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Abstract: Alcohol aqueous solvents were prepared by individually adding n-propanol, isopropanol,
1,2-propanediol, and glycerol to deionized water for use as lubricants for the electrostatic minimum
quantity lubrication (EMQL) machining of aluminum alloys. The tribological characteristics of those
formulated alcohol solvents under EMQL were assessed using a four-ball configuration with an
aluminum–steel contact, and their static chemisorption on the aluminum surfaces was investigated.
It was found that the negatively charged alcohol lubricants (with charging voltages of −5 kV)
resulted in 31% and 15% reductions in the coefficient of friction (COF) and wear scar diameter
(WSD), respectively, in comparison with those generated using neutral alcohol lubricants. During
the EMQL, static charges could help dissociate the alcohol molecules, generating more negative
ions, which accelerated the chemisorption of those alcohol molecules on the aluminum surfaces and
thereby yielded a relatively homogeneous-reacted film consisting of more carbon and oxygen. This
lubricating film improved the interfacial lubrication, thus producing a better tribological performance
for the aluminum alloys. The results achieved from this study will offer a new way to develop
high-performance lubrication technologies for machining aluminum alloys.

Keywords: alcohols; electrostatic minimum quantity lubrication; aluminum–steel contact; friction
and wear

1. Introduction

Owing to their low density, high specific strength, atmospheric corrosion resistance,
and good electrical and thermal conductivity [1,2], aluminum alloys have been widely used
in aerospace and automobile manufacturing [3,4]. However, problems such as the sticking
phenomenon and built-up edges are prone to occur in the cutting process of the aluminum
alloy due to its low hardness and high plasticity, which may negatively affect the machining
quality of the workpiece [5]; the transfer of aluminum to steel in the aluminum–steel system
is easy to occur in the aluminum–steel system, resulting in various degrees of damage
on the surface of the aluminum parts, and even serious failure of the friction pair [6,7].
Therefore, in order to meet the requirements of the machining precision of aluminum parts
and address the problems of quick-wear and the difficult lubrication of the aluminum–steel
contact, it is crucial to realize the high-efficiency lubrication of aluminum alloys.

In the study of aluminum alloy lubrication, alcohols are well-known as highly effective
anti-friction and anti-wear additives [8,9]. Montgomery [10] and Hironaka [11] studied
the wear behavior of an aluminum–steel system under boundary lubrication conditions.
It was discovered that functional groups, such as the hydroxyl groups in the alcohol
compounds, can react with the aluminum surface to produce amorphous substances
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(aluminum complexes or salts), which may form sufficient adsorption films. Hotten [12]
and Wan et al. [13] found that diol compounds are efficient boundary lubricants, which may
react with the aluminum to form five- or six-element complexes for lubrication, and they
also pointed out that the molecular structure has an important influence on the lubrication.
Hu et al. [9,14] investigated the lubrication performance of a series of alcohols. The results
showed that alcohols can significantly improve the lubrication state of the aluminum
surface, whether it is a long chain or a short chain. The generation of an organic aluminum
alkoxide on the aluminum alloy surface to produce continuous boundary films serves as
the lubrication mechanism, thus lessening or avoiding wear. Its anti-wear ability and load-
carrying capacity were affected by the chain length, hydroxyl number, and concentration.

Kajdas proposed the negative-ion-radical mechanism (NIRAM) based on the the-
ory of exoelectron emission to explain the lubrication mechanism of alcohols during
friction [15,16], and this hypothesis was subsequently supported by much research [17–19].
They believed that the tribochemical reaction between the alcohols and aluminum was
primarily initiated by electrons. During the friction, the electrons emitted from the alu-
minum surface cause the dissociation of the alcohol molecules to form negative ions and
free radicals and, finally, form an anti-friction and anti-wear protective layer on the metal
surface. Inspired by the NIRAM, we assumed that when the lubricating fluids are charged
by an external electric field, a large number of electrons will play a facilitating role in
generating more negative ions or free radicals and enhancing the film-forming chemical
reaction at the friction interface.

