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Abstract: Spindle stiffness is one of the most critical indicators for evaluating and measuring the
service performance of spindles. The traditional static stiffness indexes only involve static analysis
and rarely focus on the study of spindle-carrying capacity under operating conditions. In this paper,
the explicit solution approach is used to develop a mechanical model of the spindle’s axial operating
stiffness. This model was then used to explore the influence of rotational speed on the softening and
hardening features of the spindle axial operating stiffness, and experimental verification was carried
out. According to studies, the speed of a fixed-position preload spindle can lead its operating stiffness
to exhibit a “stiffness-hardening” feature. However, when the axial displacement of the spindle is
small, the operating stiffness curve of the spindle displays a noticeable “fluctuation” phenomenon
for low-speed spindles. Furthermore, the speed-induced preload has a significant impact on the test
results when testing spindle axial operating stiffness.

Keywords: axial operating stiffness; stiffness hardening; stiffness softening; machine tool

1. Introduction

Cutting forces are the most common external loads applied to machine tool spindles
and are widely regarded as the best performance estimator for machining operations [1–3].
Spindle stiffness of the machine tool, which reflects its capacity to resist deformation when
subjected to external loads, is one of the most essential indicators for evaluating the service
performance of a spindle [4–6]. Low spindle stiffness causes chatter [1], unwanted back
cutting, and excessive cutter tilt, all of which affect the cutting surface quality [7–9] and
the machining accuracy [10,11], as well as causing the rolling elements of the spindle
bearing to slip, aggravating spindle component wear [12] and weakening machine tool
reliability [13–15]. As a result, high stiffness becomes one of the most important aims in
precision machine tool spindle design [16].

Spindle static stiffness is a regularly used metric for measuring and evaluating spindle
stiffness under constant or slowly variable quasi-static loads [17]. Static and dynamic
analysis are two approaches to study spindle static stiffness [18]. The static analysis
of spindle static stiffness has been investigated previously and is considered to be rather
advanced. D. Olvera [18] proposed a static stiffness measurement method along the turning
center kinematic chain, and analyzed the tool tip radial stiffness of turn-milling centers.
With the help of a loaded double-ball bar and linear variable differential transformer,
Laspas [19] proposed a new method to measure and identify the full translational stiffness
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matrices of the five-axis machining center by using the quasi-static circular trajectory, and
realized the accurate identification of the quasi-static stiffness of the five-axis machine
tool. As the accuracy of spindle machining improves, the spindle’s service speed must also
increase. When the spindle is rotating, however, the state characteristics are very different
from when it is halted. Based on the proposed thermo-mechanical model of the spindle
system, Li [20] discovered that while the spindle is operating at high speed, the clearance of
its components is much different from that at standstill, and this has a considerable impact
on spindle preload and component temperature. Subsequently, Li [21] then evaluated the
transient preload of a fixed-position preload spindle in real-time and discovered that at
8000 rpm, the preload rose from 483 N at standstill to 720 N, while the bearing temperature
increased from 24 ◦C to 36.5 ◦C. Large variations in the machine spindle’s characteristics
during operation are sure to impair the spindle stiffness performance, which, in turn, affects
the machine tool’s quality and efficiency. As a result, the dynamic analysis of spindle static
stiffness (in this paper, referred to as operating stiffness to distinguish it from static and
dynamic stiffness) is gaining attention.

