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Abstract: Recently, microquasar jets have aroused the interest of many researchers focusing on
the astrophysical plasma outflows and various jet ejections. In this work, we concentrate on the
investigation of electromagnetic radiation and particle emissions from the jets of stellar black hole
binary systems characterized by the hadronic content in their jets. Such emissions are reliably
described within the context of relativistic magneto-hydrodynamics. Our model calculations are
based on the Fermi acceleration mechanism through which the primary particles (mainly protons
and electrons) of the jet are accelerated. As a result, a small portion of thermal protons of the jet
acquire relativistic energies, through shock-waves generated into the jet plasma. From the inelastic
collisions of fast (non-thermal) protons with the thermal (cold) ones, secondary charged and neutral
particles (pions, kaons, muons, η-particles, etc.) are created, as well as electromagnetic radiation from
the radio wavelength band to X-rays and even very high energy gamma-rays. One of our main goals
is, through the appropriate solution of the transport equation and taking into account the various
mechanisms that cause energy losses to the particles, to study the secondary particle concentrations
within hadronic astrophysical jets. After assessing the suitability and sensitivity of the derived (for
this purpose) algorithms on the Galactic MQs SS 433 and Cyg X-1, as a concrete extragalactic binary
system, we examine the LMC X-1 located in the Large Magellanic Cloud, a satellite galaxy of our
Milky Way Galaxy. It is worth mentioning that, for the companion O star (and its extended nebula
structure) of the LMC X-1 system, new observations using spectroscopic data from VLT/UVES have
been published a few years ago.

Keywords: XRBs; relativistic jets; neutrino production; extragalactic; LMC X-1; γ-ray emission

1. Introduction

In recent years, astrophysical magnetohydrodynamical flows in Galactic, extragalactic
microquasars (MQs), and X-ray binary systems (XRBs) have been modelled with the
purpose of studying their multi-messenger emissions, for example, neutrinos, gamma-rays,
and so forth. [1–3]. For the detection of such emissions, extremely sensitive detector tools
are in operation for recording their signals reaching the Earth like IceCube, ANTARES,
KM3NeT [4–6], and so forth. Modelling offers good support for future attempts to detect
radiative multiwavelength emissions and neutrino emission, while in parallel, several
numerical simulations may be performed towards this aim [7–9].

Microquasars (or generally XRBs) are binary systems consisting of a compact stellar
object (usually a black hole or a neutron star) and a donor (companion) star [10]. Mass from
the companion star overflows through the system’s Langrangian points to the equatorial
region of the compact object gaining angular momentum and, thus, forming an accretion
disc of very high temperature gas and matter. This mass expelling could be mainly due to
a concentrated stellar wind [11–13]. Consequently, a portion of the disc’s matter is being
collimated by the system’s magnetic field (initially it is attached to the rotating disc) and is
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ejected perpendicular to the disc in two opposite directions [14] forming the system’s jets.
The jets are detectable from the Earth even when the system’s distance is too large which
is due to the relativistic velocities they acquire [15–17] combined with Doppler effects
when they are headed towards the Earth. It has been shown that the kinetic luminosity
coming from astrophysical microquasar jets constitutes a substantially large part of the
total galactic cosmic radiation [18]. Moreover, it has been proved that microquasar binary
systems that do not produce thermal jets are more likely to be neutrino and gamma-ray
emission sources [19].

The most well-studied microquasar systems include the Galactic X-ray binaries SS
433, Cyg X-1, Cyg X-3, and so forth. [20–22], while from the extragalactic systems we
mention the LMC X-1, LMC X-3 located in the neighbouring galaxy of the Large Magellanic
Cloud [23], and the Messier X-7 in the Messier 33 galaxy [24]. Their respective relativistic
jets are emission sources in various wavelength bands and high-energy neutrinos. In this
work, we focus our study on the extragalactic binary system LMC X-1 with the purpose
to determine its gamma-ray and neutrino emissions produced through the processes and
mechanisms that are about to be discussed below. Concerning the LMC X-1 system, new
observational results have been recorded, shedding more light on its unique spectral and
environmental characteristics [25,26] and thus providing a more solid base for LMC X-1
microquasar a fact that motivated our present study which furthermore aims to compare
them with simulated emissions from the Galactic SS 433 and Cyg X-1 systems.

The SS 433 microquasar has definitely hadronic content in its jets verified from obser-
vations of various spectra. For detailed studies of this system based on hadronic modelling
of its jets, the reader is referred to the Refs. [7–9] and references therein. Radiative transfer
calculations may be performed at every point inside the jet for a range of frequencies (ener-
gies), at every location [27] providing the relevant emission and absorption coefficients.
Line-of-sight integration, afterwards, provides synthetic images of γ-ray emission, at the
energy-window of interest [27,28].

