed for three different types of inlet incomplete oil
profiles: Case A: where there was lack of oil on the outer radius; Case B: where there was
lack of oil on the inner radius; Case C: symmetrical lack of oil from the center of the pad.
Three different lubricants were examined: the mono-grade SAE 20 and SAE 30, as well
as the multi-grade SAE 10W40. The simulations were run for rotational velocities, from
2000 up to 12,000 rpm, and a k = 0.1 inclination of the pad. The corresponding Reynolds
numbers vary from Re = 60 up to Re = 200, indicating a laminar flow. The coverage of the
pad’s inlet with lubricant varied from 1 (full film lubrication) up to 0.4 (40% of the inlet
covered with oil). The film thickness variation to rotational velocity has been considered
similar to the one presented in Figure 13.3a from Bielec and Leopard [22]. All the input
parameters are shown in Table 1.

Table 1. Input parameters for the simulations.

Pad’s Length 32 mm
Pad’s Width 28 mm
Pad’s Outer Radious 62 mm
Pad’s Inclination 0.1
Pad’s Pivot center
Rotational Velocity 2000–12,000 rpm
Percentage of Inlet Oil Coverage 0.4–1
SAE 20 dynamic viscosity @50 ◦C 0.033 Pasec
SAE 30 dynamic viscosity @50 ◦C 0.046 Pasec
SAE 10W40 dynamic viscosity @50 ◦C 0.054 Pasec
SAE 20 density @40 ◦C 861 Kg/m3

SAE 20 specific heat capacity 2021 J/kgK
SAE 30 density @40 ◦C 869 Kg/m3

SAE 30 specific heat capacity 1950 J/kgK
SAE 10W40 density @40 ◦C 851 Kg/m3

SAE 10W40 specific heat capacity 1980 J/kgK
Lubricant’s Inlet Temperature 323 K

Figures 6–8 below show typical representations of the corresponding pressure profiles
for the three different incomplete oil film cases studied: A, B, C, at 60% inlet coverage and
6000 rpm rotational velocity.



Lubricants 2023, 11, 113 9 of 18

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 20 
 

 

SAE 10W40 specific heat ca-
pacity 

1980 J/kgK 

Lubricant’s Inlet Tempera-
ture 323 K 

Figures 6–8 below show typical representations of the corresponding pressure pro-
files for the three different incomplete oil film cases studied: A, B, C, at 60% inlet coverage 
and 6000 rpm rotational velocity. 

 
Figure 6. Typical pad’s pressure distribution for the Case A incomplete oil film profile at 60% oil 
film coverage for the inlet of the pad. 

Figure 6. Typical pad’s pressure distribution for the Case A incomplete oil film profile at 60% oil film
coverage for the inlet of the pad.

Lubricants 2023, 11, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 7. Typical pad’s pressure distribution for the Case B incomplete oil film profile at 60% oil 
film coverage for the inlet of the pad. 

 
Figure 8. Typical pad’s pressure distribution for the Case C incomplete oil film profile at 60% oil 
film coverage for the inlet of the pad. 

The total amount of 2079 simulation data was used as input in order to train the ma-
chine-learning models that predict the load-carrying capacity of the pad according to ro-
tational velocity and the percentage of oil coverage in the inlet of the pad. Table 2 shows 
all the Quadratic Polynomial Regression ML models, along with the corresponding R2 
values of each case: 

Figure 7. Typical pad’s pressure distribution for the Case B incomplete oil film profile at 60% oil film
coverage for the inlet of the pad.



Lubricants 2023, 11, 113 10 of 18

Lubricants 2023, 11, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 7. Typical pad’s pressure distribution for the Case B incomplete oil film profile at 60% oil 
film coverage for the inlet of the pad. 

 
Figure 8. Typical pad’s pressure distribution for the Case C incomplete oil film profile at 60% oil 
film coverage for the inlet of the pad. 

The total amount of 2079 simulation data was used as input in order to train the ma-
chine-learning models that predict the load-carrying capacity of the pad according to ro-
tational velocity and the percentage of oil coverage in the inlet of the pad. Table 2 shows 
all the Quadratic Polynomial Regression ML models, along with the corresponding R2 
values of each case: 
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The total amount of 2079 simulation data was used as input in order to train the
machine-learning models that predict the load-carrying capacity of the pad according to
rotational velocity and the percentage of oil coverage in the inlet of the pad. Table 2 shows
all the Quadratic Polynomial Regression ML models, along with the corresponding R2

values of each case:

Table 2. Quadratic Polynomial Regression models.