Electrostatic minimum quantity lubrication (EMQL) uses a high-voltage electrostatic
electrode to contact-charge lubricants and produces charged mists under compressed air
that are sprayed into the machining area for lubrication and cooling. The research showed
that [20,21] the lubricant droplets carry electrostatic charges as the atomization of the
charged lubricant, and their charge-to-mass ratio [22] sharply rises with the increase of the
charging voltage’s absolute value; the particle size of the lubricating oil droplets decreased
and was more uniformly distributed after the charging. The wettability, penetration,
and deposition of the lubricant were all optimized. This technology has demonstrated
excellent lubrication performance in the cutting of difficult-to-machine materials, such as
stainless steel and titanium alloy [23,24], compared to the conventional minimum quantity
lubrication (MQL). Previous research mainly focused on the analysis of the changes in
the physical properties of the droplets after charging, but the impacts of the electrostatic
interaction on the interfacial chemical reactions were rarely involved.

In this study, four short-chain alcohols were selected as lubricants, and the lubricants
were contact-charged by high-voltage electrodes (EMQL was used as the charging method).
Firstly, the tribological properties of the charged alcohols in the aluminum–steel system
were investigated. Secondly, the impacts of the various molecular structures on the friction-
reduction and wear-resistance properties were explored by evaluating the lubricating
performance of the four alcohols and the corrosion tendency of the aluminum in different
alcohol solutions. Finally, the lubrication mechanism of the charged alcohols was analyzed
through the static reaction experiment of the alcohol with the aluminum, in combination
with the surface morphology and element distribution of the aluminum ball-wear scar after
the friction. To improve the machining performance and lubrication efficiency of aluminum
alloys, the study findings may be applied in these fields.

2. Materials and Methods
2.1. Preparation of the Lubricants

Four analytically pure alcohols were chosen: n-propanol, isopropanol, 1,2-propanediol,
and glycerol (purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China).
The properties of the alcohols are shown in Table 1. The effect of the hydroxyl position on
the friction and wear of the aluminum was studied by n-propanol and isopropanol, and the
effect of the hydroxyl number was studied by n-propanol/isopropanol, 1,2-propanediol,
and glycerol. Alcohols must be diluted with neutral solvents to lessen their reactivity
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since they easily corrode aluminum substrates [25,26]. The final alcohol lubricants were
formulated at a volume concentration of 25% (25% alcohol and 75% deionized water).

Table 1. Properties of alcohols.

Alcohol Formula Molecular Mass Boiling Point
(◦C)

Viscosity at
20 ◦C (mPa·s)

n-Propanol
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2.2. Tribological Testing

The four-ball friction tests were conducted by an MMW-1 multi-specimen test system
(Jinan Shijin Group Co., Ltd., Jinan, China). The upper friction pair consisted of a GCr15
steel ball, and the lower friction pair were three 1060 aluminum balls (the diameters were all
12.7 mm). The friction tester was grounded (as shown in Figure 1). The test conditions were
as follows: loads of 12, 24, and 49 N; rotational speeds of 50, 150, and 250 r/min; the EMQL
system was used for drip lubrication (air pressure: 0 MPa, flow rate: 20 mL/h, and the
charging voltage, −5 kV); the test time was 20 min. The friction coefficient was recorded by
the computer in real-time, and three parallel tests were conducted for each group. After the
test, the test balls were removed and ultrasonically cleaned with petroleum ether for 10 min,
and the wear scar diameters of the aluminum balls under various lubrication conditions
were measured with a VW-6000 optical microscope (Keyence, Osaka, Japan). SEM and EDS
(EVO18, Zeiss, Oberkochen, Germany) were used to observe and analyze the morphology
and elemental composition of the worn surfaces of the aluminum balls.
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Figure 1. Schematic of the four-ball test.

2.3. Static Reaction Experiment

The static reaction tests of the aluminum plates and alcohols were carried out. The test
device is shown in Figure 2. We selected 1060 aluminum plates (10 mm × 10 mm × 1 mm),
and the alcohol solutions were n-propanol, isopropanol, 1,2-propanediol, and glycerol
aqueous solutions, with a volume concentration of 25%. The aluminum plate was heated by
an oil bath at 25 ◦C, 75 ◦C, or 140 ◦C for 30 min. The alcohol solutions were dropped on the
surface of the aluminum plate by EMQL, with a flow rate of 20 mL/h and charging voltages
of 0 kV and −5 kV. The surfaces of the aluminum plates were polished to mirrors before
the experiment. After the experiment, the aluminum plates were ultrasonically cleaned in
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anhydrous ethanol for 10 min to remove the residual of the physical adsorption solution.
SEM/EDS (EVO18, Zeiss, Oberkochen, Germany) was used to observe and analyze the
morphology and element content of the reaction film on the aluminum plate surface.
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2.4. Electrochemical Polarization Test