In order to better investigate the effect of dynamic effects generated by spindle opera-
tion on its static stiffness, A. Matsubara [22] designed a magnetic loading device to measure
the radial operating stiffness of the spindle and found that the velocity and thermal effects
can lead to significant softening and hardening characteristics in the spindle radial stiffness.
Wang [10] proposed a three-step identification algorithm for spindle radial stiffness based
on stiffness theory modeling, which solves the difficult problem of the measured value
being often coupled in the spindle-tool stiffness during spindle radial operating stiffness
testing, and improves the accuracy of spindle radial operating stiffness testing. For drilling
machines, vertical spindle surface grinders, and other axially loaded machine tools, the ax-
ial operating stiffness of the spindle system should be of increased importance throughout
its entire life cycle. Tsuneyoshi [23] discovered that the spindle axial load–axial displace-
ment curve showed a non-linear relationship in his investigation into spindle preload
testing methodologies. Li [4] further explored the non-linear relationship of the spindle
axial load–displacement curve and found that the machine tool spindle static stiffness
exhibits hardening and softening characteristics depending on the preload. However, the
speed-induced centrifugal effect generates a non-linear change in bearing stiffness, which
will inevitably lead to a change in spindle stiffness, as the bearing stiffness determines the
overall stiffness of the spindle bearing [24,25]. It is a pity that the influence of spindle speed
on the softening and hardening characteristics of the axial operating stiffness of machine
tool spindles has not been discovered in any of the preceding studies.

In this paper, the spindle axial operating stiffness of a widely configured fixed-position
preload spindle for precision machine tools was investigated. The explicit solution approach
is used to develop a mechanical model of the spindle’s axial operating stiffness. This model
was then used to explore the influence of rotational speed on the softening and hardening
features of the spindle axial operating stiffness. A spindle operating stiffness test bench was
also created to evaluate the model’s validity and accuracy, with the impact of speed-induced
preload on spindle operating stiffness being studied in particular.

2. Axial Operating Stiffness Model of Spindle

In this section, an explicit solution approach is used to build an angular contact ball-
bearing mechanics model and analyze the relationship between speed, preload, and contact
angle. Following that, an analytical model of the fixed-position preload spindle operating
stiffness is constructed based on the spindle preload principle and the aforesaid bearing
mechanics model. The influence of speed on the axial operating stiffness of the machine tool
spindle can be investigated by adjusting the speed parameter in the spindle stiffness model.

2.1. Bearing Mechanics Model

Different service conditions, such as external load and speed, vary the bearing contact
angle. In general, when a bearing is assembled, a certain preload is given to minimize
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bearing clearance to achieve the desired bearing stiffness, accuracy, and other characteris-
tics [26,27]. The bearing contact angle will change from the initial contact angle αf to αp, and
the outer raceway groove curvature center, ball center, and inner raceway groove curvature
center will all be co-linear at this point (as shown in Figure 1). When the bearing rotates,
the centrifugal force and gyroscopic moment effect generated by the speed act on the ball,
causing the outer raceway groove curvature center, ball center, and inner raceway groove
curvature center to lose co-linearity, and the ball-inner contact angle αi and the ball-outer
contact angle αo to no longer be equal.
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Figure 1. Bearing contact angle variation diagram: (a) free state; (b) withstand preload; (c) rotation status.

According to Ref. [4], the contact angle of the bearing with preload applied can be
calculated as:

αp = arcsin

 Ao sin α f + δab√
A2

o cos2 α f +
(

Ao sin α f + δab

)2

 (1)

where αp means the bearing contact angle with preload applied; αf indicates the initial
contact angle of the bearing, Ao is the distance between raceway groove curvature centers;
and δab means the axial displacement of the bearing.

When the bearing rotates, the ball is subjected to centrifugal force and gyroscopic
moment, as shown in Figure 2. The centrifugal force can be split into two components: the
component force Fu in the normal direction and the component force Fw parallel to the
tangential direction of the contact point. The bearing load distribution is affected differently
by the two components of centrifugal force. The component force Fu increases the normal
load in the bearing outer ring on the ball, whereas the component force Fw compresses
the ball farther against the bearing inner and outer rings. The ball center travels along the
force’s direction when component force Fw is applied. At this time, the ball-inner and the
ball-outer contact angles are no longer equal, satisfying Equation (2).

1
tan αo

− 1
tan αi

=
7
5

ZFc

Fp
(2)

where Z indicates the number of balls in the bearing; Fp means preload applied to bearing;
and Fc refers to centrifugal force, which can be calculated from Equation (3).