Case Study ML Model R2

SAE 30 Case A y = 139.4 − 891x1 − 0.016x2 + 1577x1
2 + 0.075x1x2 − 0.1 × 10−5x2

2 0.99
SAE 30 Case B y = 5.1 − 405.3x1 − 0.021x2 + 1240.7x1

2 + 0.08x1x2 − 0.8 × 10−6x2
2 0.99

SAE 30 Case C y = −57.7 − 189.7x1 − 0.02x2 + 1087.3x1
2 + 0.08x1x2 − 0.8 × 10−6x2

2 0.99
SAE 10W40 Case A y = 172.3 − 1035.4x1 − 0.023x2 + 1792.5x1

2 + 0.09x1x2 − 0.1 × 10−5x2
2 0.99

SAE 10W40 Case B y = 101.7 − 748.3x1 − 0.026x2 + 1593.4x1
2 + 0.09x1x2 − 0.8 × 10−6x2

2 0.99
SAE 10W40 Case C y = 23.1 − 496.5x1 − 0.023x2 + 1419.2x1

2 + 0.09x2 − 0.9 × 10−6x2
2 0.99

SAE 20 Case A y = 80.3 − 729.3x1 − 0.01x2 + 1409.1x1
2 + 0.07x1x2 − 0.1 × 10−5x2

2 0.99
SAE 20 Case B y = −38.7 − 325.4x1 − 0.009x2 + 1127.1x1

2 + 0.07x1x2 − 0.1 × 10−5x2
2 0.99

SAE 20 Case C y = −909 − 1418.2x1 − 0.09x2 + 9977.2x1
2 + 0.7x1x2 − 0.1 × 10−4x2

2 0.99

The R2 values in all models are close to 0.99, which means that there is a good
agreement between the numerical data and the prediction models’ response values. At the
same time, this is also an indicator of 99% accuracy for the ML model to predict the pad’s
load-carrying capacity at the given predictor values.

Figures 9–11 are the graphical representations of the Quadratic Polynomial Regression
ML models for all three lubricants and incomplete oil film profiles. In all cases, the load-
carrying capacity of the pad decreases along with the percentage of inlet oil coverage,
with the pressure drop reaching up to 93% for 40% inlet oil coverage. Furthermore, it is
clearly shown that, in all cases, the lack of lubricant in the outer area of the pad—profile
A—shows the minimum load-carrying capacity for the pad. On the other hand, profile C,
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with the symmetrical lack of lubricant, shows the maximum load-carrying capacity for the
pad in all the studied cases. All three lubricants show identical response to the area of oil
film incompleteness. Regardless of the angular velocity, data show a better load-carrying
capacity for the profile C compared to the profile A, from 6 up to 15%, depending on the
coverage of the inlet with oil. As the percentage of the lubricant’s coverage decreases, the
case C profile shows better and better performance for the pad of the bearing compared to
the profiles A and B. For the worst studied conditions, 12,000 rpm rotational velocity and
40% of inlet oil coverage, the profile C provides up to 15% more load-carrying capacity for
the pad compared to the case A profile.
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Figure 12 shows the comparison results for Case C—symmetrical oil film incompleteness—
for all studied lubricants. SAE 20 shows the minimum load-carrying capacity values in
comparison to SAE 10W40, which has by far the highest values in all studied conditions.
This outcome is consistent with the corresponding dynamic viscosities of the lubricants.
SAE 10W40 shows up to 135% better performance when studying the most extreme condi-
tions of 12,000 rpm angular velocity and 40% coverage for the inlet of the pad.

For comparison purposes, the numerical data of the case study C (symmetrical incom-
plete oil film profile) were used as input, in order to train a Quadratic SVM ML model and
a Binary Regression Tree model. The R2 values, which will define the goodness of fit for
all the trained models, are presented in Table 3. First of all, values of the order of 0.95 for
the R2 are, in general, accepted as very good for the fitness of the models in the data. That
means that all trained models in this study have a very good response and higher than
95% accuracy to predict the load-carrying capacity of the pad. Nevertheless, in a more
detailed approach, the Quadratic SVM models show better results than Regression Trees,
while the Quadratic Polynomial Regression models present, in general, the best values
of R2.



