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Abstract: To examine the three-dimensional texture structure of SMA-13 asphalt pavement and
assess its anti-skid performance, a light gradient-boosting machine evaluation model was developed
using non-contact three-dimensional laser-scanning technology. The study focused on collecting
three-dimensional texture data from newly laid SMA-13 asphalt pavement. Subsequently, wavelet
transform was employed to reconstruct the pavement’s three-dimensional texture, and discrete
Fourier transform was utilized to separate macro- and microtextures, enabling the calculation of their
characteristics. The macro- and micro-characteristics of the three-dimensional texture and friction
coefficient were input into the model. A comparative analysis with linear regression and a random
forest model revealed superior accuracy and efficiency in the model. The training set R2 is 0.948, and
the testing set R2 is 0.842, effectively enabling the evaluation of pavement anti-skid performance.
An analysis of parameter importance indicated that Rku and MPD are still effective indicators for
evaluating skid resistance. Furthermore, diverse texture indexes exhibited varying effects on the
anti-skid performance. The established asphalt pavement anti-skid evaluation model serves as a
theoretical foundation for understanding the actual influence on pavement anti-skid performance.

Keywords: road engineering; asphalt pavement; texture reconstruction; machine learning; skid
resistance intelligent evaluation

1. Introduction

With the rapid economic growth experienced by all countries, the importance of
road engineering in infrastructure development has escalated, making it a focal point in
countries’ construction endeavors. The evolution of road engineering has been marked by
increased intelligence and internationalization. As demands for driving speed, safety, and
comfort surge, asphalt pavement has emerged as the predominant choice, constituting over
90% of highway pavement structures [1]. The optimal speed, safety, and comfort of driving
on asphalt pavement are intrinsically linked to its anti-skid performance. Consequently,
investigating anti-skid performance using innovative technologies and methods stands out
as a current imperative.

The term “anti-slip performance” refers to a road’s frictional resistance against a ve-
hicle during tire slippage under braking. The anti-slip coefficient serves as an evaluation
index for anti-slip performance, often measured practically using the British Pendulum
Number (BPN) using a pendulum tribometer [2]. In recent years, advancements in laser-
scanning systems and computer science have prompted scholars to utilize pavement texture
systems for data collection. For instance, Ding et al. [3] utilized a laser-scanning system
to measure the mean texture depth (MTD) of different pavement levels, validating its
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feasibility by comparing it to MTD measured through a sand-paving method. Liu et al. [4]
extracted three-dimensional texture data of dense-graded AC-13 and AC-16 asphalt con-
crete pavement via a pavement texture system. They calculated the contour arithmetic
mean deviation Ra and contour root-mean-square deviation Rq, affirming their suitability
as evaluation indexes for pavement anti-skid performance. Other scholars have leveraged
laser-scanning equipment to measure pavement texture data and calculate statistical indi-
cators, such as the root-mean-square roughness (Sq), texture skewness (Ssk), and texture
kurtosis (Sku) [5]. Song [6] employed a laser scanner to measure three-dimensional pave-
ment texture, establishing a linear relationship between the mean profile depth (MPD) of
asphalt pavement and the friction coefficient BPN. Jiang et al. [7] reconstructed a high-
precision digital pavement model with three-dimensional (3D) laser technology, revealing a
correlation between macroscopic pavement texture and anti-skid performance. While these
studies shed light on the relationship between asphalt pavement texture and skid resistance,
challenges persist in the research into skid resistance. These include the limited accuracy
of pavement texture testing methods, biased skid resistance evaluation indexes [8], and a
predominant focus on linear correlations, neglecting the nonlinear relationship between
multi-dimensional features [9]. These limitations impede a comprehensive understanding
of the correlation between texture characteristics and skid resistance, warranting further
analysis and research.

