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Tribology has been and continues to be one of the most relevant fields, being present in
almost all aspects of our lives. The understanding of tribology provides us with solutions
for future technical challenges. At the root of all advances made so far are multitudes of
precise experiments and an increasing number of advanced computer simulations across
different scales and multiple physical disciplines. Based upon this sound and data-rich
foundation, advanced data handling, analysis and learning methods can be developed and
employed to expand existing knowledge. Therefore, modern machine learning (ML) or
artificial intelligence (AI) methods provide opportunities to explore the complex processes
in tribological systems and to classify or quantify their behavior in an efficient or even
real-time way. Thus, their potential also goes beyond purely academic aspects into actual
industrial applications.

To help pave the way, this Special Issue (SI) aimed to present the latest research on
ML or AI approaches for solving tribology-related issues. The focus was less on presenting
new ML or AI methods but rather on demonstrating the possible applications of existing
methods and their adaptation to problems in tribology. We are pleased that the SI has
collected ten articles including a perspective [1], a technical note [2], seven original research
articles [3–9], and a review [10]. The contributions came from both academia and industry
all around the globe and presented cutting-edge research in the field and provided deep
insights into the development or the application of sophisticated ML or AI approaches to
resolve problems broadly related to friction, lubrication and wear.

Rosenkranz et al. [1] opened the SI by highlighting successful case studies using AI
methods in a tribological context, e.g., online condition monitoring, designing material
compositions, lubricant formulations, or lubrication and fluid film formation.

Almqvist [2] derived a physics-informed neural network (PINN) applicable to solve
initial and boundary value problems described by linear ordinary differential equations in
the context of hydrodynamic lubrication. In contrast to finite-element- or finite-difference-
based methods, the fully explicit mathematical description of the PINN is a meshless
method, and the training did not require large amounts of data as are typically employed
for other AI/ML training procedures.

Prost et al. [3] trained a semi-supervised Random Forest (RF) online classifier for the
operational state of a self-lubricating steel shaft/bronze pairing using experimental data.
Thereby, automatically generated labels or full manual labelling by an expert user can be
employed. They reported that the labelling of the individual cycles from the lateral force
tribometer data was crucial for a high prediction accuracy.

Zambrano et al. [4] utilized Reduced Order Modeling (ROM) to predict the friction
behavior of dynamic rubber applications under different operating conditions and to find
optimized micro-texture parameters such as depth, diameter, or distance. The approach
was also used to evaluate the influence manufacturing deviations of the surface textures on
friction. With respect to an industrial context, it is believed that the product performance of
rubber products could be optimized by tailoring micro-textures and controlling nominal
texture tolerances prior to production.
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Ruan et al. [5] combined a Convolutional Neural Network (CNN) with a Generative
Adversarial Network (GAN) for bearing fault diagnosis with unbalanced datasets. Thereby,
the GAN provided a more balanced dataset for the CNN, and the CNN gave the fault
diagnosis as a correction term in the GAN generator’s loss function. The envelope spectrum
error between the generated data and the original measurement of the fault characteristic
frequencies was taken as another correction in the GAN generator’s loss function. Thus, it
was reported that the CNN’s fault classification accuracy was substantially improved.

Kügler et al. [6] employed semantic annotation and natural language processing (NLP)
techniques for generating knowledge graphs in the domain of tribology. The pipeline was
built on Bidirectional Encoder Representations from Transformers (BERT) and involved
some NLP tasks such as information extraction, named entity recognition and question an-
swering. The authors verified a satisfactory performance compared to a manual annotation
of publications on tribological model testing. It is believed that the approach will decrease
manual effort involving time-consuming literature review by providing a semi-automatic
support in knowledge acquisition.

Schwarz et al. [7] utilized ML regression methods trained by multibody simulations to
predict the dynamic behavior of various cages in angular-contact ball bearings. Thereby,
the hyperparameters of RF, extreme gradient boosting (XGBoost), and ANN models were
optimized by an evolutionary algorithm. It was reported that all regression algorithms
predicted the highly non-linear interplay of operational conditions and cage geometry with
satisfactory accuracy. The authors emphasized that the ML approaches will allow to analyze
a new dataset in the shortest time without the need to perform new dynamics simulations.

Sauer et al. [8] compared various supervised ML approaches for predicting the elastic
and hardness characteristics of diamond-like carbon (DLC) coatings on polymeric medical
materials in dependency of the sputter process parameters. It was reported that Gaussian
Process Regression (GPR) featured the highest accuracy compared to polynomial regression,
support vector machines (SVM), or ANN. Slicing-based data visualization and process
maps can further provide support to experts when designing coating systems and processes.

Bienefeld et al. [9] used RF regression for predicting the remaining useful life (RUL)
of deep-groove ball bearings from temporal information, such as the means of structure-
borne sound signals. The authors reported that by taking temporal past information
into account, the prediction quality could be increased by 37% compared to conventional
lifetime prediction.

Finally, we [10] systematically reviewed the trends and applications of ML in tribology.
We demonstrated that ML has already been employed in many fields of tribology, from
composite materials and drive technology to manufacturing, surface engineering, and
lubricants. It was emphasized that the intent of ML might not necessarily be to create
conclusive predictive models but can be seen as complementary tool to efficiently achieve
optimum designs for problems, which elude other physically motivated mathematical and
numerical formulations. Therefore, ML and AI might change the landscape of what is
possible, going beyond the mere understanding of mechanisms towards designing novel
and/or potentially smart tribological systems. One of the challenges is that ML approaches
do not necessarily guide towards specific solutions and the selection/optimization of ML
algorithms is crucial.

This SI shows that there already is a wide variety of approaches that have been
successfully applied to tackle tribological challenges generating true added value beyond
just buzzwords. In this sense, the SI can support researchers in identifying initial selections
and best practice solutions for ML in tribology.

Ultimately, the Guest Editors would like to express their sincere gratitude to all authors
and reviewers contributing to this SI for their exceptional efforts and to the editorial staff of
MDPI Lubricants for their valuable support and professional guidance.
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