Lubricants 2023, 11, 113 12 of 18

Lubricants 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 9. Quadratic Polynomial Regression model of SAE30 for all the incomplete oil film profiles. 
Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity. 

 

 
Figure 10. Quadratic Polynomial Regression model of SAE10W40 for all the incomplete oil film pro-
files. Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity. Figure 10. Quadratic Polynomial Regression model of SAE10W40 for all the incomplete oil film

profiles. Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity.

Lubricants 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

 

 
Figure 11. Quadratic Polynomial Regression model of SAE 20 for all the incomplete oil film profiles. 
Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity. 

Figure 12 shows the comparison results for Case C—symmetrical oil film incomplete-
ness—for all studied lubricants. SAE 20 shows the minimum load-carrying capacity val-
ues in comparison to SAE 10W40, which has by far the highest values in all studied con-
ditions. This outcome is consistent with the corresponding dynamic viscosities of the lub-
ricants. SAE 10W40 shows up to 135% better performance when studying the most ex-
treme conditions of 12,000 rpm angular velocity and 40% coverage for the inlet of the pad. 

 

Figure 11. Quadratic Polynomial Regression model of SAE 20 for all the incomplete oil film profiles.
Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity.



Lubricants 2023, 11, 113 13 of 18Lubricants 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 12. Quadratic Polynomial Regression model of incomplete oil film profile C for all the stud-
ied lubricants. Load-carrying capacity according to percentage of inlet oil coverage and rotational 
velocity. 

For comparison purposes, the numerical data of the case study C (symmetrical in-
complete oil film profile) were used as input, in order to train a Quadratic SVM ML model 
and a Binary Regression Tree model. The R2 values, which will define the goodness of fit 
for all the trained models, are presented in Table 3. First of all, values of the order of 0.95 
for the R2 are, in general, accepted as very good for the fitness of the models in the data. 
That means that all trained models in this study have a very good response and higher 
than 95% accuracy to predict the load-carrying capacity of the pad. Nevertheless, in a 
more detailed approach, the Quadratic SVM models show better results than Regression 
Trees, while the Quadratic Polynomial Regression models present, in general, the best 
values of R2. 

Table 3. Quadratic SVM and Regression Tree models and their corresponding R2. 

Case Study R2 
SAE 30 Quadratic SVM ML model 0.98 
SAE 30 Regression Tree ML model 0.95 

SAE 10W40 Quadratic SVM ML model 0.98 
SAE 10W40 Regression Tree ML model 0.95 

SAE 20 Quadratic SVM ML model 0.98 
SAE 20 Regression Tree ML model 0.95 

Taking a closer look at the results of case study C for the SAE 10W40, the lubricant 
with the optimum performance in terms of pad load-carrying capacity, one can notice that 
the Quadratic Polynomial Regression model has 99% accuracy in predicting the results. 
The Quadratic SVM model shows just 1% less accuracy with R2 = 0.98, while the Regres-
sion Tree model has an R2 = 0.95, which gives 4% less accuracy in load-carrying capacity 
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Table 3. Quadratic SVM and Regression Tree models and their corresponding R2.