In the realm of pavement anti-skid performance evaluation models, Peng et al. [10] uti-
lized a dynamic friction coefficient measuring instrument to establish multiple linear regres-
sion models for pavement anti-skid performance, incorporating multiple texture features at
high and low speeds. Zhan et al. [11] measured friction coefficients and three-dimensional
texture data, constructing a random forest model to assess and predict pavement anti-skid
performance. However, these models are relatively traditional. With the burgeoning de-
velopments in artificial intelligence technology, machine learning evaluation models have
gained prominence in road engineering [12,13], offering a novel approach to assessing the
anti-skid intelligence of asphalt pavement. Liu et al. [14] utilized a deep neural network
encoder to extract features from single-view pavement images and reconstruct the pave-
ment macrotexture in 3D, aiming to evaluate the anti-slip performance of the pavement.
Hu [15] proposed a multi-scale texture feature extraction method for asphalt pavement
based on point cloud data, and established a fusion model sGBM. Deng [16] conducted an
intelligent prediction model study for pavement anti-slip performance using non-contact
three-dimensional laser surface testing and machine learning. They also explored the
intelligent prediction model of pavement friction performance based on a random forest
tree, identifying key parameters influencing pavement skid resistance performance through
importance analysis. Currently, the research on asphalt pavement resistance prediction and
assessment methods primarily relies on characterization indexes and statistical methods
such as linear fitting, multiple regression analysis, or machine learning algorithms to es-
tablish pavement skid resistance prediction models [15–17]. However, a comprehensive
perception model for asphalt pavement skid resistance with high accuracy, robustness, and
repeatability is lacking. This paper focuses on 3D texture reconstruction of SMA-13 asphalt
pavement, calculating multiple feature indicators of texture parameters, and employing
a machine learning light gradient-boosting machine (LightGBM) model to establish an
intelligent evaluation model for asphalt pavement skid resistance.

In this paper, the use of 3D laser scanning for studying pavement texture can offer
comprehensive insights into the microstructure of the pavement. The anti-skid performance
of the pavement can be evaluated through an analysis of its texture characteristics. This
technology can assist road managers in accurately assessing the frictional performance of
pavements during the maintenance and enhancement of road surfaces, thereby enhancing
driving safety.
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2. SMA-13 Asphalt Pavement Data Acquisition

All data presented in this study originate from the recently laid SMA-13 asphalt
concrete pavement within a specific university institution, with the scope of this research
limited to the SMA-13 asphalt pavement.

2.1. Technical Performance Index of Raw Materials

The chosen asphalt is SBS modified asphalt I-D, and the corresponding test results for
its main technical indicators are provided in Table 1, below. Additionally, Table 2 displays
the test results for the primary technical indicators of the coarse aggregate, while Table 3
details the corresponding results for the fine aggregate. The filler employed is limestone
LSIII mineral powder, and Table 4 elucidates the test results for its main technical indicators.

Table 1. Main technical indicators of SBS modified asphalt I-D.

Test Items Units Test Results Technical Requirements

Needle penetration (25 ◦C; 100 g, 5 s) mm 57 40–60
Softening point ◦C 78 ≥60

Ductility (5 ◦C, 5 cm/min) cm 29 ≥20
135 ◦C dynamic viscosities pa·s 2.28 ≤3

Elastic recovery 25 ◦C % 82 ≥75

Film heating experiment
Mass loss % −0.1 ≤±1

Needle penetration
ratio 25 ◦C % 80 ≥65

5 ◦C elongations cm 17 ≥15

Table 2. Main technical indicators of coarse aggregate.

Test Items Units Test Results Technical Requirements

Crush value % 15.8 ≤30
Water absorption % 0.57 ≤3

Needle flake particle content % 11.9 ≤20
Los Angeles wear value % 18.6 ≤35

Table 3. Main technical indicators of fine aggregate.

Test Items Units Test Results Technical Requirements

Sand equivalent % 65 >50
Mud content (<0.075 mm portion) % 1.8 ≤3

Table 4. Main technical indicators of mineral powder.