A CH1760E electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd.,
Shanghai, China) was used for the electrochemical polarization test (Figure 3). It consisted
of a three-electrodes system; the working electrode was a 1060 pure aluminum plate
(Φ 14 mm × 2 mm), the reference electrode was a calomel electrode, and the auxiliary
electrode was a platinum electrode. The working electrode was immersed in four kinds of a
25% alcohol solution (n-propanol, isopropanol, 1,2-propanediol, and glycerol), and the self-
corrosion potential of the aluminum plate was measured by the Tafel curve. Each test group
was divided into three groups, and the average value was taken as the corrosion potential.
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3. Results and Discussion
3.1. Tribological Performance
3.1.1. Lubrication Performance of Charged Alcohol Lubricants

Figure 4 shows the average COF and WSD as a function of the load under the lubrica-
tion conditions of the charged and uncharged four alcohol solutions. It can be seen that the
COF and WSD lubricated by the charged four alcohol solutions are lower than those by the
uncharged solutions at all loads. The largest reduction among them in the COF is around
31% (glycerol, 49 N), and the highest reduction in the WSD is about 12%, i.e., the wear
volume is reduced by nearly 30% (n-propanol, 49 N). According to the findings, charging
may effectively enhance the anti-friction and anti-wear properties of alcohol solutions.
Since the adsorption capacity of alcohol molecules is enhanced after charging, it is easier to
form protective lubricating films on the friction surface, thus avoiding the direct contact of
the aluminum–steel friction pair.
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150 r/min).

The average COF and WSD lubricated by the four alcohols, both charged and un-
charged, at different rotational speeds are shown in Figure 5. The charged alcohol solutions
exhibit good tribological properties at various rotational speeds. Among them, when the
rotational speed is 150 r/min, the COF of the charged glycerol decreases by approximately
30%, and when the rotational speed is 50 r/min, the WSD of 1,2-propanediol reduces
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by about 15%, i.e., the wear volume decreases by nearly 36%. This demonstrates that
when four kinds of alcohol solutions are charged, the lubrication performances of the
aluminum–steel friction pair are improved.
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3.1.2. Comparison of Four Alcohols’ Lubrication Performance

Figure 6 shows the COF of the aluminum–steel contact lubricated by the four alcohol
solutions under different loads and speeds. As can be observed, the order of the COF is:
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n-propanol < glycerol < 1,2-propanediol < isopropanol. Among them, isopropanol has the
largest COF, with a large gap compared to the other three alcohols. Although the average
COF of the glycerol solution is small, the real-time COF curve fluctuates considerably
(Figure 7), indicating that its lubrication stability is poor.
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Figure 6. COF lubricated by four alcohol solutions under different (a) loads (speed is 150 r/min) and
(b) rotational speeds (load is 49 N).
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Figure 7. COF curves of aluminum–steel friction pairs with time (uncharged; load: 49 N; rotational
speed: 250 r/min).

Figure 8 compares the WSD on the surface of the aluminum balls lubricated by the four
alcohol solutions under different loads and rotational speeds. The order of the wear scar
diameter is: 1,2-propanediol < n-propanol < isopropanol < glycerol. 1,2-Propanediol has the
smallest WSD, which is significantly lower than that of the other alcohols and shows better
anti-wear performance. The most severe wear is seen with glycerol, which corresponds to
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its poor stability. A large amount of flaking debris is generated as a result of the severe wear,
causing remarkable fluctuations in the COF [27,28] and worse lubrication performance.
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Figure 8. The WSD lubricated by four alcohol solutions under different (a) loads (speed is 150 r/min)
and (b) rotational speeds (load is 49 N).

