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Abstract: This technical note focuses on the application of deep learning techniques in the area
of lubrication technology and tribology. This paper introduces a novel approach by employing
deep learning methodologies to extract features from scanning electron microscopy (SEM) images,
which depict wear particles obtained through the extraction and filtration of lubricating oil from a
4-stroke petrol internal combustion engine following varied travel distances. Specifically, this work
postulates that the amalgamation of ensemble deep learning, involving the combination of multiple
deep learning models, leads to greater accuracy compared to individually trained techniques. To
substantiate this hypothesis, a fusion of deep learning methods is implemented, featuring deep
convolutional neural network (CNN) architectures including Xception, Inception V3, and MobileNet
V2. Through individualized training of each model, accuracies reached 85.93% for MobileNet V2 and
93.75% for Inception V3 and Xception. The major finding of this study is the hybrid ensemble deep
learning model, which displayed a superior accuracy of 98.75%. This outcome not only surpasses the
performance of the singularly trained models, but also substantiates the viability of the proposed
hypothesis. This technical note highlights the effectiveness of utilizing ensemble deep learning
methods for extracting wear particle features from SEM images. The demonstrated achievements of
the hybrid model strongly support its adoption to improve predictive analytics and gain insights into
intricate wear mechanisms across various engineering applications.

Keywords: tribology; lubrication; wear particle; ensemble deep learning; convolution neural network

1. Introduction

The integration of machine learning (ML) techniques offers the potential to revolution-
ize lubricant oil or wear particle image analysis, thus potentially contributing to lubrication
interval decisions and enhancing equipment longevity and operational efficiency [1]. ML,
a subset of artificial intelligence (AI), equips systems with the ability to autonomously
learn from data and improve their performance over time [2]. In the area of tribology
and lubrication technology, ML holds the promise of analysing intricate datasets derived
from real-world operating conditions to derive more accurate and contextually relevant
lubrication interval strategies [2,3]. This deviation from rule-based and static approaches to
adaptive and data-driven decision making has the potential to mitigate the adverse effects
of under- or over-lubrication, resulting in reduced friction, wear, and maintenance costs.

Deep learning (DL), a subset of ML, involves the use of artificial neural networks
(ANN) to model and solve intricate problems. Its ability to handle large datasets and
capture intricate patterns has led to remarkable advancements in diverse domains. In
tribology, DL techniques offer the promise of enhanced predictive capabilities, quicker
analysis of complex data, and novel insights into the underlying mechanisms governing
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friction, wear, and lubrication. Thereby, it is estimated that patterns and relationships
between the (micro-) wear particles and the health of, for example, engines, as well as the
prediction of the distance travelled by a vehicle can be identified. This might facilitate a
more precise detection of wear particles and contaminants, potentially leading to engine
damage and the prediction of the remaining useful life (RUL), as well as maintenance
scheduling. As such, Hu et al. [4] employed ML to predict the mileage of a vehicle based on
the wear particles present in the engine oil. Thereby, the researchers used a support vector
machine (SVM) to classify the wear level and then used a linear regression model to predict
the mileage with an accuracy of around 90%. Moreover, Sun et al. [5] employed deep
learning methods for detecting and classifying wear of tungsten-carbide-copper matrix
composites with high accuracy, whereby the algorithms learned from scanning electron
microscopy (SEM) images.

