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Abstract: A simplified calculation method is evaluated to calculate the static performance of an
aerostatic journal bearing with multiple orifice-type restrictors. This method adopts a one-dimension
flow assumption and is a fast calculation method to design journal bearings in engineering by
directly linking the structural parameters and performance parameters affecting radial bearings with
nonlinear equations. In addition, this method is verified with computational fluid dynamics by two
actual case studies, and it is found that the LCC difference between those two methods is less than 5%
for a 200 mm diameter spindle, and less than 10% for a 100 mm diameter spindle. Subsequently, the
influence of a key parameter ζi on the static performance of journal bearings is explained theoretically.
This method is much easier and more intuitive compared with numerical computational methods.
Furthermore, it promotes the application of aerostatic journal bearings.

Keywords: simplified calculation method; performance analysis; aerostatic journal bearing

1. Introduction

Owing to the absence of mechanical contact between moving parts, it is possible to
obtain extremely high accuracy and high speed from a motion system when supported
by aerostatic bearing. Therefore, aerostatic bearings have been commonly utilized in
positioning systems, and precision machining equipment, etc. [1–3]. Most of the film
flow field can be directly described by the Reynolds equation; therefore, the core work of
gas bearing performance calculation is to solve the Reynolds equation according to the
given input parameters (geometry, lubricant properties, working conditions, boundary
conditions, etc.). The basic problem of fluid-film lubricated bearings is to determine the
pressure distribution under various working conditions. On the basis of obtaining the
pressure distribution, the performance parameters of the bearing, such as stiffness and load
carrying capacity (LCC), which are of great importance during and after the design, can be
obtained by integrating/differentiating the pressure field on the air film surface.

Lots of calculation methods have been suggested to address the nonlinear Reynolds
equation governing pressure distribution in aerostatic bearing and static performance [4–6].
In addition to these computational methods for solving the general Reynolds equation,
there have been many developments in computational methods for aerostatic bearings
with external restrictors. There are two methods for solving the characteristics of aerostatic
bearings: analytical and numerical. The analytical solution can roughly obtain the bearing
characteristics, point out important variables and parameters, narrow the scope of the
attention of variables, and help to intuitively understand the physical situation. Powell pro-
posed the gauge-pressure ratio method, which gives the formula for the static performance
of aerostatic bearings [7]. The gauge-pressure ratio method borrows the symbol of hydro-
static bearings, and the compressibility of gas is not properly handled, so it is necessary to
manually consult the table to obtain the bearing characteristics. Li et al. described a sim-
plified calculation method of aerostatic thrust bearing with multiple pocketed orifice-type
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restrictors (MPOTRs); however, this simplified model has not been discussed for aerostatic
journal bearing [8]. Tang and Gross summarized the one-dimensional flow model for
thrust and journal bearings in the early stage of the development of lubrication mechanics,
but it is limited by computer performance and lacks further analysis of key processes [9].
Jason described the same flow model for journal bearings with one-row orifices [10].
Belforte et al. presented two lumped-parameter models to rapidly obtain the static charac-
teristic of gas bearings [11]. It is worthwhile to mention that since the steady-state Reynolds
equation in a constant-thickness gas film region is the Laplace equation, Mori et al. used
the complex potential method to obtain an analytical formula for radial bearing, the porous
planar thrust bearing and the air-floating pad without eccentricity [12,13].

