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Abstract: Lubricants exhibiting both thermal and chemical stability that consequently generate less
hydrogen during friction are required to avoid the hydrogen embrittlement of moving mechanical
components. The present work studied the effects of the length and number of alkyl chains on
the tribological properties of polyphenyl ethers (PPEs), which feature good thermal and radiation
resistance. PPEs were found to have much lower friction coefficients compared with a poly-alpha-
olefin and alkyldiphenyl ether, and the effect of the running-in process on friction appeared to be
negligible. The formation of polymers on the friction track evidently decreased the friction coefficients
of the lubricants and the wear rates were almost zero for all the PPEs, indicating excellent anti-wear
properties. Analyses with a quadrupole mass spectrometer connected to a friction tester under
vacuum indicated negligible hydrogen generation from 4P2E, which had no alkyl chains, after the
running-in. R1-4P2E, having a C16H33 chain, showed hydrogen desorption similar to that of the
alkyldiphenyl ether, which had a C18H37 alkyl chain. R2-4P2E, with two C16H33 chains, produced
significant hydrogen, but with a long induction period; thus, it provided good wear protection.
Although alkyl chains increased the risk of hydrogen generation, PPEs with such chains may have
applications as standard lubricants.

Keywords: polyphenol ether; chemical structure; tribochemical decomposition; hydrogen generation;
chemical stability

1. Introduction

Any mechanical device that involves movement will encounter friction, which con-
sumes a significant amount of energy. The wear induced by friction is also a major cause
of mechanical failure. In fact, it has been estimated that more than one third of the en-
ergy used worldwide is consumed by friction in various forms. To minimize these costs,
lubrication science has been focused on reducing friction, minimizing wear, evacuating
heat, and removing contaminants. However, it is well known that lubricants can undergo
thermal decomposition in response to the heat of friction or high operating temperatures,
as well as tribochemical decomposition induced by the high activity of nascent steel sur-
faces [1–5]. It has been suggested that hydrogen generated by lubricant decomposition is
also an important aspect of the hydrogen embrittlement of metal parts. As an example, this
phenomenon can decrease the rolling fatigue life of bearings [6–9].

Some efforts have been made to control lubricant decomposition during friction. Vari-
ous additives containing sulfur or phosphorous have been shown to reduce the tribochem-
ical decomposition of MAC oil (1,2,4-tris(2-octyldodecyl) cyclopentane) by deactivating
nascent steel surfaces [10]. Extreme pressure additives and antiwear additives can also
inhibit hydrogen diffusion and reduce the appearance of white etching crack formations
by providing a thin Zn-S dominated tribofilm [11]. Despite this, an increasing focus on
environmental protection has led to new challenges related to lubricant science, such as
by restricting the use of elements, including phosphorus and sulfur, or chlorinated addi-
tives [12]. In fact, the most popular additive, zinc dialkyldithiophosphate, is phytotoxic,
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and plants that accumulate this compound through root absorption or deposition can pose
health risks to consumers [13]. It is likely that only environmentally acceptable lubricants
or additives will be available in the near future.

Lubricants that exhibit superior thermal and chemical stabilities have been found to
generate less hydrogen during friction. Examples include ionic liquids, such as 1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-dodecyl-3-methylimidazolium
bis(trifluoromethylsulfonyl) imide, which produce much less hydrogen during friction
comparing with MAC [14]. However, both expense and environmental restrictions limit
the application of ionic liquids. Alkyldiphenyl ethers (ADEs) have been shown to generate
negligible amounts of hydrogen even after long durations of friction under vacuum [15]
and have been used as base oils in bearing grease formulations [16]. Longer alkyl chains
and greater numbers of such chains decrease the friction coefficients of ADEs; however, the
wear-reducing properties must be improved. Compared with ADEs, polyphenyl ethers
(PPEs) show significantly superior thermal and chemical stabilities, as well as radiation
resistance [17–21]. A 5P4E (5 phenyl 4 ether)-based lubricant has been employed in gas
turbine engines [22,23] and its rheologic properties have been studied in elastohyrodynamic
lubrication [24,25]. Even so, the disadvantages of 5P4E, such as relatively poor tribological
properties and a high pour point, limit its applications [26]. Despite this, the alkylation
of aromatic compounds could potentially generate compounds suitable as lubricants [27];
thus, the tribological properties of PPEs should be improved.