Case Study R2

SAE 30 Quadratic SVM ML model 0.98

SAE 30 Regression Tree ML model 0.95

SAE 10W40 Quadratic SVM ML model 0.98

SAE 10W40 Regression Tree ML model 0.95

SAE 20 Quadratic SVM ML model 0.98

SAE 20 Regression Tree ML model 0.95

Taking a closer look at the results of case study C for the SAE 10W40, the lubricant
with the optimum performance in terms of pad load-carrying capacity, one can notice
that the Quadratic Polynomial Regression model has 99% accuracy in predicting the
results. The Quadratic SVM model shows just 1% less accuracy with R2 = 0.98, while the
Regression Tree model has an R2 = 0.95, which gives 4% less accuracy in load-carrying
capacity prediction compared to the Quadratic Polynomial Regression model. Figure 13
is a graphical representation of the predicted versus the true response values for the
Quadratic SVM and the Regression Tree models that were trained with Matlab’s Regression
Learner tool. It is visually verified that the Quadratic SVM model has a better fit to the
results compared to the Regression Tree model, since the observations (blue markers) are
gathered very close to the prediction line compared to the Regression Tree model on the
right, which shows a few observations with a higher deviation from the prediction line,
mainly on the upper left corner. Figures 14 and 15 (below) are the typical representation of
the response plots for the SAE 10W40, case study C and Quadratic SVM model for each
predictor. Similarly, Figures 16 and 17 are the typical representations of the response plots
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for SAE 10W40, case study C and Regression Tree model. Finally, Figure 18 is the graphical
representation of the Regression Tree machine-learning model for the lubricant SAE 10W40
and case study C- symmetrical, incomplete oil film profile.
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4. Conclusions

In the current paper, the performance of a tilting pad thrust bearing was investigated
in terms of the pad’s load-carrying capacity under various incomplete oil film profiles
by combining numerical and machine-learning techniques. The 2-D Reynolds equation
was solved numerically with the finite difference, central differences and method for three
different lubricants: SAE 20, SAE 30 and SAE10W40. Three incomplete oil film profiles
were studied, with the percentage of inlet oil coverage varying from 40% to 100%, and the
rotational velocity of the rotor covering a range between 2000 and 12,000 rpm. In addition,
the numerical data were used as input in order to train three machine-learning models:
Quadratic Polynomial Regression, Quadratic SVM and Regression Trees. The conclusions
of the investigation are summarized below:
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� As less oil covers the pad’s surface, the load-carrying capacity drops up to 93% for
40% of inlet oil coverage.

� The load-carrying capacity of the pad is affected by the position of the oil film incom-
pleteness. The lack of lubricant on the outer area of the pad, profile A, shows the
worst load-carrying capacity results, while the case study C profile, with symmetrical
lack of lubricant, presents up to 15% better performance.

� From the studied lubricants, SAE 10W40 shows up to 135% better performance for
the worst studied conditions of 12,000 rpm and 40% inlet oil coverage.

� All the machine-learning models have a good accuracy in predicting the load-carrying
capacity of the pad, since all R2 values are higher than 0.95.

� Finally, the Quadratic Polynomial Regression ML model shows 1% better accuracy
compared to the Quadratic SVM model, and 4% better accuracy when compared to
the Regression Tree ML model.

All in all, the chosen machine-learning model that fits the needs of the current in-
vestigation in the best possible way is the Quadratic Polynomial Regression model. The
lubricant that provides the pad with the optimum load-carrying capacity when facing
incomplete oil film operating conditions is the SAE 10W40, and the worst case scenario is
the lack of lubricant in the outer area of the pad’s surface.

Author Contributions: Conceptualization, writing—review and editing, P.G.N.; writing—original
draft preparation, methodology, software and machine learning, K.P.K.; All authors carried out inter-
pretations for the results. All authors have read and agreed to the published version of the manuscript.
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Nomenclature

A total area of bearing pads [m2]
B pad length in x-direction [m]
Cµ

1 first viscosity coefficient—absolute temperature at which µ = µν (323 K)
Cµ

2 second viscosity coefficient according to Sutherland’s law = 3800
Cµ

3 third viscosity coefficient according to Sutherland’s law = 30,000
Cn,s,w,e constants for each neighbor node
h film thickness [m]
h0, h1 outlet, inlet film thickness [m]
hmin minimum film thickness [m]: hmin = min(h0, h1)
k convergence ratio: k = (h1 − h0)/h0
ke empirical constant = 0.8 [21]
L pad’s width in y-direction [m]
p absolute pressure [Pa]
P absolute nodal pressure [Pa]
qx,y lubricant flow [m3/h]
Qin,out lubricant flow in inlet and outlet area of the pad [m3/h]
Qsr1,2 lubricant outflow from the sides of the pad [m3/h]
T temperature [K]
U linear rotor velocity [m/s]
µ dynamic viscosity coefficient [Pas]
µv nominal dynamic viscosity
x independent variable of length along pad’s width side [m]
ω rotational velocity [rpm]
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