Fc =
dm

2
mbω2

c (3)
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where dm denotes diameter of bearing pitch circle; mb refers to ball mass; and ωc is bearing
cage speed.
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In order to construct a system of equations for calculating the contact angle αo and αi,
another set of functional relationships is required in addition to Equation (2). According to
the relationship between the curvature position of each bearing groove shown in Figure 2b,
the contact angles αo and αi can also be derived from Equation (4).

(ao + δo) cos αo + (αi + δi) cos αi = (ao + ai) cos α f (4)

where a indicates the distance between the raceway groove curvature center and the ball
center and δ indicates the ball-race deformation. The subscripts o and i, respectively,
concern outer ring and inner ring.

According to the explicit solution algorithm of Ref. [28], the ball-inner contact an-
gle αi and the ball-outer contact angle αo can be obtained by combining the system of
Equations (2) and (4).

The bearing axial displacement δab under the preload force Fp can be obtained by
substituting the results of the contact angles αo and αi into Equation (5).

δab = (ao + δo) sin αo + (ai + δi) sin αi − (ao + ai) sin α f (5)

2.2. Spindle Axial Operating Stiffness Model

With fixed-position preload, the combined bearing’s axial relative position remains
constant throughout use. Figure 3 depicts a schematic representation of the fixed-position
preload spindle construction. When the spindle bearings are mounted back-to-back, the
variation in width between the inner and outer spacers can modify the preload.

According to the analysis in Section 2.1, the relationship between the axial load Fab
and its corresponding axial displacement δab can be obtained. Here, Fab and δab satisfy the
following relationship for convenience:

Fab = f (δab, n) (6)
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where f (·) represents the non-linear mapping relationship and n refers to the spindle
bearing speed.
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As shown in Figure 3b, the initial preload of the spindle is assumed to be Fp, and the
load distribution of its front and rear bearings satisfies the following relationship:

Fp = f (δ1, n) = f (δ2, n) (7)

where δ1 donates the pre-deflection of the front bearing and δ2 means pre-deflection of the
rear bearing.

The spindle system is gradually subjected to axial pressure, which increases the stress
on the front bearing of the spindle while lowering the force on the rear bearing. When the
axial displacement of the spindle δa is less than the pre-deflection of the rear bearing δ2, the
force relationship of the spindle is given as:

f (δ1 + δa, n) = Fa + f (δ2 − δa, n) (8)

Continue applying axial pressure until the spindle axial displacement δa equals or
surpasses the rear bearing pre-deflection δ2 (as shown in Figure 4), the rear bearing is
completely unloaded, and the axial load is borne entirely by the spindle’s front bearing.
The force relationship for the spindle can now be expressed as:

f (δ1 + δa, n) = Fa (9)

The analytical process remains the same when the spindle is subjected to axial tension.
The spindle system is gradually supplied axial tension, and as the force on the rear bearing
grows, the force on the front bearing of the spindle diminishes. Before the front bearing of
the spindle is entirely unloaded (i.e., the axial displacement of the spindle δa is less than the
pre-deflection of the front bearing δ1), so the force relationship of the spindle is as follows:

Fa + f (δ1 − δa, n) = f (δ2 + δa, n) (10)

Continue to apply axial tension until the axial displacement δa of the spindle is greater
than or equal to the pre-deflection of the front bearing δ1, at which point the front bearing
of the spindle is completely unloaded and the axial load is completely borne by the rear
bearing of the spindle. The force balance equation of the spindle can be given as:

Fa = f (δ2 + δa, n) (11)
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By solving the preceding Equations (7)–(11) together, the relationship between axial
load applied to spindle Fa and its associated axial displacement δa can be obtained. Subse-
quently, the spindle axial operating stiffness Ka can be calculated, as given in Equation (12).