On this basis, the objective of the present work was to evaluate the effects of both
the lengths of alkyl chains and the number of alkyl chains on the tribological properties,
and tribochemical decomposition of PPEs.

2. Materials and Methods
2.1. Lubricants

PPEs (MORESCO Corporation, Kobe, Japan) having different alkyl chain lengths and
varying numbers of attached alkyl chains were obtained for evaluation. The molecular
structures of these compounds are provided in Figure 1. In each case, these PPEs contained
straight alkyl chains. The phenyl rings in these molecules provided chemical stability, while
adjusting the alkyl chain length and the number of attached chains allowed the molecular
flexibility to be tuned. Table 1 summarizes the typical physical properties of the various
samples. An ADE having a C18 alkyl chain (MORESCO Corporation, Kobe, Japan) was
used as a reference to evaluate the difference between PPEs and ADEs. A poly-alpha-
olefin (PAO30, MORESCO Corporation, Kobe, Japan) was also used as a reference. All the
physical properties listed in Table were tested in MORESCO Corporation, Kobe, Japan.
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A reciprocating ball-on-disk friction tester (Heidon-14DR, SHINTO Scientific Co., 

Ltd., Tokyo, Japan), illustrated in Figure 2, was used to ascertain friction coefficients. The 
ball in this device was made of AISI 52100 steel and had a diameter of 6.35 mm and hard-
ness of HRC65. An AISI 52100 steel disk having a hardness of HRC55 and polished to a 
surface roughness of 0.015 was also used. A load of 10 N was applied with a movement 
rate of 8.0 mm·s−1, sliding stroke of 4 mm, and test duration of 1 h. All tribological tests 
were carried out under ambient conditions (23 ± 2 °C, relative humidity of 45–55%) and 
repeated at least three times for a given test condition. 
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Figure 1. Molecular structures of the PPEs (a) 4P2E, (b) R1-4P2E, and (c) R2-4P2E, and of the (d) C18 ADE.

Table 1. Physical properties of the lubricants evaluated in this work.

Physical Properties 4P2E R1-4P2E R2-4P2E ADE (C18)

Density (15 ◦C g·cm−3) 1.167 1.014 0.952 0.928
40 ◦C viscosity (mm2·s−1) 125 240 410 26.1

Viscosity index −103 32 90 110
Flash point (◦C) 260 308 334 250
Pour point (◦C) 2.5 −15 −20 −50

2.2. Tribological Tests

A reciprocating ball-on-disk friction tester (Heidon-14DR, SHINTO Scientific Co., Ltd.,
Tokyo, Japan), illustrated in Figure 2, was used to ascertain friction coefficients. The ball in
this device was made of AISI 52100 steel and had a diameter of 6.35 mm and hardness of
HRC65. An AISI 52100 steel disk having a hardness of HRC55 and polished to a surface
roughness of 0.015 was also used. A load of 10 N was applied with a movement rate of 8.0
mm·s−1, sliding stroke of 4 mm, and test duration of 1 h. All tribological tests were carried
out under ambient conditions (23 ± 2 ◦C, relative humidity of 45–55%) and repeated at
least three times for a given test condition.
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Figure 2. (a) Schematic diagram and (b) physical picture of the reciprocating friction tester.

