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Abstract: On maritime vessels, external factors such as explosions, collisions, and grounding can
cause the emulsification of lubricating oil by seawater pollution, which can affect the lubrication of
a ship’s thrust bearing. To explore the influence of the mixed emulsification of lubricating oil and
seawater on the lubrication performance of thrust bearings, this study conducted an emulsification
experiment, from which the viscosity equation of the oil–water mixture was obtained. A thermal
hydrodynamic model (THD) of bearings considering oil–water mixed emulsification was established,
and the Finite Difference Method (FDM) was used for analysis. The results show that according to
the characteristics of the manifold, the mixture is divided into water-in-oil (W/O) and oil-in-water
(O/W). In the W/O flow with higher viscosity, the film thickness becomes higher, but the power
loss increases. In the O/W manifold with low viscosity, the thin film easily causes mixed friction. In
the demulsification stage of the mixed liquid, the thickness loss of the film is huge, and the collision
between the thrust-bearing pad and the inference plate may cause the pad to be ablated. The influence
of specific heat capacity on temperature is greater than the temperature rise caused by viscosity.

Keywords: tilting-pad thrust bearing; emulsification; viscosity; thermal conduction

1. Introduction

The quality of lubricating oil determines lubrication performance of a ship thrust
bearing. Lubricating oil pollution will directly affect the lubrication state of the thrust
bearing, increase the power consumption of shafting, and even lead to damage to the
bearing pad [1,2]. Water is one of the common sources of oil pollution [3]. Many factors
cause water pollution of ship lubricating oil. For example, in the marine environment,
water often condenses and penetrates the oil tank holes into the ship lubricating oil [4]. In
addition, damage to the lubricating oil tank and the increase in shaft seal gap caused by
external risk factors such as explosion, collision, and grounding while in service will also
lead to seawater entering the lubricating oil system, resulting in lubricating oil pollution [5].
Many scholars have studied bearing water pollution. H. Hamaguchi et al. [6] found that
the hydrodynamic lubrication state of water-in-oil (W/O) emulsion is almost entirely
determined by the characteristics of pure oil, and it is difficult to generate hydrodynamic
lubrication for oil-in-water (O/W) emulsion. Zhang F et al. [7] directly observed the
characterization of micro-sized water-in-oil emulsion in the EHL point contact area via
high-speed camera, and explained the critical conditions of water-in-oil emulsification
affecting EHL contact. Hili J [8] used fluorescence and infrared microscopy techniques to
study contact lubrication under oil-in-water conditions. The oil-in-water mixture showed
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a stratified state at low speeds and a gradient distribution at high speeds. Soltanahmadi
et al. [9] and Haque et al. [1,10] studied the induction behavior of water in lubricating oil
on the white etching cracking of a bearing pad, and proved the damage caused to alloy
bearings by water in terms of friction and wear. Studies have shown that a small amount of
water pollution does not change bearing lubrication characteristics. Liu H et al. [11] found
that the ratio of seawater mixed in the radial bearing lubricating oil can be increased from
0.5% to 3%. Elias [4,12] fitted the mixed-viscosity model with a moisture content of 0–10%,
studied the performance of the thrust bearing under 7% moisture content, and proved that
the thrust bearing can be applied to lubricating oil with low moisture content. At present,
the research on the emulsification and lubrication of thrust bearings only focuses on a small
amount of water pollution. However, if a ship sustains damage at sea, (and the amount of
oil mixed with seawater can be high in such an event), the ship needs to be able to return
to port. There are few studies on the lubrication performance of thrust bearings in high
moisture oil–water mixtures.