Ensemble deep learning involves combining multiple DL models to improve accuracy
and reduce overfitting by reducing the variance or errors that may be present in any
one model; this has already been successfully employed in other disciplines [6,7]. In
ensemble DL, the individual models are typically neural networks that are trained on
different subsets of the data or with different configurations. Once the models are trained,
the predictions made are combined in various ways to produce the final output. This
can be performed using a simple average or weighted average of the individual model
predictions, or by using more complex methods such as stacking or boosting. Ensemble
DL are increasingly attracting attention, especially in competitions such as the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). Winning models in such competitions
often incorporate ensemble techniques due to their ability to improve the generalization
ability of models, particularly when training data are limited or noisy. By leveraging the
ability of convolution neural networks (CNNs) to extract features from images and classify
them accurately, several studies have demonstrated the importance of utilizing this tool
to detect relevant features [8–10]. Generally, CNNs are useful for image classification
problems due to their capability to learn and extract meaningful features from input images
automatically [11]. CNNs process images through multiple convolutional layers that enable
them to learn different levels of features from input images in a hierarchical manner. Low-
level features, such as, edges and corners and high-level features, such as shapes and objects,
can be extracted from CNNs more effectively than traditional ML algorithms. Additionally,
CNNs can handle the spatial dependencies between pixels in an image that are crucial for
recognizing objects and patterns accurately. Overall, the powerful capabilities of CNNs
make them an effective tool for image classification, contributing to their widespread use
in various applications, such as computer vision, self-driving cars, medical image analysis
and many others.

To summarize, ML methods are increasingly being employed in the context of tribology
and have the potential to revolutionize wear particle image analysis to correlate features
with the components’ health. In this context, this contribution is based on the hypothesis
that ensemble deep learning methods can identify relevant features from SEM images of
wear particles with higher accuracy than individually trained ML and DL methods, thus
representing a prospective tool for identifying patterns and relationships between the wear
particles and the components’ health, predicting the RUL and improving maintenance
practices. To this end, we employed a SEM image dataset from the wear particles present in
the lubricating oil at different conditions of a 4-stroke petrol engine, artificially increased the
size of the image collection by data augmentation, and trained an ensemble DL model made
up of Inception V3, Xception, and MobileNet V2, as well as trained the three mentioned
methods individually and compared their prediction accuracies.

2. Materials and Methods
2.1. Experimental Procedure, Data Acquisition and Augmentation

The experimental data were obtained using a newly bought scooter’s air-cooled and
BS IV compliant single-cylinder 4-stroke petrol engine (TVS Motors, Chennai, Tamil Nadu,
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India) with overhead cam, 109.7 cm3, a max. power of 5.88 kW, a max. torque of 8.4 Nm, and
a force of 1755 N. The scooter was regularly operated in the field at speeds of 700–900 min−1

and the distance travelled by the vehicle was tracked through global positioning system
(GPS) and odometer readings. For engine lubrication, new and fully formulated SAE
10W-30 lubricating oil was utilized. A 10 ml syringe with a 110 mm-long, 3 mm-diameter
tube was put into the lubricating oil tank to collect the lubricant samples (Figure 1a). Oil
samples were collected from the engine at regular intervals of 300 km, 600 km, 900 km,
and 1200 km (Figure 1b) and wear particle studies were carried out. To this end, oleic acid,
acting as a dispersant, was mixed with extracted oil in a ratio of 1:10, ultrasonicated for
30 min to ensure a steady dispersion of wear particles, and then filtered using the filtergram
technique (Figure 1c). The employed filtering flask had a 10 mm outlet conduit, a capacity
of 250 ml, and a rubber tubing connecting it to the vacuum pump (VE-115N, Value, Zabrze,
Poland). The flask’s entrance was sealed with a laboratory rubber stopper with a hole that
could be filled with a Buchner funnel containing PTFE filter paper (Nupore, Ghaziabad,
Uttar Pradesh, India) with a diameter of 47 mm and a pore size of 2 µm. Following the
filtering procedure, the filter paper was removed from the Buchner funnel and dried for an
hour in a warm oven (WIST, Palghar, Maharashtra, India) at 35 ◦C. The wear particles were
first removed from the filter paper using conductive carbon adhesive tape and subsequently
analyzed using SEM imaging (Supra 55, Carl Zeiss, Oberkochen, Germany). The SEM
images, as shown in Figure 1d, were collected using an electron current of 100 nA, an
accelerating voltage of 0.02–30 kV, and a working distance of 8.5 mm. The images were
then categorized/labelled and stored as *.jpg to create a uniform dataset at a scale of 10 µm.
Subsequently, the dataset was transformed into binary images using Mathworks Matlab
to enhance interpretability and expanded artificially by data augmentation [9] to yield
a total of 400 images (100 per class) through various image transformation techniques,
including rotation, shifting, flipping, adding noise, warping, blurring, zooming, etc., using
AI [10] to obtain sufficient data for training. The resulting augmented dataset, which is
made available under https://github.com/Sangharatna786/SEM-Images.git (accessed on
22 August 2023), was further split into 80% for training and 20% for testing the CNNs
(Figure 1e), whereby the objective of the CNN was to correctly classify the wear particles to
the engine condition.

