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Abstract: In this study, we discussed the occurrence condition stick-slip model based on a 2DOF
system, in which a 1DOF system model commonly used in stick-slip analysis was attached on an
elastic foundation. Specifically, the effects of the mass, stiffness, and damping coefficient of the elastic
foundation on the occurrence and non-occurrence of stick-slip were investigated. It was found that
when the elastic foundation parameters were determined based on the optimal parameter tuning
method of the dynamic vibration absorber (DVA) theory, the range of stick-slip occurrences reduced
compared to the sliding system without the elastic foundation.

Keywords: stick–slip; dynamic vibration absorber; sliding friction; vibration suppression

1. Introduction

The occurrence of stick-slip inhibits the smooth motion of sliders and causes undesir-
able vibration and noise in mechanical systems. Therefore, it is important to understand
the condition of stick-slip occurrence and develop design guidelines for suppressing it.
Stick-slip is often observed in rubber sliding parts such as windshield wipers [1,2] and
rubber belts [3,4]. In addition, stick-slip is observed in many industrial products, includ-
ing automotive parts such as disc brakes and clutches [5,6]. Other examples of stick-slip
occurrences that should be prevented are, for example, vibration isolators installed in
structures [7–9]. A historical review of stick-slip phenomena and its analysis is provided by
Feeny et al. [10].

The occurrence conditions for stick-slip are formulated using several simplified ana-
lytical models. For example, Nakano [11] theoretically derived the occurrence criteria for
stick-slip using a simplified one-degree-of-freedom vibration system with the Coulomb
friction law. By extending the fundamental stick-slip theory, the impact of other parameters
on stick-slip occurrence conditions were also studied, including the velocity dependence
of the friction coefficient [12], rigidity anisotropy of the support parts [13], and tangential
contact compliance [14].

In general, actual vibration systems are often more complex than 1DOF systems, and
of course, the phenomena are more complex. However, a slight change in the model from a
1-DOF system to a 2-DOF system makes it impossible to analytically derive the conditions
for stick-slip occurrence. It is impossible to derive a stick-slip prediction equation that
covers the entire parameter space, and an analytical treatment is possible only in q subspace
with some fixed parameters [14]. Currently, when a stick-slip analysis is performed under
multi-DOF systems, the parameter range needs to be limited by considering the target
system and to derive a simpler design equation within that range.

Dynamic vibration absorbers (DVAs) are effective engineering technologies for con-
trolling vibrating systems [15–18]. Maegawa et al. [18] quantified the stick-slip suppression
effect of the DVA using a simplified analytical model based on the stick-slip theory derived
by Nakano [11] and the fundamental DVA theory [19]. Maegawa et al. [18] theoretically
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demonstrated that appropriately setting the design parameters of the DVA can narrow the
stick-slip occurrence area.

In this study, we aimed to discuss the stick-slip dynamics of 2DOF systems using the
DVA theory. Figure 1 shows the analytical model used in this study. The model corresponds
to the case of a sliding system with the sliding surface fixed to an elastic foundation, as
shown in Figure 2. Through numerical simulation and theoretical analysis, in this study,
the following two results were obtained. First, the numerical simulation results show that a
vibration system attached to an elastic foundation with optimal parameters tuned by the
dynamic absorber theory has a reduced region of stick-slip conditions compared to that
attached to a rigid base. The stick-slip suppression effect was quantitatively verified by
analysis using an equivalent 1DOF vibration system model.

Figure 1. Analytical models in this study.

Figure 2. Physical analogue of the analytical model in the present study.

2. Modeling
2.1. Analytical Model

As shown in Figure 1, the analytical model consists of the following two component
systems: a primary vibration system and a DVA system (i.e., an elastic foundation system).
In the DVA system, an additional mass ma is connected to the rigid base by a linear spring
with a stiffness ka and a dashpot with a damping coefficient ca. In the primary vibration
system, a primary mass m is then connected in a series to the additional mass ma by a
linear spring with a stiffness k and a dashpot with a damping coefficient c. The mass in the
primary system is in contact with a moving plate that moves horizontally with a constant
driving speed V under a normal load W. The friction force F acts on the contact interface
between the mass and the moving plate.