The above engineering calculation method is still widely used, but it can only solve the
approximate calculation problem of the regular geometric boundary and the thickness of the
gas film. To obtain more accurate prediction results, numerical methods such as the finite
element method (FEM) and finite difference method (FDM) have developed with the rise in
computer technology. Using the variational principle of operator equations, Reddi deducted
the direct and incremental variational formulations of two-dimensional incompressible
and compressible steady-state Reynolds equations, and applied FEM to the thin-film
lubrication problem for the first time [14,15]. After that, Wadhwa and Nguyen et al. further
developed the relevant theory of FEM to solve the performance of gas dynamic pressure
bearing [16,17]; Wang and co-workers presented a computational method for solving the
isothermal compressible Reynolds equation to estimate mass flow rate (MFR), friction and
LCC. They linearized the Reynolds equation with the Newton method and solved it using
an iterative successive relaxation method [18]. Lo and colleagues proposed a finite element
method to evaluate the performance of a high-speed gas journal bearing. The dimensionless
Reynolds equation was derived from the simplified dimensionless Navier-Stokes (NS)
equations, discretized using the Newton method and solved by means of an iterative
cutting procedure [19]. Wadhwa and Cui calculated the static characteristics of common
double-row orifice radial bearings [20,21]. Li et al. calculated the static characteristics of the
orifice-type aerostatic guideway [22]. Charki and Cui solved the static characteristics of the
orifice-type aerostatic ball bearings [23,24]. Wu et al. found that inappropriate boundary
settings can cause significant numerical errors if the grid-dependent condition is ignored,
and their calculation results reveal that those numerical models with a single-source node
are grid-dependent, and auxiliary sources have proved to be an effective technique to
reduce single-source numerical error [25]. Chen et al. analyzed the impact on the bearing
of orifice blockage in actual working conditions; the air film pressure distribution, load
capacity, and tilting moment were obtained and simulation results indicate that the air film
pressure decreases significantly in the blocked area of adjacent orifices [26]. In addition,
Rajdeep et al. seems to be the first to solve the Reynolds equation adopting the finite
volume method [27].

In addition to only calculating the air film area, computational fluid dynamics (CFD)
has also been introduced to figure out bearings’ performance precisely because it solves NS
equations rather than the Reynolds equation, which takes all the air paths including inlet
ports, orifices, and air films into consideration. Cui et al. used Fluent software to calculate
the static performance of porous aerostatic thrust bearings [28]. Wu et al. simulated the
static performance of radial and thrust orifice-type bearings in a spindle designed for
ultra-precision machine tools [29]. Belforte et al. gave a practical flow correction coefficient
formula of small holes through CFD simulation and experiments, and unified the flow
calculation method of self-contained and orifice restriction [30–33]. Renn, Yoshimoto, Ele-
shaky and Chang et al. carried out simulations or experiments on the static characteristics
of a single-hole restriction thrust bearing [34–37], aiming to understand what happened
between the region of orifice and gas film. Ting et al. utilized a CFD software to evaluate the
performance of a radial–axial integrated cup-shaped aerostatic bearing for the miniature
turbine of a dental handpiece [38], and Li et al. presented and simulated a novel aero-
static bearing with back-flow channels, which are designed to connect the feed pocket and
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low-pressure region of the bearing clearance directly [39]. CFD is of high computational
accuracy, but it is time-consuming to model, computationally inefficient, and sometimes
plagued by stability problems. A recent developing hybrid modeling method was pro-
posed by Neves, Chen and Song, which uses CFD to accurately simulate the performance
of orifice, and, at the same time, makes full use of FEM to efficiently calculate the Reynolds
equation [40–42].

When it comes to numerical methods, complicated iterations are needed, the calcu-
lating procedure is sophisticated, and the calculating process is time-consuming, which
makes it complex and burdensome to analyze the effect of a bearings’ parameters on its
performance on account of the non-intuitiveness of the calculation process [43]. In compari-
son, with FEM, it is a little easier to optimize a bearing’s parameters more conveniently,
but FEM requires regenerating meshes and rearranging the program with varying design
parameters [44].

In this study, a simplified calculation method is proposed to simplify the calculation
of pressure in aerostatic journal bearing with MPOTRs, and the influence of the bearing’s
parameters on its performance is explored. Additionally, an aerostatic bearing with specific
parameters is calculated by CFD to verify the method. Furthermore, the effect of ζi on a
bearing’s performance section is used to determine the impact of the bearing’s parameters
on its performance, and some conclusions are given.

2. Principle of the Simplified Calculation Method

Figure 1 shows an aerostatic journal bearing with MPOTRs. Both ends of external
circumference with diameter D are open. Hence, 2 atmospheric boundaries are found. L
is the total length where gas film exists, l is the distance between N orifices’ location and
gas film edge. To ensure that the restrictor area is orifice sectional area, the air chamber is
connected to the orifice. A diffusion effect is observed immediately when the gas effuses
out of an orifice and the gas distribution becomes gradually uniform. Diffusion effect can
be ignored if the orifices are linked by grooves [45]. In addition, a detailed description of
orifice can be found in [46].
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Figure 1. Configuration of a journal bearing with MPOTRs.