Ka =
dFa

dδa
(12)

3. Effect of Spindle Speed on Spindle Axial Operating Stiffness

According to Ref. [4], the preload has a softening and hardening influence on the axial
static stiffness of the spindle. Therefore, this paper explores the effect of speed on the axial
operating stiffness of the fixed-position preload spindle by adjusting the spindle bearing
speed parameters in the model under working circumstances with varying initial preload,
with simulation results given in Figures 5 and 6. Among them, the bearing model utilized
in the theoretical simulation is NSK®7014CTYNSULP4, the dimensional parameters of
which are provided in Table 1.
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Table 1. The bearing parameters (NSK®7014CTYNSULP4).

Parameters Values

Number of balls 20
Ball diameter 11.906 mm

Bearing pitch diameter 90 mm
Inner raceway groove curvature radius 6.19112 mm
Outer raceway groove curvature radius 6.19112 mm

Initial contact angle of bearing 15◦

Figure 5 shows that for the fixed-position preload spindle with a smaller initial preload,
the rotational speed has a greater influence on the load–displacement relationship and
axial operating stiffness (200 N). As seen in Figure 5, as the speed increases, the load–
displacement curve of the spindle becomes “smoother,” meaning that the overall axial
stiffness of the spindle reduces. In comparison to Figure 6, the spindle speed has less effect
on the load–displacement relationship and axial operating stiffness when the spindle’s
initial preload is greater (1000 N). Because the bearing stiffness “softening” effect caused by
rotational speed is more noticeable when the spindle preload is low, and the fixed-position
preload spindle stiffness is a parallel relationship between the spindle front and rear bearing
stiffness, the higher the spindle speed is, the lower the overall axial stiffness is. As shown
in Figure 7, when the spindle preload is higher, the “softening” effect of bearing stiffness
due to rotational speed is lessened, as is its effect on overall spindle stiffness.

Furthermore, as shown in Figure 5b, when the spindle is rotated, the axial displacement
at the stiffness mutation point is greater than the axial displacement at zero speed. In the
meantime, when the rotational speed increases, the axial displacement of the spindle’s axial
operating stiffness mutation point decreases.

The following are the reasons behind this: When the initial preload of the spindle
remains constant, the initial pre-deflection of the bearing decreases as the spindle speed
increases, but is greater than the pre-deflection at zero speed, which is the macroscopic
manifestation of the bearing “stiffness softening” effect caused by the spindle speed (as
shown in Figure 8). The spindle axial displacement must entirely balance the spindle’s
initial pre-deflection in order for the abrupt change in spindle axial operational stiffness to
occur. As a result, the axial displacement at the stiffness mutation point is larger than the
axial displacement at zero speed when the spindle is rotated. At the same time, when the
speed of the spindle rises, the axial displacement at the stiffness mutation point decreases.
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It can also be observed in Figures 5 and 6 that when the spindle speed increases, the
“sag” [1] in the axial stiffness curve of the spindle becomes more prominent (i.e., the spindle
axial stiffness increases with the gradual increase in axial displacement before the abrupt
change in spindle stiffness). When the spindle is rotating slowly, the axial stiffness of the
spindle fluctuates (not exactly monotonically increasing or decreasing) in the phase with
small displacement increments (e.g., −0.02 mm to 0.02 mm in Figure 6b). However, as the
spindle speeds up, the stiffness fluctuation is gradually suppressed. When the spindle is
operating at high speeds, the spindle axial stiffness displays a clear “sag” phenomenon,
which shows the “stiffness hardening” characteristic.

This is because while the spindle is under axial load, one side bearing of the spindle
progressively compresses while the other gradually unloads. Given that the fixed-position
preload spindle stiffness is equal to the parallel connection of the front and rear bearing
stiffness (superposition relationship) [4], the different change rates of single bearing stiffness
with speed will result in different softening and hardening characteristics presented by the
spindle axial operating stiffness.