The effectiveness of the DVA when no friction force acts in the contact interface, as
represented in Figure 1, was studied by Harik and Issa [20]. They derived the optimal
tuning parameters for the DVA system using a numerical analysis. We build on the research
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of Harik and Issa [20] by investigating the effectiveness of the DVA system at suppressing
stick-slip in a new configuration, with a friction surface added to the DVA system.

2.2. Governing Equations

The equations of motion for the primary and DVA masses are as follows:

m
..
x + c(

.
x− .

xa) + k(x− xa) = F

ma
..
xa − c(

.
x− .

xa)− k(x− xa) + ca
.
xa + kaxa = 0

(1)

where x and xa denote the displacement from the natural length of the springs of the
primary and additional masses, respectively, and (•) denotes the derivative with respect to
time t.

The direction of F is determined by the direction of the relative speed between
.
x and

V. For the stick state (
.
x = V), in which static friction Fs acts on the contact surface, it acts

along the positive direction of x. In contrast, for the slip-I state (
.
x < V) and slip-II state

(
.
x > V), kinetic friction Fk acts along the positive and negative directions, respectively.

Therefore, F in Equation (1) can be expressed as follows:

F =


Fs when

.
x = V stick state

Fk when
.
x < V slip− I state

−Fk when
.
x > V slip− II state

(2)

During the stick state, the magnitude of Fs is lower than the maximum static fric-
tion force Fsmax. Thus, the following equation can be written with the static friction
coefficient µs:

− µsW = −Fsmax ≤ Fs ≤ Fsmax = µsW (3)

When Fs approaches µsW, the friction state changes from the stick state to the slip-I
state. During the slip-I and slip-II states, Fk can be expressed using the kinetic friction
coefficient µk as follows:

Fk = µkW (4)

For simplicity, the Coulomb friction law can be used to express the friction charac-
teristics. Thus, the static and kinetic friction coefficients have different values, with the
static coefficient always being larger than the kinetic one. The value of kinetic friction
remains constant regardless of changes in the relative speed between

.
x and V. The frictional

characteristics based on the Coulomb friction law can be summarized as follows:

µ =

{
µs = const. when

.
x = V stick state

µk = const. when
.
x 6= V slip-I or slip-II states

(5)

Summarizing the above equations, the motion of each mass in the static state can be
described by the following governing equations:

.
x = V (6)

− µsW ≤ c(V − .
xa) + k(x− xa) ≤ µsW (7)

ma
..
xa − c(V − .

xa)− k(x− xa) + ca
.
xa + kaxa = 0 (8)

Additionally, the governing equations for the slip-I state (
.
x < V) and slip-II state

(
.
x > V) can be written as:

.
x < V (9)

m
..
x + c(

.
x− .

xa) + k(x− xa) = µkW (10)

ma
..
xa − c(

.
x− .

xa)− k(x− xa) + ca
.
xa + kaxa = 0 (11)

.
x > V (12)
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m
..
x + c(

.
x− .

xa) + k(x− xa) = −µkW (13)

ma
..
xa − c(

.
x− .

xa)− k(x− xa) + ca
.
xa + kaxa = 0 (14)

where Equations (9)–(11) describe slip state-I, and Equations (12)–(14) describe slip state-II.

2.3. Dimensionless Description of Governing Equations

For a stick-slip analysis using a simplified model, a dimensionless analysis is an
effective tool to identify the essential parameters characterizing dynamic behavior and to
theoretically derive the occurrence condition [11]. To obtain the governing equations of
motion in a dimensionless form, we defined the dimensionless displacements ξ and ξa and
dimensionless time τ, as follows:

ξ =
ωn

V

(
x− µkW

k
− µkW

ka

)
(15)

ξa =
ωn

V

(
xa −

µkW
ka

)
(16)

τ = ωnt (17)

Where ωn is the natural frequency of the primary vibration system (rad/s), defined as:

ωn =

√
k
m

(18)