To simulate a genuine situation, the following assumptions were made in the simplified
calculation method. There is no flow in the circumferential direction. In other words, the
gas can distribute uniformly in every 2π/N section edge and the pressure from Pd decreases
to Pa smoothly. Lubricant gas appears to be ideal gas, which is compressible and isothermal,
because the heat transfer between gas and solid could be neglected. The gas inside bearing
is of low Reynolds number in the clearance because the film thickness h0 is within tens
of micrometers. Therefore, the cylindrical area can expand into a rectangle, which makes
the 3-D cylindrical surface problem into a plane problem. The width b of 1-D gas film in
Figure 2 is equal to πD/N in Figure 1.
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Figure 2. Flow model in each part of ith section.

According to the assumptions above, the bearing pressure P can satisfy Equations (1)–(3)
in the Cartesian coordinates displayed in Figures 1 and 2.

∂P
∂x

= η
∂2u
∂z2 (1)

∂P
∂y

= 0 (2)

∂P
∂z

= 0 (3)

Equations (2) and (3) demonstrate that P is not connected to y and z. Thus, Equation (1)
is expressed as

dP
dx

= η
d2u
dz2 (4)

Equation (4) is the simplified Reynolds equation under 1-D hypnosis. Supposing the
film thickness in each section of the bearing surface is the same, MFR of ith section is

.
mi= Ao∅P0

√
2ρa
Pa

ϕ(β i) (5)

where A0 is the section area of orifice Ao= πd2
0/4, and discharge correction factor ∅ is 0.8

if the lubricant is air. Considering that the flow is isothermal, the discharge coefficient ϕ
under both supersonic and subsonic conditions is calculated based on Equation (6) [38].

ϕ(β i) =


[

k
k − 1

(
βi

2
k − βi

k+1
k

)] 1
2 , βi > βα[

k
2

(
2

k+1

) k+1
k − 1

] 1
2

, βi ≤ βα

(6)

where k = 1.4 if lubricant is air. Bi= Pdi/P0, where Pdi is the gas pressure at the ith orifice
outlet. Bα = (2/k +1)(k+1/k − 1). Conclusion could be obtained from Equations (5) and (6)
that MFR of each section can be assessed by βi. Based on the mass conservation law, MFR
inside of 1-D gas film shown in Figure 2 can be written as

.
mi= b

∫ hi

0
ρudz (7)

where hi = h0(1 − ε cos θi).
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Equations (5) and (7) describe the mass conservation equations of the gas that flows
through the bearing. Under isothermal conditions, the gas state equation is

P
ρ
=

Pa

ρa
(8)

Given that the velocity of the bearing’s surface is relatively low, when z = 0 and z = hi,
u is expected to be zero for simplicity. Subsequently, u is calculated by double integration
of Equation (4)

u = − 1
2η

dP
dx

z(h i − z) (9)

Equation (9) is used to substitute u in Equation (7). Then, MFR through a section with
width b is derived as

.
mi =

ρbh3
i

12
dP
dx

(10)

Considering Equation (8), ρ can be put into Equation (10), and the variables P and x
are separated,

PdP =
12η

.
miPa

bh3
i ρa

x (0 < x < l) (11)

Equation (10) is integrated; the bearing’s pressure P can be calculated as

P2 − P2
di= −

24η
.

miPa

bh3
i ρa

x (12)

Given the boundary conditions, P = Pa when x = l, Equation (12) can be written as

P2
a − P2

di= −
24η

.
miPa

bh3
i ρa

l (13)

Equation (12) is divided by Equation (13); P is defined as

P =

√
Pdi

2 − (Pdi
2 − Pa2)

x
l

(14)

To obtain LCC, every section is considered separately. The pressure distribution in ith
section is integrated,