2.3. Measurement of Gaseous Products Generated by Lubricant Decomposition

A ball-on-disk friction tester installed in a high vacuum chamber was connected to
a quadrupole mass spectrometer (Q-mass, M-201QA-TDM, Canon Anelva Corporation,
Kawasaki, Japan) to monitor the gaseous products generated by lubricant decomposition,
as shown in Figure 3. The ball was made of AISI 52100 steel and had a diameter of 6.35 mm
and hardness of HRC65. The disk was mounted on a drive shaft rotated by a magnetic drive
assembly. Preliminary trials showed that it was not possible to observe the tribochemical
decomposition of PPEs when using an AISI 52100 steel disk with a hardness of HRC55
because overly long durations were required to stimulate the formation of a nascent surface
in the case that PPEs were used as lubricants. During these trials, the bearings in the
magnetic drive assembly would fail before the formation of the nascent surface. Thus, to
accelerate the appearance of a nascent surface, the disk was first annealed at 750 ◦C such
that its hardness was decreased to HRC20.

Adsorbed water was removed from the main chamber by heating the device for 8 h at
100 ◦C, after which the disk surface was coated with lubricant to an average thickness of
10 µm under a nitrogen atmosphere. The chamber was subsequently evacuated to a stable
pressure of less than 8 × 10−5 Pa and the friction test was carried out. The load during
these experiments was 5.4 N and the sliding speed was 30 mm·s−1. Gaseous products
arising from the decomposition of the lubricant during friction could be analyzed by the
Q-mass instrument.
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Because the Q-mass required a high vacuum during the analysis of these gaseous
products, the PAO sample could not be evaluated as a result of its high vapor pressure.
Therefore, a synthetic hydrocarbon oil (MAC oil, Nye Lubricants, Inc., Fairhaven, MA,
USA) that is often used in space environments and vacuum systems was instead employed
as the reference lubricant.

2.4. Characterization

Following the friction tests, the test pieces were rinsed with hexane to remove the
excess lubricant. The wear tracks on the disks and balls were subsequently observed and
the surface profiles were measured using a confocal laser scanning microscope (OLS5000,
Olympus, Tokyo, Japan). The tribofilm formed on each friction track was also analyzed
by micro-Raman spectroscopy (XploRA, Horiba Ltd., Kyoto, Japan), employing a laser
wavelength of 532 nm and optical filter setting of 1%.

3. Results and Discussion
3.1. Tribological Properties of Polyphenyl Ethers

Typical friction curves acquired using the reciprocating ball-on-disk friction tester
are presented in Figure 4. The PAO was found to have the highest friction coefficient
and its coefficient was also obviously increased because of the effect of the running-in
process. The friction coefficient of the ADE was lower and only a slight increase was noted
throughout the running-in process. Although the absolute friction coefficients of the PAO
and ADE were lower than those reported in a previous paper [28], the basic trends exhibited
by the data were the same. The difference between the present work and prior research
can possibly be attributed to variations in the hardness of the test pieces. Moreover, all the
PPE samples showed much lower friction coefficients compared with the PAO and ADE.
The effects of the running-in process on the friction values for these specimens were also
negligible because the friction coefficients were stable. Furthermore, R1-4P2E and R2-4P2E
showed a lower friction coefficient than 4P2E, suggesting alkylation could decrease the
friction coefficient, which was similar to the report in ADEs [28]. No obvious difference
in the friction coefficient between R1-4P2E and R2-4P2E was observed. The reasons still
remained unclear; however, possibly as a consequence of the relatively low load. In this
case, a thick lubricant film could be formed because of their high viscosity.
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Figure 5 provides photographs and surface profiles of the wear scars on balls and
disks. Both the diameter of the wear scar on the balls and the wear scar width on disks
decreased when the PPEs were used. However, it was not possible to quantitively ascertain
the wear rates of the disks because the wear depths were not clear, as is apparent from the
surface profiles. Instead, the wear rates of the balls were calculated from the worn volumes
based on measurements of the surface profiles. Figure 6 shows a cross section of a typical
ball. The worn volume, V, was obtained from the equation
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V =
h·π