Test Items Units Detection Result Technical Requirements

Moisture content % 0.7 ≤1
Apparent relative density g/m3 2.712 ≥2.5

Percentage
through the

sieve

0.6 mm % 100 100
0.15 mm % 95.7 90–100

0.075 mm % 88.6 75–100
Appearance No clumps

2.2. SMA-13 Asphalt Mixture Grading

The data collected in this paper are all for SMA-13 asphalt concrete, and the grading
range of SMA-13 is shown in Table 5, below.
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Table 5. Grading range of SMA-13.

Gradation
Percentage through Different Screen Size (mm)/%

16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

SMA-13
grading
range

Upper limit 100 100 75 31 26 24 20 16 15 12
Median 100 95 62.5 27 20.5 19 16 13 12 10

Lower limit 100 90 50 20 15 14 12 10 9 8

2.3. Data Acquisition

This study gathered test data from five stations. To discern variations in road anti-skid
performance influenced by vehicle tire wear, each station was subdivided into wheel track
belts and non-wheel track belts. At intervals of 5 m between the wheel track belt and
non-wheel track belt, a point was chosen, resulting in a total of 20 test points (10 wheel
track belts and 10 non-wheel track belts), as shown in Figure 1.
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Figure 1. Schematic diagram of the actual measurement points on one side of the road.

The LS-40 portable pavement 3D data collector and analyzer (AMES Engineering,
Ames City, IA, USA) were utilized for obtaining 3D texture data. The scanning range
encompassed 2048 transverse cloud points and 2048 vertical cloud points, with a transverse
test accuracy of 0.05 mm and a vertical test accuracy of 0.01 mm. The equipment is depicted
in Figure 2, below. Operated on the principles of laser triangulation, the device employs
the laser triangulation algorithm to process images for intensity and height measurements.
In this context, θ represents the angle between the laser and CCD camera, b is the focal
length, D denotes the horizontal distance between the two lenses, a signifies the distance
between the receiving lens and the actual measuring point, x represents the true depth
change of the object surface, and x′ denotes the displacement change on the corresponding
camera plane. Additional parameters are illustrated in Figure 3, below. To begin using the
product, connect the LS-40 + 12VDC IN port to the battery + 12VDC OUT port using the
provided power cord. Next, connect the LS-40 USB port to a USB 2.0 or USB 3.0 port on
a desktop or laptop computer. Finally, turn on the key switch and press the Battery On
button to activate the battery power output.

Following the measurement of the road surface texture at each station, it is essential to
measure the surface temperature and friction coefficient at the corresponding positions. The
friction coefficient, typically assessed using a Pendulum measuring instrument, as depicted
in Figure 4, is denoted as BPN. A higher BPN value correlates with an improved anti-skid
performance of the road surface. The specific testing process is as follows: first, adjust the
level by placing the instrument at the measurement point and aligning the pendulum’s
swing direction with the direction of travel. Rotate the leveling bolt to center the level
bubble. Next, zero out the reading by adjusting the zero bolt so that the pendulum’s
pointer is just below the 0-scale line. Then, adjust the pendulum to achieve a 126 mm
sliding distance between the rubber block and the ground. Finally, to determine the friction
coefficient, the measurement point must be sprayed with water, and then the pointer is
released to obtain the value. The pendulum is then released, and the pointer will indicate
the friction coefficient value of the point.
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Figure 4. Field pavement data collection. (a) 3D texture data scanning; (b) road friction BPN measurement.

Recognizing the influence of temperature on BPN, as outlined in the “Field Test
Methods of Subgrade and Pavement for Highway Engineering” [18], the friction coefficient
is adjusted to the standard temperature friction coefficient at 20 ◦C. The correction formula
is presented as follows (Equation (1)), with the temperature correction values detailed in
Table 6. In total, 100 sets of data comprising 3D texture data, friction coefficient BPN, and
road surface temperature (T) were collected from five stations.