Fi =
D
2

∫ π
N

− π
N

[
2
∫ l

0
Pdx + Pdi(L − 2l)

]
cos θ dθ (15)

In every section, the composition of forces generated from pressure is symmetrical
about the axial line on the gas film through ith orifice, which leads to

Fi= D sin
π

N

[
2
∫ l

0
Pdx + Pdi(L − 2l)

]
(16)

Equation (14) is substituted into Equation (16) and the integral value calculated,

Fi= DLP0Ki sin
π

N
, Ki= βi

[
(L − 2l)

L
+

4
3

l
L

1 − ( σ
βi
)3

1 − ( σ
βi
)2

]
(17)

where σ = Pa/P0.
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The direction of Fi is at a certain angle θi= 2(i − 1)π/N with the vertical direction, all
those forces in the vertical direction are combined, LCC of the gas film can be expressed as

W =∑N
i=1 Ficos θi= DLP0 sin

π

N ∑N
i=1 Kicos θi (18)

LCC coefficient (LCCE) can be expressed as

CW =
W

DLP0
= sin

π

N ∑N
i=1 Kicos θi (19)

It is LCC of unit area. When bearing clearance is equal everywhere hi = h0, Ki in every
section is equal and Cw must be equal to zero, indicating that bearing bears nothing.

3. Calculation Procedures of the Simplified Calculation Method

βi is an unknown variable in Equation (17). However, the mass conservation law
indicates the inflow MFR must equal to the outflow MFR, suggesting that the

.
mi in

Equations (5) and (13) must be equal:

βi
2 − σ2

σϕ
=

∅Ao N
hi

3
12η

π

√
2

Paρa

2l
D

(20)

Supposing

ζi =
βi

2 − σ2

σϕ
(21)

and
f1i =

∅Ao N
hi

3 (22)

f2 =
12η

π

√
2

Paρa
(23)

f3 =
2l
D

(24)

The definitions of f 1i, f 2 and f 3 are very intuitive to understand: f 1i is the gas chan-
nel coefficient related to film thickness and orifice diameter. f 2 is the lubricant physical
coefficient only related to the physical properties of lubricant itself, which is a constant for
specific kind of gas. f 3 is the bearing structural coefficient related to structural parameters.
For every section, Equations (21)–(24), Equation (20) can be denoted as

ζi = f1i f2 f3 (25)

If atmospheric pressure, supply pressure, lubricant gas and structural parameters are
stated, ζi and βi are determined by Equations (25) and (21), respectively. Subsequently,
LCC and LCCE are calculated by incorporating βi in Equations (18) and (19).

Given that βi and ζi are associated with each other by a nonlinear univariate equation,
lots of simile solution methods can be used to solve Equation (25). Figure 3 demonstrates the
detailed procedures of simplified calculation method, where Kw = ∆W/∆h is the bearing
stiffness along the radial direction.

Next, W, Cw and Kw are calculated to optimize the bearing’s parameters P0, L, D, N
and A0. Figure 3 also demonstrates that simplified calculation method is easier to operate
compared with CFD and FEM.
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4. Application Case Study

To validate and evaluate this method, the calculation data of the simplified calculation
method were compared to those of CFD obtained from [29]. This aerostatic spindle, named
C200, has been widely used in actual production. The picture of a C200 and its section
view are shown in Figure 4. The C200 spindle is a heavy-duty bearing, which is designed
to carry a load of more than 1000 kg under the condition of double-end support. Thus far,
we have produced more than 16 spindles, which have proven to be a successful product.
Its earliest engineering design adopts the method described in this paper. Structural and
gas-supply parameters are shown in Table 1. The LCC of the calculation examples of
different eccentricities are shown in Table 2.
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Table 1. Parameters of the aerostatic journal bearing (C200).

Term Specification

Length, L 225 mm
Diameter of spindle rotor, D 200 mm

Orifice-end distance, l 65 mm
Orifice diameter, d0 0.2 mm

Gas film thickness, h0 20 µm
Supply pressure, P0 0.5 MPa

Number of orifices in each row, N 12
Lubricant Clean air

Table 2. LCC of the calculation example of different eccentricities (C200).