Combined with the above literature, considering that water pollution will lead to a
change in such physical parameters as the viscosity, density, and specific heat of lubricating
oil, it is very important to determine these characteristics in relation to the emulsified
viscosity of ship lubricating oil in order to study and predict the oil–water mixed lubrication
state of the ship thrust bearing. The viscosity of the mixed liquid is usually related to its
manifold [13]. Different types of lubricating oil, moisture content, temperature, stirring
speed, and salt content will produce different manifolds. According to the flow form of
the oil–water mixture, it can be divided into oil-in-water (O/W) and water-in-oil (W/O)
manifolds [14], in which oil and water exist in a continuous phase or a dispersed phase,
respectively [15,16]. The process of converting an oil–water two-phase liquid is illustrated in
Figure 1. When the moisture content in the oil–water mixture is low, the oil–water mixture
will form small droplets under the action of high-speed stirring shear [17]. These droplets
gradually disperse and condense during the movement, and finally achieve the dynamic
balance [18]. The emulsification of the oil–water mixture forms a stable W/O manifold.
Among them, asphaltenes, resins, hydrocarbons, and particulates in the lubricating oil will
act as emulsifiers to promote the formation of an emulsion interface film to stabilize the
emulsion structure [17]. When the moisture content in the mixed liquid reaches and exceeds
the phase inversion point, enough dispersed droplets condense into a continuous phase
transition under the action of motion and pad tension to cut off the original continuous
phase into dispersed droplets, realizing the transformation of the manifold [14,19–22]. At
this point, the O/W manifold is formed.
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A large number of researchers have studied the emulsification model. Taylor pro-
posed the two-phase concept, introduced the liquid–liquid phase dispersion analysis, and
extended the viscosity prediction of Einstein‘s model for ultra-low concentration rigid
spherical particle suspensions [23]. Brinkman [24], Mooney [25], and Pal [26,27]modified
the model by adding the concept of a demulsification point, and extended the application
range of the ratio K of the dispersed phase to the continuous phase to 0.012–1170. In addi-
tion, Ronningsen [19], Walther [28], and Vogel [29] considered the shear rate, temperature,
and other factors in the viscosity model. However, for ship lubricating oil and seawater,
the oil–water mixed emulsification model considering temperature and moisture content is
not clear.

To find out the lubrication characteristics of thrust bearings after immersion in sea-
water for the oil system of a ship in distress, the establishment of a widely applicable
prediction model of lubrication characteristics of oil-immersed emulsified thrust bearings
is urgently needed.

For this paper, an emulsification viscosity characterization test of ship lubricating
oil mixed with seawater was conducted. The viscosity equation considering 0–100%
moisture content and 35–60 ◦C temperature was fitted. A THD bearing lubrication model
considering the emulsification viscosity equation was established. The finite difference
method (FDM) was used to calculate the bearing lubrication characteristics under different
moisture content, and the influence of different degrees of seawater pollution on bearing
lubrication was obtained from three aspects: film thickness, temperature, and pressure.

2. Emulsification Characterization of Lubricating Oil in Water

Figure 2 is the emulsification characterization experimental device diagram. An IKA
RCT magnetic stirrer with a 50 mm rotor was used as the stirring device; the speed was set
to 1150 r/min, and the stirring time was 5 min. A viscosity tester SVM2001 was used to
test the dynamic viscosity of the sample (hereinafter referred to as viscosity). The sampling
mode was set to repetition, and the results were obtained three times. The measurement
accuracy was set as ‘fast’ (deviation ± 0.25%), the test temperature range was 35–60 ◦C,
and the step length was 5 ◦C. The commonly used lubricating oil VG68 and seawater
simulated liquid [30] were selected as the basic test samples. At the ambient temperature
of 27 ◦C, 11 groups of samples with moisture content of 0–100% were prepared using an
ultramicrobalance with a 10% step size. The sample was stirred at room temperature for
5 min; after standing for 1 min, a 3 mL sample was placed into the SVM2001 viscosity tester
to test the viscosity. The demulsification interval was found, the solution was configured
according to the 1% step size to find the demulsification point, and the viscosity of the
demulsification point was tested.