Glycerol, which has a unique polyhydroxy structure, possesses the strongest adsorp-
tion capability among the four alcohols [29]. Theoretically, it can form a more durable
chemisorption film with the aluminum surface, which can effectively prevent the transfer
and adhesion of the aluminum and shows high anti-wear and bearing performance. Glyc-
erol did not, however, exert excellent lubrication performance in our study. It is speculated
that the aluminum matrix may have experienced over-corrosion owing to the higher con-
centration of the glycerol solution. The self-corrosion potential of the aluminum in the four
alcohol solutions was measured to judge the corrosion tendency of the aluminum in differ-
ent alcohol solutions. As can be seen in Figure 9, glycerol has the largest negative potential
values, suggesting that aluminum loses electrons easier, i.e., it is more easily corroded.
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Figure 9. Polarization characteristic curve of aluminum plate in 25% of four alcohol solutions.
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The self-corrosion potential of the aluminum plate is −0.251 V when the concentration
of glycerol is lowered to 10% (as shown in Figure 10). Compared to a 25% concentration,
the corrosion resistance has increased. Additionally, the COF curve fluctuates slightly, and
the aluminum ball’s WSD decreases by about 19% (Figure 11). The lubrication stability and
anti-wear capacity of glycerol increase as its concentration decreases. It is concluded that
the over-corrosion of glycerol on the aluminum matrix at a 25% concentration affects its
lubrication performance and results in inadequate anti-friction and anti-wear performance.
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Figure 10. Corrosion potential of aluminum plate in four alcohol solutions.
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Figure 11. The COF and wear scar morphology under 10% and 25% glycerol lubrication (uncharged;
load: 49 N; rotational speed: 250 r/min).

3.2. Static Reaction Experiment Results

Table 2 shows the image of the reaction films on the aluminum plate surface following
the static reaction experiment. It can be seen that, at ambient temperature, there is no
adsorption film on the aluminum plate surface when the solution is uncharged; the white
adsorption films are visible on the local area of the aluminum plate surface after the
treatment of the four alcohol solutions with a high voltage electrostatic charge. The SEM
morphology and EDS energy spectrum of the reaction film area on the aluminum plate
surface after the charged isopropanol treatment were analyzed (as shown in Figure 12).
Some deposits may be observed on the aluminum plate surface. C and O elements are
present in this substance. So, obviously, charging stimulates the adsorption of the alcohol
molecules, which form relatively stable compounds on the aluminum surface.
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Table 2. Static reaction films on aluminum plate surface.

25 ◦C 75 ◦C 140 ◦C
Uncharged Charged Uncharged Charged Uncharged Charged

n-
Propanol
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Figure 12. SEM and EDS of the aluminum plate surface after charged isopropanol static reaction (at
room temperature: 25 ◦C).

The surface of the aluminum plate is covered with a film at 75 ◦C, whether charged
or not. However, the surface film is not obvious when glycerol is used, indicating that
the chemical interaction between glycerol and aluminum is negligible at 75 ◦C. When the
temperature is raised to 140 ◦C, a reaction film appears on the aluminum plate surface
(Table 2), indicating that glycerol can react with aluminum.

Figure 13 depicts the aluminum plate surface’s SEM picture and EDS energy spectrum,
detected within the dashed boxed areas after three different types of treatment. Compared
with the untreated aluminum plate, the surface of the aluminum plate is covered with
a reaction film after the n-propanol static reaction treatment, and the content of the C
and O elements rises, suggesting that the reaction film might be an organic film or an
oxide film. Meanwhile, the surface film is dense, and the surface scan reveals fewer black
holes following the charged n-propanol treatment than in the uncharged, demonstrating
a uniform distribution of the C and O elements. The percentages of C and O increase by
around 9.8% and 61.9%, respectively, according to energy spectrum analysis. This indicates
that the chemical activity of the alcohols can be effectively boosted by charging.
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Figure 13. SEM and EDS of aluminum plate surface after (a) untreated, (b) uncharged n-propanol-
treated, and (c) charged n-propanol-treated (75 ◦C heating).

It can be seen from Table 3 that the C and O content all increased after the four alcohol
solutions were charged, compared to uncharged, which proves that charging promotes the
reactivity between alcohol and aluminum, and thus promotes the formation of a reaction
film. In contrast to other alcohols, n-propanol and 1,2-propanediol have higher C and O
contents, and the rise in the C and O content is more pronounced after charging, which is
consistent with their better anti-friction and anti-wear performance.

Table 3. Element content of aluminum surface after four alcohols’ static reaction (75 ◦C heating).

Content %
Alcohols n-Propanol Isopropanol 1,2-Propanediol Glycerol

Uncharged Charged Uncharged Charged Uncharged Charged Uncharged Charged

C 10.27 11.28 6.13 12.88 11.07 16.28 7.89 15.02
O 17.03 127.57 10.82 9.67 4.28 17.91 2.86 5.89
Al 72.70 61.15 83.05 77.45 84.65 65.81 89.25 79.09
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3.3. Lubrication Mechanism of Alcohol with Different Molecular Structures

The four alcohols with different molecular structures exerted different effects on the lu-
brication of the aluminum, according to the tribological testing and static reaction experiment.