Eccentricity Ratio Eccentricity Value CFD Result Simplified Method Result Ratio of Deviation

0 0 µm 0 0 0
0.1 2 µm 1300 N 1350 N 3.8%
0.2 4 µm 2550 N 2614 N 2.5%
0.3 6 µm 3640 N 3717 N 2.1%
0.4 8 µm 4520 N 4622 N 2.3%

Figure 5 shows the calculation results of CFD and the simplified method described
in this paper under different eccentricities, which are 0, 0.25, and 0.5, respectively. The
comparison shows that there are two main differences: (1) The geometric size of orifice is
not considered in the one-dimensional flow model, so there is no raised high-pressure area
in the cross-section; that is, the one-dimensional flow model cannot represent the diffusion
flow after the orifice. (2) Since the diffusion flow is not considered, the flow resistance
in the one-dimensional flow model is smaller than that in the total model of CFD. The
orifice and gas film are somehow analogous to two nonlinear electric resistors, and the
recess pressure is similar to the electric voltage between those two resistors. According
to the Kirchhoff circuit law, the pressure after the orifice is smaller when calculated using
the simplified one-dimensional model. Although the annular flow makes the calculated
value of the one-dimensional flow model larger, the smaller pressure after the orifice makes
the calculated value smaller; the superposition of those two effects makes the difference
between the calculated values not very large.

Table 2 shows that the calculation results of the simplified calculation method are in
good agreement with those of CFD. In addition, those computational results are graphically
compared in Figure 6. LCC calculated by this method is slightly larger than CFD, and the
relative error is within 5% in all the different eccentricities. Obviously, the assumption of
neglecting circumferential flow shows little effect in this case because gas film thickness
is about 1/10,000 of spindle diameter. This simplified calculation method can be applied
because most of the aerostatic bearings have a film thickness of about 5~15 µm and are
small enough compared with the bearing structural parameters.

In the calculation process, the most notable is the time taken by CFD and the simplified
calculation method. In order to obtain the calculation results in Figure 6, CFD calculation
took about 26 min and the simplified calculation method took only a few seconds; both
programs were run on the same computer with an i7 CPU, not to mention the half-day of
pre-modeling with CFD. Considering the calculation accuracy and efficiency, the method
proposed in this paper is a very effective method in the early stage of engineering design.
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Figure 5. The aerostatic C200 spindle and air-pressure-distribution simulation results calculated
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result without eccentricity, (e) the simplified method result with eccentricity ratio of 0.25, (f) the
simplified method result with eccentricity ratio of 0.5.
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Figure 7 shows another widely used precision spindle in diamond-turning lathe, with
a diameter of 100 mm, named C100, with their parameters listed in Table 3. Thus far, we
have produced more than 50 spindles; in addition, its initial design was completed by the
method proposed in this paper. The pressure-distribution cloud map calculated using CFD
is similar to Figure 5c, shown in Figure 8.
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section view and diagram of the C100 spindle.

Table 3. Parameters of the aerostatic journal bearing (C100).

Term Specification

Length, L 100 mm
Diameter of spindle rotor, D 100 mm

Orifice-end distance, l 25 mm
Orifice diameter, d0 0.2 mm

Gas film thickness, h0 15 µm
Supply pressure, P0 0.5 MPa

Number of orifices in each row, N 8
Lubricant Clean air
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Figure 8. The aerostatic C100 spindle and air-pressure-distribution simulation results calculated
using CFD and simplified method: (a) the CFD result without eccentricity, (b) the CFD result with
eccentricity ratio of 0.25, (c) the CFD result with eccentricity ratio of 0.5, (d) the simplified method
result without eccentricity, (e) the simplified method result with eccentricity ratio of 0.25, (f) the
simplified method result with eccentricity ratio of 0.5.
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It can be seen from Table 4 that for this spindle, the LCC difference between those two
methods becomes larger, but still does not exceed 10%. The main reason for this difference
is annular flow. When the radial bearing is eccentric, the gas will generate a flow from a
high-pressure area with thin film to the low pressure area with thick film, resulting in a
decrease in bearing capacity. The one-dimensional flow model introduced in this paper
does not take into account the annular flow; therefore, it is expected that the simplified
method will predict a higher LCC than the CFD method for the small diameter of the
main shaft.