Using the dimensionless variables ξ, ξa, and τ, the governing equations, Equations (6)–(14),
can be rewritten as follows:

ξ ′ = 1 (19)

− λ− 2γλ ≤ 2ζ(1− ξ ′a) + ξ − ξa ≤ λ (20)

Mξ ′′ a − 2ζ + 2ζξ ′a + 2ζaξ ′a − ξ + ξa + K2ξa = 0 (21)

ξ ′ < 1 (22)

ξ ′′ + 2ζξ ′ − 2ζξ ′a + ξ − ξa = 0 (23)

Mξ ′′ a − 2ζξ ′ + 2ζξ ′a + 2ζaξ ′a − ξ + ξa + K2ξa = 0 (24)

ξ ′ > 1 (25)

ξ ′′ + 2ζξ ′ − 2ζξ ′a + ξ − ξa = −2γλ (26)

Mξ ′′ a − 2ζξ ′ + 2ζξ ′a + 2ζaξ ′a − ξ + ξa + K2ξa = 0 (27)

where (′) denotes the derivative with respect to dimensionless time τ, and the dimensionless
parameters, M, K, ζa, ζ, λ, and γ are defined as follows:

M =
ma

m

K =

√
ka

k

ζa =
ca

2
√

mk

ζ =
c

2
√

mk

λ =
(µs − µk)W

V
√

mk
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γ =
µk

µs − µk

From the dimensionless analysis, it was found that the dynamics in the analytical
model shown in Figure 1 can be characterized using only six dimensionless parameters, M,
K, ζa, ζ, λ, and γ.

Harik and Issa [20] quantified the vibration suppression effect of the DVA in a config-
uration similar to the one used in this study, but without a sliding surface. In their model, a
harmonic external force f ext was applied to the primary mass, as shown in Figure 3. The
equation of motion for the analysis model shown in Figure 3 is the same as when the friction
force F in Equation (1) is replaced with the periodic excitation force f ext (=f sin(ωt)), where f
and ω are the amplitude and angular frequency, respectively, of the periodic external force.

Figure 3. Analytical model in this study without the sliding surface and with a periodic external
force f ext applied at the primary mass.

Using numerical techniques, Harik and Issa [20] found an optimally tuned mass ratio
Mopt (=ma_opt/m), optimally tuned stiffness ratio Kopt (=ka_opt/k), and optimally tuned
damping ratio ζaopt (=ca_opt/(mk)0.5) under different damping ratio ζ (=c/(mk)0.5) values.
As shown in Figure 4, we calculated a best fit curve for the results of Harik and Issa [20] to
determine the ζ dependence for each optimally tuned parameter. The resulting formulae
are as follows:

Mopt = 330ζ3 − 43.6ζ2 + 14.5ζ + 1.48 (28)

Kopt = 7.72ζ3 + 1.13ζ2 + 1.38ζ + 0.934 (29)

ζaopt = 61.1ζ3 − 4.40ζ2 + 3.91ζ + 1.09 (30)

Figure 5 shows the vibration response curve under different DVA parameter conditions
with ζ = 0.1, where H (=kx/f ) and Ω (=ω/ωn) are the dimensionless displacement and the
forced frequency ratio, respectively; Hmax is the maximum dimensionless displacement
under each condition. As seen in Figure 5, Hmax is greatly reduced when the optimally
tuned DVA parameters are applied.

Additionally, we calculated a best fit curve for the results from Harik and Issa [20] to de-
termine the ζ dependence of Hmax, as shown in Figure 6. We obtained the following formula:

Hmax = 2.31ζ3 + 0.70ζ2 − 3.08ζ + 2.24 (31)
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Figure 4. Optimally tuned DVA parameters depending on ζ in the analytical model shown in Figure 3;
the open circles show the numerical results derived in [20] and the solid curves show the approximate
formula shown in Equations (28)–(30). (a) Effect of ζ on Mopt, (b) Effect of ζ on Kopt, (c) Effect of ζ

on ζa_opt.