The test showed that the sample with a moisture content of 10–50% can form the
W/O manifold, and the emulsion structure is stable under this manifold. The samples
with a moisture content of 60–90% produced the O/W manifold, which was unstable,
and stratification occurred after stirring stopped. The upper-half layer was emulsified oil,
and the lower-half layer was emulsified water. In the demulsification range of 50–60%
moisture content, a demulsification point of 54% at room temperature was found, and
the stable viscosity value at 35 ◦C was only obtained due to the influence of temperature.
In addition, as the moisture content increased beyond 54%, the continuous drip of the
seawater simulation solution according to the step mass fraction of 1% still emulsified until
the moisture content was 76%. However, the emulsification structure at this stage was
unstable and its viscosity value could not be accurately measured, so it was not included in
the viscosity data. The viscosity of the above samples in the demulsification section of the
moisture content range of 50–60%, is shown in Figure 3.
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Figure 3 is a global two-phase liquid emulsification characterization diagram. Figure 3a
shows the W/O manifold viscosity values of the samples with 0% moisture content, and the
samples with 10–90% moisture content between 35 ◦C and 60 ◦C. When the moisture content
is in the range of 0–50%, the transparency of the emulsion decreases with the increase in
moisture content until it is milky white. The viscosity of the sample increases with the
increase in moisture content, and the higher the temperature, the smaller the viscosity
increase amplitude. When the moisture content is in the range of 60–100%, the transparency
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of the W/O manifold sample decreases with the increase in moisture content; the viscosity
of the emulsion decreases with the increase in moisture content and decreasessharply
compared with the viscosity value of 50% moisture content. This is due to the large number
of small water droplets in the oil phase after demulsification. These condense into large
water droplets and destroy the original emulsion interface film, affected by the density
difference and poor settlement, resulting in a significant reduction in moisture content in
the W/O manifold sample. Figure 3b records the viscosity value of the sample at 35 ◦C
when the moisture content is 0–100% (10% step) and 54%. When the moisture content of
the sample is 0–50%, the viscosity of the emulsion increases from 86.04 mPas to 288.3 mPas
with the increase in moisture content. The oil in this interval is a continuous phase, and the
seawater is dispersed in the oil in the form of small droplets, which increases the liquid
viscosity. When the moisture content is 50–60%, with the increase in moisture content
the viscosity reaches the highest (346.87 mPas) when the moisture content is 54%. After
increasing the moisture content by 1%, the sample manifold is converted from W/O to
O/W. The sample gradually changes to transparent from milky white, and the liquid level
in the beaker increases instantaneously, which indicates that the liquid viscosity in the
beaker drops sharply. When the moisture content is 60–90%, with the increase in moisture
content, the transparency of the sample increases and obvious stratification occurs after
standing. The turbidity of the stratified emulsified liquid gradually decreases, the viscosity
of emulsified oil decreases from 135.4 mPas to 87.43 mPas, and the viscosity of emulsified
seawater decreases from 1.76 mPas to 0.77 mPas.

3. Thermo-Hydrodynamic Model Considering Oil–Water Mixed Emulsification
3.1. Viscosity–Temperature Equation

The Walther [28] and Vogel [29] models are well-known viscosity–temperature models,
as shown in Equations (1) and (2):

ln ln(µ + 0.7) = n + m ln(t + 273.15) (1)

µ = Ae
B

t+C (2)

where µ is the dynamic viscosity, mPas, t; the temperature, ◦C; m, n is the viscosity parame-
ters of Walther’s model; and A, B, and C are the viscosity parameters of Vogel’s model.

To establish the thermal–hydrodynamic (THD) model of thrust bearing with oil–
water mixed emulsification, it was necessary to accurately fit the experimental results of
emulsification characterization to obtain the viscosity–temperature equation of mixed fluid
under different moisture.

The viscosity test results of lubricating oil VG68 and seawater are brought into the
model to obtain the fitting equation, as shown in Figure 4.
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In Figure 4, VG68 is more consistent with the Walther model, and the seawater is more
consistent with the Vogle model. Following the fit, the viscosity parameters of lubricating
oil are m = 24.09 and n = −3.947, and the viscosity parameters of seawater are A = 0.0767,
B = 293.0, and C = 86.54.

In the state of a W/O emulsion, the fluid mixture remains stable, with the lube oil
serving as the continuous phase. Therefore, taking into account the viscosity–temperature
characteristics of the lubricating oil, we can make an extension. Considering that the emul-
sified oil is a W/O manifold, the ‘n’ term in Equation (1) is extended, and the empirical
Equation (3) satisfying different moisture content is obtained by fitting the experimen-
tal data:

ln ln(µ + 0.7) = n + m ln(t + 273.15) + ln(1 + c1 ϕ + c2 ϕ2) (3)

where c1 and c2 are the moisture viscosity parameters.
The parameter values applicable to the test results in Equation (3) are A = 24.09,