BPN20 = BPNT + ∆BPN (1)

where BPN20 is the coefficient of friction when converted to the standard temperature of
20 ◦C; BPNT is the coefficient of friction measured at the asphalt road surface temperature;
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and ∆BPN is the temperature correction value, the specific correction value shown in
Table 6.

Table 6. Temperature correction standard value of the friction coefficient BPN.

T/◦C 0 5 10 15 20 25 30 35 40

∆BPN −6.0 −4.0 −3.0 −1.0 0 2.0 3.0 5.0 7.0

Figure 5 below shows the distribution of friction coefficient values at different test
points, and it can be seen that most of the friction coefficient values are in the range of
45–70, which is in line with the required domain width for the study.
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3. Three-Dimensional Reconstruction of Asphalt Pavement Texture
3.1. Slope Correction

In cases where the placement area of the 3D laser-scanning equipment is not sufficiently
smooth or experiences unbalanced deflection angles, resulting in tilted measurements [19],
corrective measures are essential, as depicted in Figure 6a. The widely employed correction
method is the least-squares method, assessing inclination along the scanning direction, as
expressed in the formula below:

b1 =

12
N−1
∑

i=0
ihi − 6(N − 1)

N−1
∑

i=0
hi

N(N + 1)(N − 1)
(2)

b0 =
1
N

N−1

∑
i=0

hi − b1 ·
N − 1

2
(3)

Hi = hi − b1i− b0 i = 0, 1, . . . N − 1 (4)

where b1 represents the elimination coefficient of inclination, b0 is the elimination coefficient
of bias error, hi and Hi, respectively, represent the elevation value of collection point i
corresponding to before and after correction, and N is the total number of collection points
of a single scan line. By calculating the slope of each scan line and horizontally correcting
it, the modified profile data are collected and are shown in Figure 6b.
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3.2. Noise Reduction Optimization and Texture Reconstruction

Figure 6 reveals the presence of numerous outliers and noise points in the collected
data, often attributed to oil stains on the asphalt pavement surface or 3D laser-scanning
equipment’s susceptibility to external light sources and water blockages. Consequently,
data elimination and noise reduction are imperative. The noise reduction process comprises
the following steps. Initial threshold filtering is conducted for obvious outlier processing,
limiting the upper limit of relative elevation data. Points exceeding this limit are replaced
via the interpolation of surrounding normal points. Outlier detection is performed using
the moving window method, where an appropriately sized window matrix is moved
through the original data. Points beyond a set threshold in the window are identified as
outlier points and replaced accordingly. This paper employs the standard deviation method
(Equation (5)) for outlier elimination, replacing points exceeding three times the standard
deviation from the mean with the mean value.

|xi − µ| > 3 · σ (5)

where xi is the i-th data point in the window, µ is the mean value of the overall data in the
window, and σ is the standard deviation of the overall data in the window.

After processing the outliers, additional optimization for noise reduction is imperative.
Noise, unlike outliers, typically blurs the signal contour, obscuring the genuine signal
and complicating the identification of real information. To mitigate this influence, this
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paper employs discrete wavelet transform denoising, known for its robust noise reduction
stability and mature application, to optimize the noise in the texture data. The processing
results are visualized in Figure 7. Following data optimization for noise reduction, the 3D
pavement surface was reconstructed, as illustrated in Figure 8. Notably, the reconstructed
pavement features closely align with the original pavement texture features.
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3.3. Macro- and Microtexture Separation