Figure 5. Vibration response curve under the different DVA parameter conditions; dashed line shows
vibration response curve with equivalent 1DOF vibration system with ζeq.
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Figure 6. Effect of ζ on Hmax under the optimal DVA condition.

This study examines the conditions for stick-slip occurrence when elastic foundations
are designed based on the optimal parameters of the dynamic absorber obtained by Harak.
Specifically, stick-slip occurrence conditions are calculated when a 1DOF vibration system
is attached to an elastic foundation with optimal parameters, and stick-slip occurrence
conditions are calculated when a 1DOF vibration system is directly attached to a rigid base,
and the two are compared.

3. Numerical Results

Numerical simulations, also referred to as time variations in ξ, were performed to
quantify the stick-slip suppression effect of optimally tuned elastic foundations. Using the
dimensionless equations of motion, provided by Equations (19)–(27), the time variations in
the dimensionless displacement of the primary mass ξ were solved numerically with the
Runge–Kutta method.

Figure 7 shows the results of the numerical simulation. The parameters were set as
follows: (a) M = Mopt, K = Kopt, ζa = ζaopt, ζ = 0.1, and γ = 2, and (b) M = Mopt, K = 2Kopt,
ζa = ζaopt, ζ = 0.1, and γ = 2. Thus, the results in Figure 7a,b correspond to the use of the
optimally tuned DVA and the non-optimally tuned DVA systems, respectively. Previous
research shows that stick-slip occurs under a large λ condition [11]. Considering that an
increase in λ corresponds to an increase in the normal load W, a decrease in velocity V,
and a decrease in support stiffness k, the observed stick-slip characteristics exhibit typical
stick-slip behavior. Figure 7 clearly shows that setting the value for the DVA parameter
strongly affects the occurrence and non-occurrence of stick-slip.
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Figure 7. Time variations of dimensionless displacement ξ under different λ with (a) optimally tuned
DVA (M = Mopt, K = Kopt, ζa = ζaopt, ζ = 0.1 and γ = 2) and (b) non-optimally tuned DVA (M = Mopt,
K = 2Kopt, ζa = ζaopt, ζ = 0.1 and γ = 2).

As derived from the dimensionless analysis in Section 2.3, the dynamic behavior
of the analysis system shown in Figure 1 can be determined using only the six parame-
ters, i.e., M, K, ζa, ζ, λ, and γ. Because the DVA parameters are optimally set based on
Equations (28)–(30), that is, Maopt, Kaopt, and ζaopt are the dependent variables of ζ, the
dynamic behavior of the present system is characterized only by the three parameters λ, ζ,
and γ. Because γ does not affect the occurrence and non-occurrence of stick-slip [11], it is
possible to completely determine when stick-slip occurs by investigating the occurrence
and non-occurrence of stick-slip when λ and ζ are changed.

Figure 8 shows the effect of the use of the DVA on the occurrence and non-occurrence
conditions of stick-slip based on the results of the numerical simulation with γ = 2. The
results shown in Figure 8a are based on the results of the numerical simulation when the
1DOF vibration system is directly attached to the rigid base. This figure corresponds to
the stick-slip occurrence/non-occurrence map for the equivalent one-degree-of-freedom
vibration system shown later in Figure 9, when ceq = 0. Thus, this configuration corresponds
to the stick-slip occurrence condition when no DVA is used. The solid line drawn in
Figure 8a is the discriminant equation of the boundary conditions for the occurrence and
non-occurrence of stick-slip when not using the DVA system, based on Equation (37).

In contrast, in Figure 8b, the stick-slip occurrence condition was determined by the
numerical simulation of the optimally tuned DVA vibration system shown in Figure 1,
where the solid line in Figure 8b is based on Equation (37). That is, it is the map of stick-slip
occurrence and non-occurrence conditions when the parameters of the elastic foundation
are set to optimal values based on dynamic absorber theory. Comparing Figure 8a,b, the
use of the optimized DVA works to narrow the stick-slip region under all conditions.
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Figure 8. The occurrence and non-occurrence map of stick-slip obtained by numerical simulation
under γ = 2; the solid circles show the occurrence conditions for stick-slip; the open circles show the
non-occurrence conditions of stick-slip (i.e., damped vibration conditions); and the solid curves show
the boundary between the occurrence and non-occurrence of stick-slip derived by (a) Equation (39),
without DVA and (b) Equation (37), with optimally tuned DVA.