2.2. Deep Learning

The employed DL CNNs were composed of artificial neurons in multiple convolution,
pooling, as well as fully linked layers and utilized convolution to scale down the SEM
images into a more manageable size without losing information. Thereby, the input pictures
were run through a number of convolutional layers, each of which applies a different set
of filters to the input image to extract key features. These filters were learned during the
training process to typically capture simple features, such as edges and corners in the
lower layers, and more complex features, like shapes and patterns in the higher layers.
Generally, more complex features can be recognized with the growing number of layers.
The spatial size of the convolved features could be decreased by the pooling layer, lowering
the dimensions allowed to decrease the computational costs of data processing. After the
convolutional layer, the output was passed through one or more fully connected layers to
perform the classification task [12]. The final output was a probability distribution over
the possible classes. Within the scope of this contribution, we employed three different
CNN models, namely Inception V3, Xception, and MobileNetV2. These models, which are
described in more detail in the following, reflect different advantages in terms of extraction
capability, computational efficiency, and model size; these choices align with the specific
needs of wear particle feature extraction from SEM images, where diverse particle sizes and
complex patterns demand a range of architectural strengths while considering practical
deployment and computational demands.

https://github.com/Sangharatna786/SEM-Images.git
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Figure 1. (a) Sampling lubricant from the engine, (b) lubricating oil samples after various intervals,
(c) lubricant sample filtration setup, (d) representative SEM images of wear particles after various
intervals, and (e) schematic of an image-processing CNN.

2.2.1. Inception V3

The deep neural network architecture Inception was introduced by Google in 2015
and is intended for tasks requiring picture recognition [13]. Inception V3 (GoogleNet V3) is
based on a combination of convolutional layers of different sizes and pooling operations
that extract features from the input image at different scales. At the onset of the network,
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the architecture employs a "stem" module, which comprises a series of convolutional
and pooling layers that work together to decrease the spatial dimensions of the input
image and increase the number of channels in the feature maps. InceptionV3 also uses a
series of “Inception” modules that include multiple parallel convolutional and pooling
operations of different sizes and aspect ratios. These operations are concatenated together
along the channel dimension, allowing the network to capture features at different scales
and resolutions. In addition, Inception V3 uses batch normalization and regularization
techniques such as dropout and weight decay to improve the training stability and prevent
overfitting. Thus, it is effective at capturing both fine-grained and global features in
images due to its multi-scale approach and balance between model size and performance.
Inception V3 has attained leading-edge results on various image identification benchmarks.
Additionally, the architecture has been utilized as a feature extractor for different vision
tasks, such as object detection and segmentation, and has been incorporated into well-
known DL frameworks like TensorFlow 2.14.0 and PyTorch 2.1.0 + vu118.

2.2.2. Xception

Xception is a deep neural network architecture proposed by Google in 2016, extending
the Inception architecture to use depth-wise separable convolutions in place of standard
convolutions [14]. This means a factorization of standard convolutions that split the convo-
lution into two separate operations: a depth-wise convolution, where one filter is applied
to each input channel, followed by a point-wise convolution, where the output of the
depth-wise convolution is subjected to a linear combination of 1 × 1 filters. This keeps the
convolution’s accuracy high while reducing the number of parameters and calculations.
The Xception architecture replaces each Inception module with a series of depth-wise sepa-
rable convolution blocks. Each block comprises a depth-wise convolution layer, followed
by a batch normalization layer, a rectified linear unit (ReLU) activation layer, a pointwise
convolution layer, another batch normalization layer, another ReLU activation layer, and a
skip connection that adds the input to the output of the convolution. These blocks can be
stacked to form a deep network that can learn intricate feature representations using fewer
parameters and computations than traditional convolutional networks, providing strong
feature extraction capabilities, especially when dealing with complex patterns in images.