6
×
(

3
(

D
2

)2
+ h2

)
(1)

where D is the diameter of the worn surface and h is the height of the lost portion. This value
was, in turn, defined as

h = r −

√
r2 −

(
D
2

)2
(2)

in which r is the radius of the ball.
The wear rate, R (µm3/(N·m)), was defined as

R =
V

W·L (3)

where W is the load and L is the sliding distance.
The calculated wear rates and the average friction coefficients determined for the

lubricants are summarized in Figure 7. Although wear scar appeared on the balls (as can
be seen in Figure 5), the calculated wear rates were almost zero for all the PPEs. The high
viscosities of these materials are thought to have provided sufficient lubrication between
the friction pairs, preventing wearing of the surfaces. Typically, a high-viscosity lubricant
will increase the friction; however, in this case, the PPEs showed lower friction coefficients
than the ADE and PAO.

The mechanism by which the PPEs provided reduced friction was assessed by perform-
ing a Raman analysis and typical Raman spectra acquired from the bulk lubricants, and the
friction track, as shown in Figure 8. Two broad peaks, at 1560 and 1360 cm−1, were obtained
from the friction track. Although these could be assigned to the G band corresponding
to the stretching vibrations of sp2 hybridized carbons and the D band resulting from the
breathing mode of sp3 hybridized ring carbons [29–32], it was difficult to prove the forma-
tion of diamond-like carbon. In addition, a peak corresponding to =CH2 bending can be
seen near 1350 cm−1 and a C=C stretching vibration appears near 1590 cm−1 [33,34]. There-
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fore, high-molecular-weight hydrocarbons, traditionally referred to as friction polymers,
were evidently formed on the friction surface and served to decrease the friction coefficient.
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Although this study did not observe obvious differences in the friction coefficients
and wear rates for PPEs having different alkyl chains, possibly as a consequence of the
relatively low load that was applied, these alkyl chains increased the mobility of the PPEs
(as shown in Table 1) and would be expected to allow the application of these materials as
standard lubricants.
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3.2. Tribochemical Decomposition of Polyphenyl Ethers

Figure 9 presents the typical mass spectra obtained from the decomposed 4P2E, in-
dicating the generation of hydrogen and gaseous low-molecular-weight hydrocarbons.
The C6H5 and C6H5O fragments produced from the phenyl ether groups provide direct ev-
idence for the tribochemical decomposition of the lubricant as a result of friction. As noted,
these fragments can polymerize to form friction polymers.
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The desorption rate, Rd, of these gaseous products was calculated as

Rd =
C·∆P

k·T·v·d (4)

where C is the conductance at the outlet of the vacuum chamber, k is Boltzmann’s constant,
T is the absolute temperature, v is the sliding speed, d is the friction track width, and ∆P is
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the change in the partial pressure. This last term could be estimated based on the current
change, ∆I, as monitored by the Q-mass based on the relationship

∆P = C f ·∆I (5)

where Cf is a calibration coefficient.
Figure 10 plots the hydrogen desorption rate as a function of the sliding distance.

The desorption rate increased after a sliding distance of 1.8 km when MAC was used as
the lubricant, indicating that this oil required an induction period prior to decomposing
on the nascent steel surface. This induction period is defined as the duration from the
onset of friction to the start of lubricant decomposition and reflects the relative difficulty
in producing a nascent surface [10,15]. That is, the induction period is the duration of the
running-in process required to generate a nascent surface. Following this induction period,
hydrogen formation would be expected to be stable; however, in fact, it was found to exhibit
large fluctuation in these trials. As noted in the discussion of the experimental details, an
annealed disk with a hardness of HRC20 and a ball with a hardness of HRC65 were used
as the test pieces to accelerate the formation of a nascent surface. In the present work, the
resulting severe wear on the disk surface is believed to have led to the unstable hydrogen
generation. These results also suggest that MAC would not be a suitable lubricant for
severe conditions. The induction period for the ADE was 1.7 km; thus, it was almost the
same as that for the MAC. However, the steady state hydrogen desorption rate, especially
after a sliding distance of 10 km, was much lower than that for the MAC. Moreover, the
relatively minor fluctuations in hydrogen generation confirmed that the ADE was a better
lubricant under severe conditions.