Texture can be categorized into four types based on wavelength, where the macro
texture corresponds to the wavelength range from 0.5 mm to 50 mm, and anything below
0.5 mm is considered microtexture. Both macro- and microtextures influence the skid resis-
tance of asphalt pavement, representing low-frequency and high-frequency information,
respectively. The discrete Fourier transform (DFT) is a mathematical technique used to
convert a discrete signal, such as a digital signal, into a frequency domain representation.
It transforms a series of discrete time-domain samples into a frequency-domain represen-
tation that includes magnitude and phase information. The discrete Fourier transform is
extensively employed in digital signal processing, communication systems, image pro-
cessing, and other related fields. It aids in the analysis of a signal’s spectral properties,
facilitating operations like filtering, frequency domain processing, and feature extraction.
In this study, pavement data are transformed into frequency domain data through DFT.
Subsequently, they undergo band-pass filtering using a Butterworth filter, yielding distinct
macrotexture and microtexture information, as shown in Figure 9.
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4. Intelligent Evaluation of Asphalt Pavement Skid Resistance
4.1. Asphalt Pavement Three-Dimensional Texture Characterization Index

The characteristic index encompasses texture features evaluated and calculated through
various methods related to the height information, surface information, and shape infor-
mation of the pavement topography. These features directly impact the contact between
the pavement and the tire, as well as the drainage performance, subsequently influencing
the anti-skid performance of the pavement. The main characteristics discussed in this
paper include mean profile depth (MPD), skewness (Rsk), kurtosis (Rku), two-point slope
elevation difference (SV2pts), contour arithmetic mean deviation (Ra), and root-mean-square
roughness (RMS).

(1) Mean Profile Depth (MPD)

MPD, the most commonly used two-dimensional evaluation index, assesses the rough-
ness of macroscopic texture features of the pavement. Similar to MTD, its calculation
expression is as follows (Equation (6)).

MPD =
1
2
[max(h1, h2, . . . , hN/2) + max(hN/2+1, hN/2+2, . . . , hN)] (6)

(2) Skewness (Rsk)

Skewness represents the cubic average of h over a datum length that is dimensionless
via the cube of the root-mean-square height, and better reflects the correlation between the
peaks and valleys of the texture profile. The calculation expression is as follows (Equation (7)).

Rsk =
1

RMS3 ·
1

M · N
N

∑
i=1

M

∑
j=1

h3
i,j (7)

(3) Kurtosis (Rku)

Kurtosis mainly reflects the variation amplitude of the contour surface relative to the
datum surface. A larger kurtosis indicates a sharper contour texture distribution and a
steeper surface. The calculation expression is as follows (Equation (8)).

Rku =
1

RMS4 ·
1

M · N
N

∑
i=1

M

∑
j=1

h4
i,j (8)

(4) Two-Point Slope Elevation Difference (SV2pts)
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SV2pts expresses the change trend of continuous point elevation difference of surface
texture. A larger value signifies more pronounced texture changes and a rougher road
surface. The calculation expression is as follows (Equation (9)).

SV2pts =

√√√√ 1
N

N

∑
i=1

(
hi + hi+1

∆x

)2

(9)

(5) Contour Arithmetic Mean Deviation (Ra)

The arithmetic mean deviation of the contour is the average of the absolute distance
between each point on the measured contour and the datum axis within the sampling
length. It reflects the deviation degree of texture features relative to the datum plane. The
calculation expression is as follows (Equation (10)).

Ra =
1

M · N
N

∑
i=1

M

∑
j=1

∣∣hi,j
∣∣ (10)

(6) Root-Mean-Square Roughness (RMS)

The root-mean-square roughness is the deviation distance of the surface texture con-
tour, representing the square root of the mean value of the sum of squares of a set of data.
It reflects the deviation degree of the texture relative to the datum plane. The calculation
expression is as follows (Equation (11)).

RMS =

√√√√ 1
M · N

N

∑
i=1

M

∑
j=1

h2
i,j (11)

In Equations (6)–(11), M and N denote the number of sampling points in the horizontal
direction, h is the measured elevation value, and ∆x is the horizontal distance between
sampling points.