Figure 9. Equivalent one-degree-of-freedom vibration system without the DVA system.

4. Discussion

Figure 8 demonstrates that the use of an optimized elastic foundation suppresses
stick-slip occurrence. In this section, the stick-slip suppression effect is quantified.

As described above, the Harik and Issa model [20] harmonic external force f ext (=fsin(ωt))
was applied to the primary mass, as shown in Figure 3. If the frequency of the cyclic
external force is in the region close to the natural frequency of the system (i.e., ω = ωn)
under the condition that the dynamic absorber parameters are optimized, the behavior of
the system can be approximated by an equivalent 1DOF vibration system. Figure 9 shows
the equivalent 1DOF system that can replace the 2DOF DVA system shown in Figure 1. In
Figure 9, the magnitude of ceq represents the stick-slip suppression effect of the DVA.

The relationship between the maximum dimensionless deflection Hmax and the damp-
ing ratio of the equivalent model ζeq = (c + ceq)/(2(mk)0.5) is given by the following equation:

Hmax =
1

2ζeq
(32)
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From Equations (31) and (32), the equivalent damping ratio can be written as a function
of the damping ratio, as follows:

ζeq =
1

4.62ζ3 + 1.40ζ2 − 6.16ζ + 4.48
(33)

Figure 10 shows the dependence of ζ on ζeq. Here, ζeq is the equivalent damping ratio
including the damping effect of the optimally applied DVA, and ζ is the damping ratio
of the primary vibration system. Therefore, Equation (33) holds only when the DVA is
optimally adjusted.

Figure 10. Effect of ζ on ζeq under optimally tuned DVA condition.

The black solid line in Figure 5 shows the vibration response curve when tuned with
the optimal parameters. On the other hand, the dashed line in Figure 5 shows the vibration
response curve of the equivalent 1DOF vibration system with ζeq. From Figure 5, it is found
that the behavior of the main vibration system in the 2DOF system and the equivalent
1-DOF system are in good agreement in the range close to ω = ωn.

The analysis conducted by Nakano et al. shows that the vibration frequency of
stick-slip approaches the natural frequency as λ decreases [14]. When λ is smaller than 1,
the vibration frequency of the stick-slip can be approximated by the natural frequency of the
system. That is, in this case, the behavior of the system vibrating due to stick-slip coincides
with the behavior of the system when it is vibrated by a periodic external force. The
only difference is whether the source of the vibration is an external force or the difference
between static and dynamic frictional forces.

If λ is smaller than 1, the vibration frequency of stick-slip can be approximated by
the natural frequency of the system. In other words, in this case, the behavior of the
system vibrating due to stick-slip is consistent with the behavior of the system when it
is vibrating due to periodic external forces. Although the switching between static and
dynamic frictional forces excites the system, the behavior of the system is the same as
when subjected to a sinusoidal external excitation force. It should be noted that the1DOF
vibration system used in this study is only equivalent when λ has relatively small values
as described above. When λ is small, the vibration waveform of the stick-slip becomes a
harmonic vibration, increasing the applicability of the theory for quantifying the optimum
parameter of the DVA. In the 1DOF system, the λ dependence of the stick-slip frequency fss
and amplitude Ass is formulated as follows

fss

fn
=

{
1 +

1
π
(λ− tan−1 λ)

}−1
=

{
1 for small λ

πλ−1 for large λ
(34)
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Ass

An
=
√

1 + λ2 =

{
1 for small λ
λ for large λ

(35)

where fn = ωn/2π and An = V/ωn.
Nakano’s [11] boundary equation for the occurrence and non-occurrence conditions

of stick-slip for the 1DOF system with Coulomb friction is applied to the equivalent model
shown in Figure 9. The boundary equation of the equivalent model can thus be written
using the two dimensionless parameters, λ and ζeq, as follows:

ln
(

1− 2ζeqλ + λ2
)
=

ζeq√
1− ζeq2

3π + 2 tan−1 1− ζeqλ

λ
√

1− ζeq2

 (36)