The effect of the molecular structure on the anti-friction properties was analyzed.
It showed that a three-layer carbon chain structure is formed when n-propanol adsorbs
to the friction surface (Figure 14a). This multi-layer structure may better separate the
steel–aluminum friction pair and achieves lower COFs in the four alcohol solutions. 1,2-
propanediol possesses a two-layer carbon chain structure, while a five-membered ring struc-
ture is stably adsorbed, and the COF is likewise low. Isopropanol has only one hydroxyl
group and performs poor adsorption despite forming a two-layer carbon chain structure
on the friction surface (Figure 14b). Since the adsorption film is thin, the friction increases.
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By analyzing the influence of the molecular structure on the anti-wear properties, it
can be concluded that 1,2-propanediol containing two hydroxyl groups forms a bidentate
bond with the aluminum atom on the surface (Figure 14c). The stable five-membered
ring structure [12,13] efficiently prevents the transfer of aluminum to steel and provides
good anti-wear properties. Although glycerol with three hydroxyl groups might produce
stronger adsorption (Figure 14d), Igari et al. [30] found that alcohol with this structure
has a great impact on the aluminum wear when hydroxyl groups exist at both ends of the
lubricant molecule. Glycerol exhibits the highest amount of wear among the four alcohols,
which is attributed to its corrosive wear on the aluminum matrix at high concentrations.

3.4. Lubrication Mechanism of Charged Alcohols

In order to investigate the lubrication mechanism of the charged alcohols, n-propanol
and 1,2-propanediol, which exhibit preferable anti-friction and anti-wear properties, were
selected for further analysis. The wear scar morphology and the EDS energy spectrum
of the aluminum ball surface after tribological tests with n-propanol and 1,2-propanediol
lubrication are depicted in Figures 15 and 16. Deposits can be seen on the surface of the
wear scar (the darker regions in the figures), demonstrating that the alcohol molecules
build a protective film on the aluminum surface through physical and chemical adsorption
or a reaction during the friction and have effective lubrication. At the same time, energy
spectrum analysis revealed the presence of C and O components in the wear scar, with a
very high concentration of O, which indicates that the surface film is dominated by the
oxide film. This may be because the organic aluminum compounds are soft, shearable,
and generally sacrificial layers [31] produced by the reaction of the alcohol and aluminum.
The internal C-O chain is eventually broken by the action of the high shear force, leaving
just alumina and its hydrate [32]. This viewpoint can be confirmed by the results of the
static reaction experiment (Section 3.2). The surface films produced by the static interaction
between the alcohol and aluminum are mostly organic films and oxide films without high
shear forces, as shown in Table 2 by the slight differences in the C and O contents of the
surface films.
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Comparing the impacts of uncharged and charged on alcohol lubrications, it is dis-
covered that the wear scar is larger, with visible flaking and adhesion, surrounded under
uncharged conditions (as illustrated in Figures 15a and 16a), which is mainly adhesive wear.
This may be due to the low adsorption strength of the lubricants on the friction surface,
which desorbs at a specific temperature [33] and cannot lubricate the surface properly,
resulting in direct contact with some surfaces. Furthermore, because aluminum material is
relatively soft, friction can cause plastic deformation on its surface. Adhesion points will
be formed, accompanied by an instantaneously high temperature. When the alcohol is
charged, the wear scar decreases, and its surrounding area becomes smooth and flat, with
nearly no adhesion (as shown in Figures 15b and 16b). The energy spectrum shows that the
percentages of C and O on the surface rise in comparison to the uncharged (n-propanol:
93.4%, 15.3%; 1,2-propanediol: 30.6%, 24.1%). It indicates that charging improves the
lubrication performance of the alcohols. This might be because the reactivity between the
alcohol and aluminum is enhanced after charging, and a high-strength chemical reaction
film is easier to form on the friction surface. This film plays a sacrificial protective role,
effectively preventing direct contact between the metal surfaces and reducing or avoiding
the adhesion phenomenon, thereby reducing surface wear.