Among the PPEs, the 4P2E and R1-4P2E did not exhibit induction periods (Figure 10)
and generated hydrogen during the initial friction period. The reasons for these results
are presently unclear. The amount of hydrogen produced from the 4P2E was negligible
after a sliding distance of 3.5 km, indicating the superior tribochemical stability of this
compound. The R1-4P2E showed a similar hydrogen desorption rate to that obtained from
the ADE, suggesting that hydrogen was produced largely from the alkyl chains (because
the ADE had a C18H37 alkyl chain, while the R1-4P2E had a C16H33 chain). In contrast,
the R2-4P2E exhibited a long induction period of 5.3 km as shown in Figure 10e, meaning
that this lubricant would better protect the surface from wear. However, once the surface
was worn and the nascent surface was exposed, higher hydrogen generation was observed
because of the two C16H33 alkyl chains in R2-4P2E.
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In addition to hydrogen, methane, ethane, and other low-molecular-weight hydro-
carbons were generated during the friction tests, and the associated desorption rates are
summarized in Figure 11. The 4P2E, ADE, and R1-4P2E, appearing in the bottom left of
this diagram, exhibited high tribochemical stability, while the MAC and R2-4P2E in the
top right readily underwent tribochemical decomposition. Alkyl chains therefore appear
to have been more easily decomposed on the nascent surface than phenyl ethers. The dis-
sociation energy for C-C bonds in alkyl chains is 347 kJ·mol−1, while the values for alkyl
C-H bonds, C-C bonds in phenyl rings, and C6H5-H bonds are 415, 611, and 469 kJ·mol−1,
respectively [35]. Because much less energy is needed to decompose alkyl chains, the MAC
and R2-4P2E generated more hydrogen during the friction trials.
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4. Conclusions

Lubricants with thermal and chemical stabilities are needed as an approach to reducing
the generation of hydrogen during friction so as to avoid the hydrogen embrittlement of
mechanical parts when in motion. In the present work, the friction, wear, and tribochemical
stability characteristics of PPEs were evaluated. These materials showed much lower
friction coefficients than those for the PAO and ADE samples. The very stable friction
coefficients of the PPEs suggest that the running-in process had a minimal effect on friction.
The formation of various polymers on the friction track seems to have decreased the friction
coefficients. The wear rate was also almost zero for all the PPEs, indicating excellent anti-
wear properties. The high viscosity of the PPEs supplied sufficient lubrication between
the friction pairs, preventing the surfaces from wearing. The tribochemical stability of the
lubricants decreased in the order of 4P2E > ADE = R1-4P2E > R2-4P2E > MAC. The alkyl
chains seem to have been more easily decomposed on the nascent surface than the phenyl
ethers. In addition, hydrogen generation from the 4P2E was negligible after a sliding
distance of 3.5 km. The R1-4P2E specimen exhibited a similar hydrogen desorption rate to
that of the ADE because the latter had a C18H37 alkyl chain, while the former incorporated
a C16H33 chain. Although the R2-4P2E showed a high hydrogen generation rate, its long
induction period suggests it could provide suitable wear protection. The incorporation
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of alkyl chains increased the likelihood of hydrogen generation; however, the alkylation
of these PPEs also increased their mobility while lowering their friction coefficients and
producing lower degrees of wear. Thus, this modification could allow such compounds to
function as lubricants; considering the widely used lubricant in space systems, MAC, also
features multiply-alkyl chains. Multiply alkylation should be important when designing
new lubricants.
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