Equation (36) can be expressed in the more simplified form [11]:

(1− ζeq)
5

ζeq
λ2 = 4π (37)

From Equation (37), the criterion for preventing the occurrence of stick-slip in this
configuration can be written as:

(1− ζeq)
5

ζeq
λ2 < 4π (38)

When the DVA is not installed, ceq = 0 in the equivalent model shown in Figure 9.
Thus, the results in Figure 8a corresponds to the results of stick-slip occurrence conditions
when ceq = 0 in Figure 9. Therefore, by replacing ζeq with ζ in Equation (37), it is possible
to obtain the boundary equation for the occurrence and non-occurrence of stick-slip when
the DVA is not attached, as shown below:

(1− ζ)5

ζ
λ2 = 4π (39)

Using Equations (33) and (37), we determined the occurrence criteria for stick-slip
based on the two dimensionless parameters λ and ζ.

The procedure used to determine the stick-slip occurrence condition for a sliding sur-
face for which ζ is known is recounted here. First, the optimum values of the dimensionless
parameters (Mopt, Kopt, ζaopt) were determined using Equations (28)–(30). At the same
time, the optimum value of the DVA parameters (ma_opt, ka_opt, ca_opt) were determined
using Equations (28)–(30). Using the results, we were able to design a DVA for the specific
situation. Based on Equation (33), we quantified the equivalent damping ratio ζeq when
the optimum vibration absorber was installed. Finally, using Equation (38), we were able
to quantify the values of λ at which stick-slip occurs. Because λ includes the velocity V
and load W, it was possible to quantify the velocity range or normal load range in which
stick-slip was expected to occur.

Figure 8b clearly shows that the stick-slip occurrence area is in good agreement with
the prediction by the discriminant equation in Equation (37). In other words, the increase
in the damping effect improved by the optimal tuning of the elastic foundation (DVA) is
considered to have worked to suppress stick-slip. As mentioned above, Equation (37) can
predict the occurrence and non-occurrence of stick-slip more accurately when λ is relatively
small. On the other hand, when λ is relatively large, the modeling of the equivalent
1DOF vibration system is not appropriate, which may be the reason for the discrepancy
between the discriminant equation and the numerical simulation results. The significance
of the discriminant equation derived in this study is that it provides a theoretical basis
for the fact that the stick-slip suppression effect of a vibration system mounted on an
optimally tuned elastic foundation is due to the vibration suppression effect of the DVA, at
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least under conditions where λ is small. The numerical simulation results show that the
stick-slip occurrence region is only inside the region predicted by Equation (37), indicating
that this equation can be used as a discriminant equation to predict stick-slip occurrence
and non-occurrence.

The discriminant of Equation (37) is not always valid when the set values of the DVA
deviate from the values found using Equations (28)–(30). This is because the equation
applies an equivalent one-degree-of-freedom vibration system assuming an optimally
tuned dynamic absorber is installed, which would not be appropriate if the parameters are
not optimal. Figure 11 shows the stick-slip occurrence and non-occurrence map when a
non-optimally tuned DVA system is used. The parameters were set as follows: in Figure 11a,
the parameters are set to M = Mopt, K = Kopt/2, ζa = ζaopt, and γ = 2; and in Figure 11b the
parameters are set to M = Mopt, K = 2Kopt, ζa = ζaopt, and γ = 2. When the parameters of the
DVA diverge from those defined by Equations (28)–(30), the stick-slip occurrence region
may be wider or narrower than the region predicted by Equation (37). Importantly, the dis-
criminant of Equation (37) does not necessarily show the maximum stick-slip suppression
ability of the DVA. The importance of Equation (37) is that if the parameters of the DVA are
set to the values defined by Equations (28)–(30), then Equation (37) represents the region
where stick-slip reliably does not occur. Thus, the theoretical prediction tool derived in this
study can be utilized effectively when making a quantitative design based on theory.