4.2. Intelligent Evaluation Method of Asphalt Pavement Anti-Skid Performance

The conventional evaluation methods, rooted in statistical analysis, often rely on linear
regression or polynomial regression models. While these models are computationally
straightforward and directly reflect the correlation between each index and the target, they
fall short in capturing nonlinear relationships among multiple indexes. Earlier support
vector machines (SVMs) were employed as regression models, but their complexity, particu-
larly in dealing with multi-class problems, posed challenges. In recent years, many scholars
have used the decision tree model for evaluation; the decision tree model adopts a tree
structure to represent the decision process, the root node of the tree represents the entire
dataset, each internal node represents a feature attribute, and each leaf node represents
a class or value. The construction process of a decision tree is carried out in a recursive
way. Starting from the root node, a feature attribute and a threshold are selected to divide
the dataset into two subsets, such that some condition on this feature is satisfied. The
building process is recursive, repeatedly selecting the best split feature and threshold,
splitting the dataset until the stop condition is reached. The stop condition can be that
the depth of the tree reaches a certain value and the number of data points in the leaf
nodes is less than a certain threshold. Once the decision tree is built, it can be used to
make classification or regression predictions. Starting from the root node, we traverse
down the tree according to the characteristic values of the data, and finally reach a leaf
node whose category or numerical value is the prediction result [20]. The most commonly
used are integrated models of decision trees, such as the bagging model: random forest
(RF), and boosting model: gradient-boosting machine (GBM), etc. Compared with the
boosting model, the bagging model cannot improve model deviation or significantly im-
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prove performance; the processing of unbalanced datasets is limited [21–24]. This paper
chooses the gradient-boosting machine model in the boosting model, there are mainly
gradient-boosting decision trees (GBDTs), extreme gradient-boosting (XGBoost), and light
gradient-boosting machines (LightGBMs). In each iteration, GBDT needs to traverse the
entire training data many times, the model calculation is complex, and the training process
is relatively slow. Especially on large datasets, GBDT needs to build decision trees serially,
so the training cannot be parallelized. Before LightGBM was proposed, the most famous
GBDT tool was XGBoost, which is a decision tree algorithm based on the pre-ordering
method. However, the disadvantages are also obvious. First, it consumes a large amount of
space. Such algorithms need to save the eigenvalues of the data, and also save the results
of the sorting of the features (for example, to save the sorted index in order to quickly
calculate the split points later), which consumes twice the memory of the training data.
Secondly, when traversing each split point, it is necessary to calculate the split gain, which
is expensive to consume. In addition, the complex parameter tuning of XGBoost, with
multiple parameters to be adjusted, may require more parameter tuning work. Therefore,
the LightGBM model, with excellent training speed and high memory usage, is selected
for the intelligent evaluation of anti-slip performance in this paper. This model has a high
performance and low consumption, optimization accuracy, and supports three parallel
training [25] modes. In order to avoid the above shortcomings of XGBoost, and to speed up
the GBDT model training without compromising the accuracy, lightGBM has carried out
the following optimization [26] on the traditional GBDT algorithm.

(1) Histogram-based Learning

LightGBM adopts a histogram-based learning approach instead of preordering. This
reduces memory consumption because there is no need to save the sorted feature index,
while also speeding up the process of calculating segmentation points. The basic idea of the
histogram algorithm is that when constructing the decision tree, it does not directly use the
sorting information of the original data, but divides the value of each feature into several
intervals, namely, the histogram columns (bins); as shown in Figure 10, below, the histogram
algorithm is actually to convert the continuous floating-point features into discrete features.
Then, we count the data and feature label distribution of samples in each interval. This
discretization process makes it more efficient to find the best segmentation points. The first
advantage of histogram learning is to reduce memory consumption: since there is no need
to store the sorting index of the original data, only the histogram information is stored,
reducing the memory overhead. The second is to speed up segmentation point calculation:
histogram statistics make the calculation to find the best segmentation point more efficient,
especially on large-scale datasets.
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(2) Leaf-wise Growth