2.2.3. MobileNetV2

MobileNet is a deep neural network architecture designed by Google in 2018 for
mobile and embedded vision applications that require low latency and low power con-
sumption [15]. MobileNetV2 uses a combination of depth-wise separable convolutions and
linear bottleneck blocks to reduce the number of parameters and computations required
for inference, while increasing the nonlinearity and preserving the information flow, thus
maintaining high accuracy on image classification tasks. MobileNetV2 also introduces a
new inverted residual structure that improves the accuracy and efficiency of the network.
The inverted residual block consists of a linear bottleneck layer, followed by a depth-wise
separable convolution and another linear bottleneck layer. The input and output of the
block are connected by a shortcut connection that skips the depth-wise separable convolu-
tion, similar to the ResNet architecture. MobileNet V2 is significantly smaller and faster
compared to models like Inception V3 and Xception. Also, it is a feature extractor that
has been pre-trained on the Image Net dataset and may be adjusted for a range of vision
tasks, including facial recognition, semantic segmentation, and object detection. MobileNet
V2 has been implemented in popular DL frameworks, such as TensorFlow and PyTorch,
and has achieved state-of-the-art results on mobile and embedded platforms with limited
computational resources.

2.2.4. Transfer Learning and Fine-Tuning

Transfer learning is a technique that involves utilizing pre-trained models
(Sections 2.2.1–2.2.3) as the starting point for a new model on a different task [16]. The
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rationale behind this approach is that the pre-trained model has already learned informa-
tive features from a vast dataset and these features can serve as a foundation for learning
new features in a related task with less data and computational resources. Fine-tuning is a
specific type of transfer learning that entails further training of the pre-trained model on the
new task by adjusting the weights of some or all of its layers, whereby the degree of fine-
tuning is dependent on the similarity between the initial and new tasks. After transferring
pre-trained weights for Inception V3, Xception, and MobileNet V2, the model architectures
were adjusted in accordance with the collected dataset. Generic image features were used
in the initial layers of the pre-trained models, while domain-specific features were used
for training in the following levels. Thereby, a minimum learning rate was applied for the
pre-trained models to extract picture characteristics in the first few layers and encourage
slow learning in the following ones. According to the chosen test circumstances, fully
linked layers of pre-trained networks with 1000 neurons were changed and fixed to six
neurons. A detailed specification of the pre-trained CNNs that were finally employed is
summarized in Table 1.

Table 1. Detailed specification of pre-trained networks employed in this study.

Deep Learning Model Number of Parameters Depth

Inception V3 23.8 Million 159

Xception V2 22.9 Million 71

MobileNet V2 3.4 Million 53

2.2.5. Ensemble Learning

In order to enhance the overall performance, ensemble learning was utilized by com-
bining the outputs of three pre-trained DL models Inception V3, Xception, and MobileNet
V2 in accordance with [17]. As depicted in Figure 2, the features obtained from these
models were concatenated and passed through a dropout layer with a 0.5 dropout rate,
followed by a classification layer. The dropout layer helped to prevent overfitting while
reducing computational time.
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3. Results and Discussions