Table 4. LCC of the calculation example of different eccentricity (C100).

Eccentricity Value CFD Result Simplified Method
Result Ratio of Deviation

0 µm 0 N 0 N 0
1.2 µm 242.8 N 266.2 N 9.6%
2.4 µm 476.3 N 514.3 N 8.0%
3.6 µm 673.5 N 730.6 N 8.5%
4.8 µm 838.7 N 912.2 N 8.7%

6.0 968.8 N 1061 N 9.5%

The C100 and C200 have the same ratio between the orifice-end face and the entire
bearing length, but the difference between the calculation results of C100 and C200 and
the numerical analysis is not the same; the key lies in the orifices’ number. The C100 has
only eight restrictors on each circumference, the division of each area is rougher, and the
diffusion effect and annular flow are more obvious, so the calculation results are quite
different from CFD.

5. Impact of ζi on a Bearing’s Performance

According to Equation (12), Pd determines the pressure distribution in the gas film
P once the bearing’s parameters have been provided, while Pd is determined by ζi de-
duced from Equations (20)–(25). Furthermore, the effects of a bearing’s parameters on its
performance is affected by changing ζi.

As demonstrated in Figure 9, the bearing’s performance can be determined by analyz-
ing the impact of ζi on βi according to Equation (21), βi= Pdi/P0 and βi is determined by ζi.
At varying supply pressures (from σ = 1/2 to σ = 1/10), βi increases with the growth in ζi
and tends to remain in the supersonic area when ζi is larger than 10. Figure 9 also highlights
that it is relatively easier for ζi to have an inclination to be saturated in the subsonic area
with the decrease in supply pressure. Gas should flow sub-sonically in order to avoid shock
waves; otherwise, LCC will sharply decrease and there is hardly any stiffness. From the
red line of Figure 9, where βi = 0.528, it can be seen that the suitable range of the bearing’s
parameters is narrow at extremely high supply pressure (σ < 1/8). Therefore, 0.4~0.6 MPa
is an appropriate supply pressure in most cases.

Generally, the ratio of l to L is equal to 1/4 or 1/5. When the ratio is 1/4, Figure 10
indicates the distribution of Ki in Equation (17) with βi at different supply pressures.
Obviously, Ki is approximately linear to βi and almost independent of supply pressure.
The distribution of ζi with Ki is shown in Figure 11. Thus, it is speculated that ζi and Ki
have the same distribution to ζi and βi. From the physical meaning of Equation (19), Ki is
proportional to the LCC of the ith section.
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Figure 12 demonstrates the influence of ζi on Kwi. Actually, the lines shown in
Figure 12 are proportional to the derivative of lines shown in Figure 11. As Figure 12
indicates, the maximum stiffness exists when ζi is 3~10 at different varying supply pres-
sures. With increasing supply pressures, ζi becomes larger after reaching the maximum
stiffness. Compared with [8], this is the difference between a Cartesian coordinate system
and cylindrical coordinate system.
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The line shapes displayed in Figure 13 are the same as those in Figure 12, except that
the value is several times larger. In other words, a bearings’ stiffness is directly connected
with the stiffness in every section. It can be proved as follows:
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The total stiffness Kw is the vector sum of Kwi in the vertical direction, that is

Kw = ∑N
i=1 Kwi

∆hi
∆h

cos θi = ∑N
i=1 Kwi cos2 θi (26)

The partial derivation of both sides of Equation (26) is expressed as Equation (27).
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To have the left side equal to zero, every partial derivative (i = 1~N) on the right side
needs to be zero. To approach the maximal stiffness, every gas film section in the bearings
must be designed for maximal stiffness.