LightGBM employs the leaf growth mode, which, compared to hierarchical growth,
swiftly identifies leaf nodes with higher gain, thereby reducing the depth of the decision
tree. Most network models in previous studies adopted the level-wise decision-tree growth
strategy (Figure 11), whereas LightGBM utilizes the leaf-wise algorithm with depth restric-
tion (Figure 12). In each iteration, LightGBM identifies the leaf with the greatest splitting
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gain among all current leaves and subsequently splits. The advantage of the leaf-wise
algorithm lies in its smaller error compared to level-wise algorithms when the number
of splittings is the same, resulting in higher precision. However, the leaf-wise algorithm
may lead to the growth of a deeper decision tree, potentially causing overfitting of the
target data. To counter this, LightGBM incorporates a depth threshold into the leaf-wise
algorithm to prevent overfitting while maintaining efficiency.
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(3) Gradient-based One-Side Sampling (GOSS):

LightGBM introduces gradient-based one-side sampling, reducing consideration for
samples with small gradients while preserving data distribution. This enhancement further
accelerates the training speed.

(4) Exclusive Feature Bundling (EFB):

LightGBM supports feature bundling, enabling the combination of values from dif-
ferent features and reducing computational complexity. The EFB algorithm in LightGBM
transforms this challenge into a graph coloring problem and employs a greedy approxima-
tion method to address it. Specifically, the EFB algorithm treats each feature as a vertex in
the graph, and the edge weight between each vertex (feature) represents the conflict value
between the two features (Figure 13 below). The features to be bound are the feature points
that are to be painted with the same colour in the graph coloruing problem.
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4.3. Established Anti-Skid Intelligent Evaluation Model Based on LightGBM

Following the pavement’s macro- and microtexture separation theory, specific feature
indices for macro- and microtextures are individually calculated—namely, Macro_MPD, Mi-
cro_MPD, Macro_Ra, Micro_Ra, Macro_RMS, Micro_RMS, Macro_Rsk, Micro_Rsk, Macro_Rku,
Micro_Rku, Macro_SV2pts, and Micro_SV2pts, a total of 12 characteristic indicators and the
friction coefficient (BPN), are input into the LightGBM model, and the results are presented
in Figure 14.
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In the LightGBM algorithm, the importance ranking of features can be determined
by calculating how much the features reduce the model error when fitting the tree. This
calculation principle is based on the concepts of split point selection and information gain
of features when fitting the tree. Specifically, the importance of features can be calculated
by the following steps:

1. Traversing each feature and selecting split points for each feature. For continuous
features, this involves selecting a threshold value for splitting, while for discrete
features, each distinct value is selected as a split point.

2. At each split point, the reduction in model error after splitting using the feature
is calculated, usually using metrics such as information gain or the reduction in
Gini impurity.

3. After selecting the split point for each feature, the error reduction at different split
points is summarized to obtain the overall contribution of the feature to the model.

4. Ultimately, the importance of each feature can be ranked through normalization.

This approach allows the importance ranking of features to be determined by calculat-
ing their relative importance when fitting the tree. It helps in understanding how much the
model depends on different features for feature selection or feature interpretation.

By applying this principle, we are able to determine the impact scores of each pavement
texture feature on the pavement friction BPN, as shown in Figure 14. Among the traditional
height parameters, Rku and MPD remain effective indicators for assessing skid resistance
and have the highest scores in this model. Regarding the macro- and microtexture features,
Micro_Rku holds the highest score, followed by Macro_MPD, which exhibits a substantial
gap compared to the scores of other features. This indicates that Micro_Rku can effectively
capture the micro-level changes in effective contact texture caused by vehicle wear over
an extended period, while Macro_MPD can effectively capture the macroscopic changes
in effective contact texture resulting from long-term vehicle wear. Additionally, there is
a noticeable discrepancy in scores between Micro_Rku and Macro_Rku, highlighting the
differing degrees of influence that macro- and microtextures exert on pavement skid
resistance. This strongly supports the rationale and necessity of investigating the influence
of macro- and microtextures on pavement skid resistance. Conversely, the remaining
texture features did not demonstrate significant differences and had minimal impact on
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the model evaluation, likely due to the inclusion of extraneous texture information and the
replacement of the effective component by other features.