Figure 11. The occurrence and non-occurrence map of stick-slip obtained by numerical simulation
under γ = 2 for investigating the stick-slip suppression effect of non-optimally tuned DVA systems.
(a) M = Mopt, K = Kopt/2, ζa = ζaopt; (b) M = Mopt, K = Kopt × 2, ζa = ζaopt.

Focusing on the results in Figure 11a, it can be seen that the area of stick-slip oc-
currence is overwhelmingly narrower than in other conditions, which is a characteristic
result. Figure 12 shows the time variations of dimensionless displacements ξ and ξa and
dimensionless velocities ξ ′ and ξ ′a under λ = 1, ζ = 0.01. Under these conditions, stick-slip
does not occur in either case and the initial fluctuations decrease and decay with time. A
closer look reveals that for K = Kopt/2, i.e., Figure 12a, the oscillations of the main vibration
system (black line) and the secondary vibration (DVA) system (gray line) are nearly in
opposite phases. On the other hand, in case K = kopt × 2, i.e., Figure 12b, each mass point
is oscillating in perfectly in-phase. Figure 13 shows the time variations of dimensionless
displacements ξ and ξa and dimensionless velocities ξ ′ and ξ ′a under λ = 10, ζ= 0.01. In
Figure 13a, stick-slip does not occur, but in Figure 13b, stick-slip is observed. This cor-
responds to the fact that in Figure 11, the stick-slip region is wide for K = kopt × 2 and
extremely narrow for K = Kopt/2. From the above, it can be seen that the vibration modes
have a significant effect on the stick-slip suppression observed in Figure 11a. In the case
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of K = Kopt/2, the two masses oscillate in opposite phases as a second-order mode, and
their motions cancel each other out to produce the stick-slip suppression effect. In this case,
stick-slip can be suppressed even at a higher λ than the condition predicted by the stick-slip
occurrence discriminant formula shown in Equation (37). In other words, by setting the
phases of the two masses well, it is possible to obtain a large vibration suppression effect
beyond the vibration suppression effect of a general dynamic absorber. Although this
effect is not discussed in depth in this study, it is considered to be an important finding for
stick-slip suppression in 2DOF vibration systems.

Figure 12. Time variations of dimensionless displacements ξ and ξa and dimensionless velocities
ξ ′ and ξ ′a under λ = 1, ζ = 0.01. (a) M = Mopt, K = Kopt/2, ζa = ζaopt; (b) M = Mopt, K = Kopt × 2,
ζa = ζaopt.

Figure 13. Time variations of dimensionless displacements ξ and ξa and dimensionless velocities
ξ ′ and ξ ′a under λ = 10, ζ = 0.01. (a) M = Mopt, K = Kopt/2, ζa = ζaopt; (b) M = Mopt, K = Kopt × 2,
ζa = ζaopt.
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Figures 14 and 15 show trajectories in a phase plane with ξ and ξ ′ an under λ = 1,
ζ = 0.01 and under λ = 10, ζ = 0.01, respectively. Note that the calculation conditions for
Figures 14 and 15 are the same as those for Figures 12 and 13. From the phase plane, the
oscillation behavior of the main vibration system can be well understood visually. As
shown in Figure 14, under relatively small λ conditions, the oscillations decay gradually,
i.e., the orbit spirals toward the origin. On the other hand, for large λ, the behavior changes
drastically. In the case of Figure 15a, where stick-slip does not occur, the vibration does not
decay in a spiral manner as seen in Figure 14, but instead follows a peculiar trajectory. It
is clear that the behavior under the same conditions cannot be approximated by a 1DOF
vibration system, and results in the second-order mode of vibration behavior described
above. In Figure 15b, where stick-slip occurs, a limit cycle is formed.

Figure 14. Trajectories in a phase plane with ξ and ξ ′ an under λ = 1, ζ = 0.01. (a) M = Mopt,
K = Kopt/2, ζa = ζaopt; (b) M = Mopt, K = Kopt × 2, ζa = ζaopt.