B = −3.947, c1 = 0.3691, and c2 = 0.4090.
The structure of the mixture under the oil-in-water manifold is unstable, and the

viscosity cannot be accurately measured using the existing equipment. Therefore, the
viscosity calculations for the O/W emulsion state were performed using Equation (4) as
described in the mixing model [31]:

µr(
2µr+5K

2+5K )
3
2 = (1− ϕ

1−cϕ )
− 5

2

K = µd
µc

c = 1
1−ϕc

µ(ϕ) = µrµc
µc= A B

et+C


(4)

where µc represents the viscosity of the continuous phase, mPas; µd, the viscosity of the
dispersed phase, mPas; ϕc, the moisture content of turning point; and µr, viscosity ratio
after mixing.

Based on the above four viscosity models, the global oil–water mixed emulsification
model with 0–100% moisture content is shown in Figure 5. In the figure, the mass fraction
of water as the dispersed phase in the W/O manifold is 0–50%, and the mass fraction of
oil as the dispersed phase in the O/W manifold is 0–40%. It can be seen that the viscosity
of the mixture increases with the increase in the proportion of the dispersed phase in the
respective manifold. In the range of 50–60% moisture content, the mixed liquid manifold
changes from W/O to O/W, and the viscosity changes sharply. The sharp decrease in
viscosity may change the lubrication state, which leads to damage to the bearing pad.
However, the viscosity ratio of the mixed liquid decreases from 40.1 to 9.8 with the increase
in temperature in the phase transition interval, which is affected by the increase in the
internal energy of the mixed liquid molecules after the temperature increases. The thermal
motion of the molecules increases and the spacing increases, which shows that the viscosity
decreases. The dispersed phase in the moisture range of 60–100% is seawater. When the
temperature is 35 ◦C, the viscosity increases from 0.76 to 7.53 mPas with the increase in
lubricating oil content.
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3.2. Governing Equations

A THD model of tilting-pad thrust bearing was constructed, including the Reynolds
equation, film thickness equation, temperature equation, and viscosity–temperature equa-
tion. Assuming that the bearing works in a steady state, Figure 6 shows the structural
parameters of the bearing. The liner tilts around its fulcrum in both radial and circumfer-
ential directions during movement. When the torque on the bearing pad is balanced, a
wedge-shaped film is formed between the bearing and the plate.
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In this state, the film thickness equation at any point in the cylindrical coordinate
system (r, θ) is determined:

h(r, θ) = hp + γr[r sin(θp − θ) + γθ [r cos(θp − θ)− rp] (5)

where hp represents the film thickness at the pivot; θp, the pivot angle; rp, the pivot radius;
γr, the radial tilt angle; and γθ , the circumferential tilt angle.

Under the assumption of incompressible fluid, in the two-dimensional case, the
Reynolds equation can be expressed as follows:

∂

∂r
(

rh3

µ

∂p
∂r

) +
1
r

∂

∂θ
(

h3

µ

∂p
∂θ

) = 6rω
∂h
∂θ

(6)
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where µ is the dynamic viscosity; h, the film thickness; and ω, the angular velocity. The
boundary condition is:

∂p
∂θ

∣∣∣∣
Γ1

= 0, p|Γ = 0 (7)

where Γ1, the film rupture boundary; and Γ, the film periphery boundary.
The energy equation considering the axial heat transfer is:

ρCp[(
ωrh

2
− h3

12µ

1
r

∂p
∂θ

)
1
r

∂t
∂θ
− h3

12µ

∂p
∂r

∂t
∂r

] = k
∂2T
∂z

+
µω2r2

h
+

h3

12µ
[(

∂p
∂r

)
2
+ (

1
r

∂p
∂r

)
2
] (8)

where ρ is density, Kg/m3; Cp, specific heat at constant pressure, J/(kg·◦C); and k, the heat
transfer coefficient, W/(m·K); the boundary condition is:

t = tin
r = R2
∂t
∂r = 0

 (9)

The heat transfer equation considering the heat conduction on the pad of the pad is:

1
r

∂

∂r
(r

∂T
∂r

) +
1
r2

∂2T
∂θ2 +

∂2T
∂z2 = 0 (10)

The boundary condition is: {
−k ∂T

∂n = λ∆T
k ∂T

∂z = kb
∂Tb
∂z

}
(11)

where λ is the convection coefficient, W/(m2·K); ∆T, solid-liquid boundary temperature
difference, ◦C; kb, the boundary heat transfer coefficient, W/(m·K); and Tb, the boundary
temperature, ◦C.