According to the Hard and Soft Acids and Bases (HSAB) theory [34] and the NIRAM,
the reason why alcohols effectively lubricate the aluminum surface is that compounds with
polar functional groups (e.g., alcohols) are hard bases, which are simple to adsorb to fresh
hard acid surfaces (e.g., aluminum). There are several tribochemical reactions that occur
during the friction process [35,36], including surface oxidation, high-energy nascent surface
or abrasive particle catalysis [37], exoelectron emission, the oxidation and degradation
of lubricating oil molecules, and local temperature rise. Among them, the interaction
between the emitted electrons and alcohol molecules induces the dissociation of the alcohol
molecules to form negative ions and radicals, which adsorb on the positive charge spots
on the surface to produce an organometallic chemisorption film. The dehydrogenation
reaction may take place since the C-H chain in alcohol breaks under a variety of catalytic,
high-temperature, and oxidation conditions. This may cause intermolecular crosslinking
and the formation of a network polymer film to protect the friction surface. If the shear
strength is too high, the chemical bonds of organometallic compounds will break, and
inorganic films (such as Al2O3) will be produced. The protective films will ultimately be
destroyed by friction and wear, and then new organic and inorganic films will be produced.
It is a dynamic process.

The above process demonstrates that the electron is very important for the reaction
between alcohol and aluminum. However, the electron only originated from the friction
process when general alcohols were employed as lubricants. The alcohols’ lubrication effec-
tiveness may not be completely utilized for aluminum—a material with weak exoelectron
emission intensity [38,39]. By introducing electrostatic technology, the alcohol solutions are
charged with negative high-voltage static electricity before entering the friction area, and a
large number of electrons trigger the dissociation of alcohol molecules to generate negative
ions and radicals. Alcohol molecules are, once more, ionized when they come into contact
with friction-induced exoelectrons. Then, more negative ions on the aluminum surface will
participate in chemical adsorption, thus forming a thicker lubricating film.

The lubrication mechanism of the charged alcohols has been analyzed using n-propanol
as an example (Figure 17). Firstly, the alcohol molecules are dissociated to produce negative
ions under the action of the electrons induced by charging and friction. Subsequently, the
negative ions are chemisorbed to positive charge sites on the aluminum surface, forming
an adsorption film. Molecular cross-linking may also take place simultaneously, generating
an easily sheared network polymer film that effectively prevents direct contact between the
aluminum–steel and lowers the friction. Finally, the C-O bonds break and generate free
radicals under the influence of the high shear. The residual O reacts with the Al to create
Al2O3—a thin, hard, and dense oxide film that provides an anti-wear effect.
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4. Conclusions

In this paper, the effects of charged alcohol lubricants on the lubrication performance
of aluminum and its mechanism were analyzed. Based on the NIRAM, the lubrication
characteristics of EMQL technology were studied from the perspective of the chemical
reaction film. The following conclusions can be drawn:

(1) Compared with the uncharged case, the COF of the charged four alcohols decreased
by about 31% at the highest, and the WSD was reduced by up to 15%. The lubrication
performance of n-propanol and 1,2-propanediol was superior to that of the other alcohols;

(2) The static reaction experiment demonstrated that, following alcohol charging, the
aluminum plate’s surface film had a uniform morphology, the content of C and O grew
noticeably, and the molecular structure had a certain impact on the content of C and O;

(3) The tribological properties of aluminum–steel friction pairs under alcohol lubrica-
tion were affected by the alcohols’ molecular structures. The highest anti-friction perfor-
mance was provided by n-propanol, which formed a three-layer carbon chain structure
after its adsorption, and the best anti-wear performance was offered by 1,2-propanediol,
which formed a stable five-membered ring structure on the aluminum surface;

(4) The lubrication mechanism of the charged alcohols was that the introduction of
electrostatic technology enhanced the dissociation of the alcohol molecules to produce
more negative ions. Numerous negative ions were chemisorbed onto the positive charge
sites on the aluminum surface to form an easy shear protective film (the organic aluminum
compounds), and then some chemical bonds of the organic aluminum compounds could
be broken by the high shear force. Finally, organic aluminum compounds and inorganic
aluminum oxide films were formed on the aluminum surface.

The effect of charged alcohol aqueous solvents on the lubrication performance of
aluminum was investigated, in this work, using a particular alcohol concentration. In order
to improve the practical application value of this research, subsequent work will focus on
adding alcohol to the cutting fluid and charging the cutting fluid to evaluate its cutting
performance and find the optimum additive concentration.
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