Upon further analysis, it is evident that, with the exception of Micro_Rku and Mi-
cro_MPD, the top-ranked importance scores are attributed to macro-texture features. This
leads to the conclusion that the impact of pavement macrotexture features on the friction
coefficient BPN is more significant than that of pavement microtexture features in this
model. This outcome is primarily linked to the selected test sites for the study, where both
wheel tracks and non-wheel tracks were considered. Moreover, the variability in surface
macrotextures among the test sites is greater than that in surface microtextures. For the
model feature importance score, a higher score indicates that it has a greater influence in the
model on obtaining the target friction coefficient, which is more conducive to improving
the computational speed, accuracy, and robustness of the model.

To underscore the model’s superiority, this paper conducts a comparative analysis
involving the multiple linear regression (ML) model, the random forest regression model
(RF) model, and the LightGBM model. The dataset is divided into training and test sets at
a ratio of 7:3, yielding the results outlined in Table 7. Notably, the ML model exhibits the
lowest evaluation accuracy, with a training set R2 of only 0.689. In contrast, the LightGBM
model outperforms others, achieving a training set R2 of 0.948 (Figure 15a), and a test
set R2 of 0.842 (Figure 15b), 22.2% improvement over the established ML model and
10.6% improvement over the RF model. This clearly demonstrates the model’s heightened
accuracy compared to traditional models.
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Table 7. Comparison of the scores of each model.

Models ML RF LightGBM

R2 Training 0.712 0.835 0.948

Testing 0.689 0.761 0.842

5. Conclusions

This paper focused on SMA-13 asphalt pavement, employing three-dimensional scan-
ning equipment to capture pavement texture, and pendulum tribometry for friction coef-
ficient testing, and applying correction methods like the least-squares method for slope
correction. Noise reduction and optimization were achieved through the standard de-
viation method and wavelet transform, facilitating three-dimensional pavement texture
reconstruction. Furthermore, discrete Fourier transform enabled the separation of macro-
and microtextures. The study calculated characteristic values, including average contour
depth, skewness, kurtosis, two-point slope elevation difference, contour arithmetic mean
deviation, and root-mean-square roughness for both macro- and microtextures. The Light-
GBM algorithm was then employed to establish an asphalt pavement anti-skid intelligent
evaluation model. Comparisons with traditional multivariate linear and random forest
models yielded the following conclusions:

1. The high-precision 3D texture scanning equipment effectively captured the surface
texture structure of asphalt concrete pavement.

2. Employing the least-squares method for slope modification and wavelet transform
for noise reduction enabled successful three-dimensional texture reconstruction of
the pavement.

3. The LightGBM pavement skid resistance intelligent assessment model combines
texture characteristics and friction coefficients, and Rku and MPD are still effective
indicators for evaluating skid resistance, scoring the highest in this model. This
indicates that it can effectively reflect the changes in road surface contact texture
caused by long-term vehicle wear.

4. The different effects of Micro_Rku and Macro_Rku on the coefficient of friction empha-
size the different effects of macrotexture and microtexture on the anti-skid perfor-
mance of pavements, and it is also found that the macrotexture features of pavements
have a greater effect on the coefficient of friction BPN than the microtexture features
of pavements in this model.

5. Comparative analyses revealed the superiority of the LightGBM model over tradi-
tional multivariate linear and random forest models, attaining the training set R2 of
0.948, and the testing set R2 of 0.842.

In conclusion, this study contributes valuable insights into pavement texture analysis
and anti-skid performance evaluation, showcasing the effectiveness of the LightGBM model
in this context.
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