Density and specific heat are linearly related after mixing [32,33]:{
ρmix = ϕρseawater + (1− ϕ)ρoil
Cmix = ϕCseawater + (1− ϕ)Coil

}
(12)

3.3. Simulation Method

Combined with the two-phase mixing theory, the thermal–hydrodynamic lubrication
(THD) model of thrust bearing under oil–water mixed emulsification is established. The
mesh density is set to 21 × 21, and the convergence criteria are as follows:

the pressure convergence criteria is:

Ep =
∑i

∣∣∣pn+1
i − pn

i

∣∣∣
∑i

∣∣∣pn+1
i

∣∣∣ ≤ 10−6 (13)

the temperature convergence criteria is:

ET =
∑i

∣∣∣Tn−1
i − Tn

i

∣∣∣
∑i

∣∣∣Tn+1
i

∣∣∣ ≤ 10−6 (14)

the force criteria is:
EF =

∣∣∣Ff − F0

∣∣∣ ≤ 10−6 (15)

where Ff is the iterative pressure and F0 is the loading force.
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The Moment criteria is:

EN =
(

M2
f r + M2

f θ

) 1
2 ≤ 10−6 (16)

where Mfr is the radial direction torque and Mfθ is the circumferential direction torque.
The Finite Difference Method (FDM) [34–37] is used to solve the model, and the

calculation process is shown in Figure 7. The initial parameters are input, and the viscosity;
pad deformation; initial oil film thickness; and oil film pressure are calculated to achieve
convergence. By adjusting the radial and circumferential inclination angles of the pad, the
oil film bearing capacity and torque are balanced, and the oil film temperature is calculated
to achieve convergence.
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3.4. Model Validation

The simulation concerning the lubrication performance of the bearing in the litera-
ture was carried out, and the accuracy of the thermal–hydrodynamic (THD) model was
verified [13]. The temperature characteristics of the film under the specific pressure of
0.5–1.5 MPa and the rotational speed of 1200–2500 r/min are shown in Table 1. At the
bearing fulcrum, the relative change rate of this model’s temperature is close to the experi-
mental results in the literature, which shows that the model established in this work can
predict the lubrication performance of the thrust bearing.
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Table 1. Comparison of the Literature Data and Model Calculations.

Payloads MPa Speed r/min Comparison
Value ◦C Model Value ◦C Relative Rate of

Change

0.5
1200 52.38 52.88 0.95%
1800 54.69 54.84 0.26%
2500 56.46 56.58 0.20%

1
1200 53.46 53.85 0.72%
1800 56.38 56.10 −0.51%
2500 59.23 58.04 −2.01%

1.5
1200 55.38 55.14 −0.44%
1800 57.69 57.77 0.13%
2500 60.77 59.96 −1.33%

4. Prediction of Thrust Bearing Lubrication Performance

The ship’s tilting-pad thrust bearing was taken as the research object, combined with
the emulsification physical parameter equation. To realize the prediction of lubrication
performance, a lubrication performance simulation of the thrust bearing was performed,
under the mixed emulsification of lubricating oil and seawater in the cruise condition, with
a speed of 884 r/min and a load of 6.7 kN. The design parameters of the thrust bearing are
shown in Table 2.

Table 2. Bearing shingle parameters.

Parameters Value

Inner diameter, mm 89
Outer diameter, mm 178

Pad angle, deg 36
Thickness of pad, mm 3

Pivot type spherical
Pivot diameter, mm 135

Pivot angle, ◦ 21.5
Number of pads 8

Thermal conductivity, W/(m K) 47
Inlet temperature/◦C 35

Load, kN 6.7
Rotate speed, r/min 884

Effect of Emulsification on the Lubricating Properties of Thrust Bearings

The lubrication performance of a thrust bearing under mixed emulsification of lu-
bricating oil and seawater was analyzed from four aspects: friction power consumption,
film temperature, film pressure, and film thickness, as shown in Figures 8–11. Combined
with the emulsification viscosity equation, considering the W/O manifold, phase transition
interval and O/W manifold, the performance parameters corresponding to the four groups
of moisture content of 0%, 50%, 60% and 100% were analyzed in detail.