The effect of ζi on MFR is shown in Figure 14. It is obvious that supply pressure has a
significant influence on a bearings’ MFR. A bearings’ MFR will rise in pace with supply
pressure. In addition, MFR tends to have a constant value when ζi is smaller than 1. With
the increase in ζi, MFR can decrease due to the flow-rate characteristics of an ideal orifice.
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6. Conclusions

In this study, a simplified calculation method of aerostatic journal bearing with
MPOTRs was presented. The calculation procedure was summarized and can be pro-
grammed easily to analyze the performance of two-row-orifice type journal aerostatic
bearings, which simplifies the analysis process of aerostatic journal bearing’s performance
prediction and offers a straightforward way to optimize parameters. In addition, this
method was verified with computational fluid dynamics by two actual case studies, and
it was found that the LCC difference between those two methods is less than 5% for a
200 mm-diameter spindle, and less than 10% for a 100 mm-diameter spindle.

In order to satisfy the critical need for high stiffness and load carrying capacity, every
gas film section in bearings should be designed to reach its maximal stiffness. From
the calculation process, it was found that ζi is a critical factor that influences bearings’
performance through the equations derived from this method. The following conclusions
can be reached by analyzing the association between ζi and performance parameters:

(1) ζi is a crucial parameter of the bearing’s performance. It can be assessed by the
discharge correction factor ∅, sectional area of the orifice A0, orifice number N, gas
film thickness in the ith section hi, kinematic viscosity of air η, atmospheric density ρa,
atmospheric pressure Pa, journal bearing diameter D, distance between orifices and
gas film edge l, and journal bearing length L.

(2) ζi is the product of f 1 (a gas-channel coefficient), f 2 (a gas-lubricant coefficient) and
f 3 (a bearing structural coefficient). A bearing with better performance, such as LCC,
stiffness and MFR, could be obtained if ζi is in the range of 1~10.

(3) With increasing ζi, a bearing’s stiffness in each section will reach a maximal value and
then decrease. Here, 0.4~0.6 MPa is an appropriate supply pressure range in most
cases, as the bearing’s parameters are narrow at extremely high supply pressures to
avoid shock waves.



Lubricants 2022, 10, 332 15 of 17

Author Contributions: Conceptualization, Y.W., J.X. and B.W.; Methodology, Y.W. and Z.Q.; Software,
Y.W. and J.X.; Validation, Y.W.; Formal Analysis, W.C.; Investigation, Y.W. and J.X.; Resources, Y.W.
and B.W.; Data curation, Y.W. and J.X.; Writing—original draft preparation, J.X.; Writing—review and
editing, Y.W. and W.C.; Visualization, Y.W. and J.X.; Supervision, Z.Q. and B.W.; Project administration,
Z.Q. and B.W.; Funding acquisition, Z.Q. and B.W. All authors have read and agreed to the published
version of the manuscript.

Funding: The work was supported by the Open Project Program of State Key Laboratory of applied
optics (SKLAO2021001A05); National Natural Science Foundation of China (No.51905130); and
Heilongjiang Provincial Natural Science Foundation of China (No. LH2020E039).

Data Availability Statement: The data supporting reported results by the authors can be sent by
e-mail.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

βi Pressure ratio in ith sec tion, Pdi/P0
βα Critical pressure ratio
η Kinematic viscosity of air
ρ Density of gas in the bearing
ρa Atmospheric density
σ Ratio of pressure, Pa/P0
ε Eccentricity ratio
∅ Discharge correction factor
ϕ Discharge coefficient
ζi Product of three coefficients
A0 Sectional area of the orifice
b Width of 1-D gas film
CFD Computational fluid dynamics
d0 Diameter of the orifice
D Journal bearing diameter
f 1i Gas channel coefficient
f 2 Lubricant physical coefficient
f 3 Bearing structural coefficient
FEM Finite element method
h0 Designed gas film thickness
hi Gas film thickness in ith section
∆h Film thickness changing value
k Gas specific heat ratio
Kw Bearing stiffness
l Distance between orifices and gas film edge
L Journal bearing length
LCC, W Load carrying capacity
LCCE, Cw LCC coefficient
MFR Mass flow rate
MPOTRs Multiple pocketed orifice-type restrictors
.

m Mass flow rate through the orifice
.

M Bearing mass flow rate
N Orifice number
P Pressure in the bearing
Pa Atmospheric pressure
Pd Pressure at orifice outlet
P0 Supply pressure
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