The overall test accuracies of Inception V3, Xception, and MobileNet V2 when trained
individually were 93.75%, 93.75%, and 85.93%, respectively. Thus, these models already
feature superior accuracy compared to other ML approaches, such as SVM, when employed
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in a comparable scenario [4] (however, it should be noted that the underlying data were
different and a direct comparison is not fair). The training (blue) and validation (orange)
accuracies, as well as losses over training epochs for the three pre-trained models, are
depicted in Figure 3a–f, whereby smooth curves could generally be observed. Furthermore,
confusion matrices comparing the predicted and actual classes (i.e., travelled distances) of
the testing data in its rows and columns as illustrated in Figure 4a–c were employed to
assess the level of prediction of each model. Despite featuring good overall accuracy, the
MobileNet V2 featured more than double or even triple the number of misclassifications
(12), which indicates a lack of confidence throughout the classification in all four categories
(300, 600, 900, and 1200 km), in comparison with Inception V3 (5) and Xception (4).
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In comparison to the individually trained DL approaches, the ensemble methods
combining the three pre-trained deep neural networks featured a superior accuracy of
98.75%, which points towards a higher generalizability of the technique. This can also be
seen in the initially already very high and fast converging training (blue) and validation
(orange) accuracies, as well as losses over training epochs as shown in Figure 5a,b. As can
be seen from the confusion matrix in Figure 6, the ensemble method only featured one
misclassification that occurred in one of the classes (where the vehicle had travelled 600 km)
and achieved perfect classification in all other classes. These findings suggest that the
image features of these classes were well learned during training. The superiorness can be
attributed to the ensemble’s ability to capture a broader range of patterns and relationships
within the data. Additionally, the model diversity mitigates the risk of overfitting by
preventing it from memorizing the training data. The proposed model employed depth-
wise separable convolution layers, which implemented the factorization concept resulting
in reduced design dimensions and computational costs. These findings indicate that the
proposed model may outperform each model regarding classification accuracy.
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4. Conclusions

The increasing integration of ML methodologies within the area of tribology shows
great potential, for example, in reshaping decisions pertaining to lubrication intervals.
This advancement carries the capacity to significantly augment equipment longevity and
amplify operational efficacy. A promising avenue for future research involves scrutinizing
wear images to discover meaningful correlations between wear particles, contaminants, and
overall component health. In accordance with our investigation, predicated upon the hy-
pothesis that ensemble DL can yield more precise prognostications of pertinent parameters
in contrast to individually trained DL convolutional neural networks (CNNs), this technical
note aimed to contribute to this trajectory. Leveraging SEM images depicting wear particles
sourced from a diverse array of distances covered by an IC engine, our methodology en-
compassed the utilization of various pre-trained and fine-tuned CNN architectures, namely
Inception V3, Xception, and MobileNet V2. These individual models yielded commendable
classification accuracies for distance estimation of 93.75%, 93.75%, and 85.93%, respectively.
In contrast, the collaborative framework of ensemble learning, harnessing the collective
outputs of these three pre-trained DL models, resulted in a remarkable predictive accuracy
of 98.75%. Notably, this ensemble model exhibited a substantial reduction of up to 91%
in misclassifications, attributable to its inherent capacity to encapsulate a wider spectrum
of patterns within the data, all while mitigating overfitting concerns and preserving a
commendable level of generalizability. Thus, we postulate that the application of ensemble
DL strategies emerges as a sanguine avenue for assessing the condition of lubricating oils
by analysing wear particles. This, in turn, has significant implications for prognosticating,
for example, the RUL of equipment, as well as refining the landscape of maintenance
practices. From a research and understanding point of view, one of the primary drawbacks
of ML approaches as used within this study is the lack of interpretability in “black-box”
models. They generate results based on complex mathematical operations and patterns
that are often difficult to decipher, making it challenging to gain insights into the underly-
ing mechanisms. These models do not incorporate prior domain knowledge or physical
principles explicitly, which can result in a disconnect between the extracted features and the
actual phenomena being observed. This limitation can hinder the model’s ability to provide
accurate explanations or insights. Future research should, therefore, focus on making the
models more transparent and interpretable. Yet, the presented approaches already can
perform image feature extraction at high speed and scale. It should be emphasized that this
technical note sought to demonstrate the applicability of one exemplary use case scenario.
However, potential applications are not limited to analyzing wear particles from SEM
images, but can be extended to extract features from any sort of images from tribo-technical
systems, e.g., for predicting the wear mechanisms or surface conditions from SEM [6] or
even optical microscopy images, etc., where we also assume that the presented ensemble
deep learning technique features superior accuracy compared to other approaches. To fully
exploit the (commercial) potential, the approach should be integrated into actual predictive
maintenance systems automotive, aerospace, manufacturing, and energy sectors. Addi-
tionally, future work can focus on real-time analysis, user-friendly interfaces, cloud-based
solutions, and data integration for a holistic view of equipment health.
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