Figure 8 is the friction power consumption diagram for different moisture content. One
of the main reasons for friction power consumption in bearing hydrodynamic lubrication
is viscosity. Therefore, under the condition of constant speed load, the changing trend of
bearing friction power consumption is similar to that of viscosity in different moisture
content (Figure 6). Compared to the friction power consumption of 0% moisture content (oil
state), the friction coefficient of 50%, 60%, and 100% moisture content (seawater) changed
by 111.8%,−70.2% and−90.5%, respectively. Under the W/O manifold, seawater pollution
will increase the bearing friction loss, increase the load of the driving device, and reduce
the driving efficiency.
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An increase in bearing friction power consumption will cause an increase in heat,
thereby causing a change in film temperature. Film temperature is shown in Figure 9.
The amplitudes of the circumferential centerline temperature of the pad from the inlet (0◦)
to the outlet (36◦) (Figure 9a), and the radial centerline temperature of the pad from the
inner diameter (44.5 mm) to the outer diameter (89 mm) (Figure 9b) gradually decreases.
The amplitude changes greatly in the range of 50–60%, reaching −85.9% at the maximum
temperature point of the pad (Figure 9c). Because seawater increases the specific heat
capacity of the lubricating oil, the heat transfer capacity of the liquid per unit mass increases,
resulting in an increase in friction power consumption and no dramatic temperature rise of
the film. In Figure 9a, the inlet temperature of 0–50% moisture content increases with the
increase in moisture content, which is due to the increase in friction power consumption,
increasing cyclic temperature between pads. Under the combined effect of specific heat
capacity, the inlet temperature change rate is only 0.3%.

Figure 10 is the pressure change diagram of the bearing with different moisture
content. The pressure is relatively stable with a moisture content of 0–50%, and the
maximum pressure (see Figure 10c) increases by 1.1% with a moisture content of 60–100%.
The pressure distribution of the film on the pad with a moisture content of 60–100% in
Figure 10a,b is as follows: in the circumferential distribution of pressure, the pressure peak
amplitude increases, the angle increases, and the curve becomes steeper. The pressure peak
amplitude in the radial distribution of pressure is reduced by 4.0%. Therefore, it can be
judged that in a lubricating environment with a continuous water phase, the pressure peak
of the pad has a circumferential shift. The decrease in amplitude of the radial distribution
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is due to the increase in amplitude of the circumferential distribution and the offset of the
pressure peak to the outlet direction.
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The change of film thickness distribution in a moisture content range of 0–100% is
shown in Figure 11a,b. The film thickness decreases gradually from the inlet to the outlet,
and from the outer diameter to the inner diameter. With the increase in moisture content,
the distribution of film thickness in the W/O manifold gradually becomes steeper, while the
distribution of film thickness in the O/W manifold gradually becomes gentler. The variation
of the minimum film thickness in Figure 11c is similar to that of the viscosity. For the specific
moisture content of 0%, the minimum film thickness of 50%, 60%, and 100% (seawater)
changed by 110.3%, −70.6%, and −90.6%, respectively. The minimum film thickness at
50% moisture content is more than 7 times that at 60% moisture content. Therefore, in the
process of a damaged ship returning to port, once the moisture content exceeds the limit,
the bearing lubrication medium will undergo demulsification. Because the loss of film
thickness is greater than the steady-state film thickness after demulsification, this may lead
to impact between the bearing and the inference disc. In addition, under the O/W manifold,
the minimum thickness of the film decreases from 23.4 µm to 7.4 µm. According to the
theory of mixed and boundary lubrication [38], mixed lubrication or boundary lubrication
occurs when the ratio of film thickness to comprehensive pad roughness is less than three.
Considering that ship bearings will produce local wear or particles equivalent to the
thickness of the film during service [39,40] if the local roughness of the pad reaches 2.5–7.8,
continuous mixed friction may occur, damaging the pad and even causing bearing damage.
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5. Conclusions