When the spindle is at a lower speed, the local maximum and local minimum points
in the bearing stiffness change rate curve are relatively obvious (as shown in the curve of
the speed of 4000 rpm in Figure 9). The spindle pre-compression displacement value is
typically positive because the spindle bearing in service requires a sufficient preload to keep
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the inner and outer rings and balls in contact. When the spindle is loaded, the relationship
between the spindle pre-compression and the local maximum and local minimum values
of the change rate in bearing stiffness differs, resulting in the increase rate in bearing
stiffness on one side that differs from the decrease rate in bearing stiffness on the other.
Before the spindle bearing is completely unloaded, the spindle stiffness depends on the
superposition effect of the increase rate of the one-side bearing stiffness and the decrease
rate of the other-side bearing stiffness. At this time, there is a certain fluctuation of the
spindle axial operating stiffness (i.e., exhibiting the stiffness softening and hardening effect).
When the spindle bearing is completely unloaded, the spindle stiffness is transformed into
the single-side bearing stiffness, and the spindle axial stiffness increases with the gradual
increase in axial displacement (i.e., the spindle shows stiffness hardening characteristics).
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axial load.

When the spindle is at a higher speed, the local maximum and local minimum points
in the bearing stiffness curve disappear gradually (as shown in Figure 9 for a speed of
8000 rpm), and the shape of the bearing stiffness curve resembles that of the bearing
stiffness curve at zero speed (similar to a “V” shape that slopes severely to the right). As the
spindle rotates, the axial displacement at the minimum point of the spindle stiffness change
rate curve is very close to the axial displacement at the point of abrupt change in spindle
stiffness, so the spindle pre-compression displacement is generally much larger than the
axial displacement corresponding to the minimum value of the spindle stiffness change
rate curve. Thus, at the stage where the front and rear bearings of the spindle are jointly
loaded, the increase rate of one-side bearing stiffness is always greater than the decrease
rate of the other-side bearing stiffness, and the axial stiffness of the spindle increases with
the gradual increase in the axial displacement. When the spindle axial displacement is
greater than the pre-deflection of single-side bearing, the spindle bearing is completely
unloaded, and the spindle axial stiffness is transformed into the other-side bearing stiffness,
and the spindle axial stiffness increases with the gradual increase in axial displacement.

4. Experimental Verification

As indicated in Figure 10, a test rig was built to investigate the spindle axial operating
stiffness experimentally. The fixed-position preload experimental spindle is a mechanical
spindle that is driven by an electric spindle and has a variable-frequency motor to change
the speed. During the test, the system control and data acquisition box’s motor control
switch can be rotated to change the direction of motor rotation on the axial loading device.
Adjust the motor to rotate forward first, then apply axial pressure to the spindle with
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the axial loading device. Adjust the motor reversal and the axial loading equipment to
gradually release the axial pressure load to zero, and then provide a suitable amount of
axial tension to the spindle. Finally, adjust the motor to rotate forward again, and the axial
loading equipment will gradually reduce axial tension to zero. The force signal and related
displacement signal are automatically captured in real-time by the NI®9215 data collection
card during the test and sent to the computer for processing.
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The test spindle was set up in a back-to-back configuration, and the spindle’s initial
preload was set at 507 N by altering the width difference between the inner and outer
spindle spacers. Before the test, the spindle components were cooled to room temperature.
The influence of rotational speed on the spindle temperature field may be neglected here,
since the test duration for each group is so brief. The spindle preload increases after the
operation as a result of centrifugal load [29,30], and the change in spindle preload has a
bigger impact on the spindle axial operating stiffness [4]. As a result, the real preload of
the spindle at each speed of the experiment was computed during its execution. The test
speeds were 0 rpm, 3000 rpm, and 6000 rpm, with the results displayed in Figure 11.