Figure 15. Trajectories in a phase plane with ξ and ξ ′ an under λ = 10, ζ = 0.01. (a) M = Mopt,
K = Kopt/2, ζa = ζaopt; (b) M = Mopt, K = Kopt × 2, ζa = ζaopt.

Finally, Figure 16 shows a design flowchart for stick-slip suppression by attachment to
an elastic foundation. The following seven parameters are determined by modeling into
a 1DOF sliding system; further, the value of λ and ζ are also obtained. By substituting
the estimated ζ into Equation (33) we can obtain ζeq. Next, λ and ζeq are substituted into
Equation (38). If the same equation holds, stick-slip suppression using an elastic foundation
is possible. By substituting ζ into Equations (28)–(30), we can then obtain Mopt, Kopt, and
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ζaopt. From these, the optimal parameters of the elastic foundation, ma_opt, ka_opt, and ca_opt,
are calculated. Finally, we redesign the targeted sliding system based on the obtained
design parameters of the sliding system with elastic foundation (DVA).

Figure 16. Schematics of the design strategy for suppressing stick-slip using optimally tuned elastic
foundation.

5. Conclusions

In this study, the dynamics of stick-slip in a 2-DOF sliding system mounted on an
elastic foundation with a typical 1-DOF sliding system with Coulomb friction was dis-
cussed. Specifically, it was found that the vibration system mounted on an elastic founda-
tion with optimal parameter tuning based on dynamic absorber theory is more effective
in suppressing stick-slip than a vibration system directly mounted on a rigid founda-
tion. The stick-slip suppression effect can be quantitatively evaluated using the stick-slip
occurrence/non-occurrence discriminant equation derived in this study. In addition to
the above results, this study also discussed the design procedure of the vibration system
to suppress stick-slip occurrence using an elastic foundation. Although in this study the
mechanism is not perfectly understood, it was found that the conditions for stick-slip oc-
currence in a 2-DOF vibration system differs greatly depending on the vibration mode. It is
considered to be an important finding for stick-slip suppression in 2DOF vibration systems.
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Abbreviations

List of Symbols (units)
c damping coefficient of the primary vibration system (N s/m)
ca damping coefficient of the DVA system (N s/m)
ca_opt optimally tuned damping coefficient of the DVA system (N s/m)
ceq equivalent damping coefficient
f amplitude of the periodic external force (N)
f ext periodic external force (N)
F friction force (N)
Fk kinetic friction force (N)
Fs static friction force (N)
Fsmax maximum static friction force (N)
H dimensionless displacement under without DVA system
Hmax maximum value of H
k stiffness of the primary vibration system (N/m)
ka stiffness of the DVA system (N/m)
ka_opt optimally tuned stiffness of the DVA system (N/m)
K stiffness ratio
Kopt optimally tuned stiffness ratio
m mass of the primary vibration system (kg)
ma additional mass of the DVA system (kg)
ma_opt optimally tuned additional mass of the DVA system (kg)
M mass ratio
Mopt optimally tuned mass ratio
t time (s)
V driving speed (m/s)
W normal load (N)
x displacement of the primary mass (m)
.
x velocity of the primary mass (m/s)
..
x acceleration of the primary mass (m/s2)
xa displacement of the additional mass (m)
.
xa velocity of the additional mass (m/s)
..
xa acceleration of the additional mass (m/s2)
γ dimensionless parameter
λ dimensionless parameter
µk kinetic friction coefficient
µs static friction coefficient
τ dimensionless time
ω angular frequency of the periodic external force
ωn natural frequency of the primary vibration system (rad/s)
Ω forced frequency ratio
ξ dimensionless displacement of the primary mass
ξ ′ dimensionless velocity of the primary mass
ξ ′′ dimensionless acceleration of the primary mass
ξa dimensionless displacement of the additional mass
ξ ′a dimensionless velocity of the additional mass
ξ ′′ a dimensionless acceleration of the additional mass
ζ damping ratio
ζa damping ratio of the DVA system
ζaopt optimally tuned damping ratio of the DVA system
ζeq equivalent damping coefficient
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