The prediction model of lubrication performance needs to be established for the
working state of ship thrust-bearing oil when it is polluted by seawater. In this study, the
emulsified viscosity characterization test of ship lubricating oil mixed with seawater was
carried out, and the viscosity curves under different moisture content and temperature
conditions were fitted. A THD bearing lubrication model considering the emulsified
viscosity equation was built, and the FDM method was used to calculate the thrust bearing
lubrication characteristics under seawater pollution. The conclusions are as follows:

(1) Under light load conditions, white metal bearings can work in an oil–water mixed
environment with varying moisture content. In lubrication environments of a mixed
liquid manifold caused by varying moisture content, the bearing lubrication per-
formance is different. The bearing lubrication state is better in the W/O manifold
with less than 50% moisture content than in the O/W manifold with more than 60%
moisture content.

(2) After oil is polluted by seawater, the viscosity and specific heat capacity of the physical
parameters have a significant effect on the lubrication performance of the bearing.
The change in viscosity affects the friction power consumption, film thickness, local
film pressure, and film temperature of the bearing. The specific heat change mainly
affects the film temperature, and the higher the moisture content, the lower the film
temperature.

(3) In the W/O manifold, seawater pollution increases the power loss of the bearing and
increases the thickness of the film. In the short term, our study shows the minimum
film thickness increased by 110.3% and the bearing obtains better bearing capacity. In
the O/W manifold, the film thickness is only 23.4–7.4 µm, and the pressure peak will
shift to the direction of the pad outlet with the increase in moisture content.

(4) It is particularly important to note that in the demulsification stage, the viscosity of
the oil–water mixture suddenly changes, and the reduction of film thickness will be
more than six times that of the film thickness in the O/W manifold, which may lead to
bearing wear or even impact. In addition, the local roughness of the pad in the W/O
manifold is greater than 2.5–7.8, or there are particles of the same size in the lubricating
fluid, which increases the probability of mixed lubrication of the bearing. Therefore, it
is necessary to monitor the manifold characteristics of the bearing lubricant during
the ship’s return to port to prevent bearing accidents in the short term.

(5) This work only considered light load conditions. To study the bearing performance
under worse working conditions, more viscosity tests and bearing tests need to be
carried out to correct and verify the correctness of the model.
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Nomenclature

t Temperature (◦C)
n, m Viscosity parameters of Walther’s model
c1, c2 Emulsified oil viscosity influence parameters
A, B, C Viscosity parameters of Vogel’s model.
µ Dynamic viscosity (mPas)
µc Viscosity of the continuous phase (mPas)
µd Viscosity of the dispersed phase (mPas)
µr Viscosity ratio after mixing
ϕ Moisture content
ϕc Moisture content of turning point
r, θ, z Cylindrical coordinates (m, rad, m)
P Pivot
R1 Inner radius of pad (mm)
R2 Outer radius of pad (mm)
rp Pivot radius (rad)
θp Pivot angle (rad)
θ0 Pad angle (rad)
γr Radial tilt angle of the pad (rad)
γθ Circumferential tilt angle of the pad (rad)
h Film thickness (µm)
hp Film thickness at the pivot (µm)
n Rotate speed (r/min)
ω Angular velocity (rad/s)
p Film pressure (MPa)
Γ Periphery boundary
Γ1 Film rupture boundary
ρ Density (Kg/m3)
ρmix Mixture density (Kg/m3)
ρseawater Seawater density (Kg/m3)
ρoil Oil density (Kg/m3)
Cp Specific heat at constant pressure (J/ (kg·◦C))
Cmix Mixing specific heat (J/ (kg·◦C))
Cseawater Seawater specific heat (J/ (kg·◦C))
Coil Oil specific heat (J/ (kg·◦C))
k Heat transfer coefficient (W/(m·K))
tin Inlet temperature (◦C)
λ Convection coefficient (W/(m2·K))
kb Boundary heat transfer coefficient (W/(m·K))
Tb Boundary temperature (◦C)
∆T Solid–liquid boundary temperature difference (◦C)
EP Pressure convergence criteria
ET Temperature convergence criteria
EF Force criteria
EN Moment criteria
Mfr The radial direction torque (Nm)
Mfθ The circumferential direction torque (Nm)
F0 Loading force (N)
Ff Total film force (N)
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