From Figure 11a–c, it can be seen that when the spindle axial displacement is small,
the axial operating stiffness curve of the spindle with 0 rpm and 3000 rpm has certain
fluctuations, but when the speed reaches 6000 rpm, the spindle axial operating stiffness
curve fluctuation disappears, and the “sag” phenomenon appears, then the spindle exhibits
a “stiffness hardening” characteristic. In addition, it can also be seen that the experimental
results of the axial operating stiffness of the fixed-position preload spindle are consistent
with the theoretical simulation results, and the two are in good agreement, where the
maximum errors between the experimental and simulation results are 12.3%, 10.8%, and
10.5% for the spindle speeds of 0 rpm, 3000 rpm, and 6000 rpm, respectively. These errors
can be attributed to three factors. To begin with, the filtered experimental data are distorted,
and the filtering technique might be modified to lessen the error. Second, while bearing
stiffness is the primary determinant of spindle stiffness, the experimental spindle stiffness
also takes into account the stiffness of other spindle components, such as the draw bar
mechanism. To lessen the error, the theoretical model can be enhanced further. Finally,
there is a deviation between the real-time preload of the spindle and the true value of the
preload in this experiment, which may be improved with more study into the transient
preload measuring technique.
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Figure 11. Experimental test on the operating stiffness of spindle at different speeds: (a) experimental
testing (speed: 0 rpm); (b) experimental testing (speed: 3000 rpm); (c) experimental testing (speed:
6000 rpm); (d) experimental data comparison; (e) simulation data comparison (without considering
preload variation); (f) simulation data comparison (considering preload variation).

As shown in Figure 11d, it can be seen that when the spindle speed is high, the
spindle axial operating stiffness shows an obvious “sag” phenomenon, and the spindle
exhibits the “stiffness hardening” characteristic. When comparing Figure 11d–f, it is clear
that the experimental test findings in Figure 11d differ significantly from the simulation
results, without considering preload variation in Figure 11e, but the trend is similar and
less distinct from the simulation results when considering preload variation in Figure 11f,
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indicating that the change in spindle preload due to the speed factor has a large impact on
this experimental test of spindle axial operating stiffness and is an important factor causing
the change in spindle axial operating stiffness.

5. Conclusions

In this paper, the axial operating stiffness model of the fixed-position preload spindle
is proposed, and the effect of the rotational speed on the softening and hardening char-
acteristics of the spindle stiffness is studied based on the model. An experimental bench
for testing the axial operating stiffness of the spindle was built to verify the accuracy and
effectiveness of the model. In the analysis of the experimental results, the influence of
speed-induced preload on the spindle axial operating stiffness is specially analyzed. The
conclusions of the article are as follows:

1. For the fixed-position preload spindle with a smaller initial preload, the rotational
speed has a greater influence on the load–displacement relationship and axial oper-
ating stiffness. However, the spindle speed has less effect on the load–displacement
relationship and axial operating stiffness when the spindle’s initial preload is greater.

2. When the spindle is rotated, the axial displacement at the stiffness mutation point
is greater than the axial displacement at zero speed. In the meantime, when the
rotational speed increases, the axial displacement of the spindle’s axial operating
stiffness mutation point decreases.

3. When the spindle is rotating slowly, the axial stiffness of the spindle fluctuates in the
phase with small displacement increments. However, as the spindle speeds up, the
stiffness fluctuation is gradually suppressed. When the spindle is operating at high
speeds, the spindle axial stiffness displays a clear “sag” phenomenon, which shows
the “stiffness hardening” characteristic.

4. During the experimental test of the axial operating stiffness of the spindle, the change
in spindle preload due to the speed factor has a large impact on test results and is also
an important factor causing the change in spindle axial operating stiffness.
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Nomenclature

Capital Letter
Fa Axial load applied to spindle
Fab Axial load applied to bearing
Fc Centrifugal force
Fp Preload applied to bearing
Z Number of balls
Lowercase Letters
a Distance between the raceway groove curvature center and the ball center
dm Diameter of bearing pitch circle
mb Ball mass
n Spindle bearing speed
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Greek Letters
αf Initial contact angle of bearing
αp Bearing contact angle with preload applied
αi The ball-inner contact angle
αo The ball-outer contact angle
δ Ball-race deformation
δa Spindle axial displacement
δab Bearing axial displacement
δ1 Pre-deflection of front bearing
δ2 Pre-deflection of rear bearing
ωc Bearing cage speed
Subscripts
o Outer ring
i Inner ring
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