In the present work, we adopt as main mechanisms producing high energy gamma-
rays and neutrinos in MQs jets the proton-proton (p-p) and the proton-photon (p-γ) interac-
tions taking place within the hadronic jets, see [3] and the references therein. Furthermore,
it is worth mentioning that, a photon field emanating from the companion star in many
X-ray binaries may cause γ-ray absorption of photons with energies in the same range
of those emitted from the donor star [29–31]. This absorption becomes important when
the distance from the central object of the gamma-ray production region is of the same
order with the binary system’s separation, that is, the distance between the two stellar
objects [29,30].

Studies of the concentrations of jet particles whose interactions lead to neutrino and
gamma-ray production need to take into account various energy loss and decay mech-
anisms that occur due to several hadronic processes, particle acceleration and particle
scattering [1,2]. In the known fluid approximation, macroscopically the jet matter behaves
as a fluid collimated by the magnetic field. At a smaller scale, consideration of the kinemat-
ics of the jet plasma becomes necessary for treating shock acceleration effects. In the model
employed in this work [1,2], the jets are considered to be conic along the z-axis (ejection
axis) with a radius r(z) = z tan ξ, where ξ is its half-opening angle [32]. The jet radius at
its base, r0, is given by r0 = z0 tan ξ, where z0 is the distance of the jet’s base to the central
compact object.

In the rest of the paper, after a brief description (Section 2) of the interaction chains
leading to neutrino and gamma-ray emission, we solve the steady-state transfer equation
(Section 3) to determine the energy distributions of the primary and secondary jet particles.
Then (Section 4), the obtained predictions for high-energy neutrino and gamma-ray pro-
duction, for the LMC X-1 MQ system, are presented and compared with those obtained
for the Galactic SS 433 and Cyg X-1 systems. Finally (Section 5), we summarize the main
conclusions extracted from the present study.
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2. Interaction Mechanisms Inside the Jet

According to the jet-accretion speculation, only 10% of the system’s Eddington lumi-
nosity [33] (Lk = 1.2× 1037M ergs−1, M in solar masses, M�) is transferred to the jet for
acceleration and collimation through the magnetic field B given by the equipartition of
magnetic and kinetic energy density of the jet ρk as B =

√
8πρk(z) [1,2,27,28].

By assuming the one-zone approximation [34], we consider a small portion of the
hadrons (mainly protons) equal to qr ≈ 0.1 to be accelerated in a zone from z0 to zmax
with the rate t−1

acc ' ηceB/Ep [35] according to the second-order Fermi acceleration mecha-
nism, where c denotes the speed of light, e the electron’s charge, Ep the proton’s energy,
and η = 0.1 the acceleration efficiency. The particles are accelerated to nearly relativis-
tic velocities [36] resulting in a power-law distribution given in the jet’s rest frame by
N′(E′) = K0E′−2 [GeV−1cm−3], where K0 is a normalization constant. Model parameters,
such as the length of the acceleration zone, and system parameters for SS 433, Cygnus X-1
and LMC X-1, are tabulated in Table 1.

In general, the main interactions of the relativistic protons include those with the
stellar winds [29,30,37,38], the radiation fields composed of internal and external emission
sources [29,30,39], as well as the cold hadronic matter of the jet. In this work, we consider
the last two cases of interactions because they are the most important. In other words,
we assume that neutrino and gamma-ray emissions are products of reaction chains that
are caused by the p-p and p-γ interactions inside the jet. The KM3NeT, ANTARES, and
IceCube are prominent examples of undersea water and under-ice detectors that are able
to detect those neutrinos that reach the Earth [4–6].

The first of the aforementioned reaction chains begins with the inelastic p-p collisions
of the relativistic protons with the cold ones inside the jet, which generate neutral pions
(π0) and charged pions (π±) according to the following reactions

pp→ pp + απ0 + βπ+π− ,

pp→ pn + π+ + απ0 + βπ+π− , (1)

pp→ nn + 2π+ + απ0 + βπ+π− ,

with α and β being the particle multiplicities that depend on the proton energy [40].
Besides p-p interactions, pions are generated due to proton-photon (p-γ) interaction

through photo-pion production

pγ→ nπ+ ,

pγ→ pπ0 , (2)

pγ→ pπ0π+π− .

In these p-γ interactions, photons originate from the accretion disc or they are products of
the synchrotron mechanism. In the reaction chains (1) and (2), the neutral pions decay into
gamma-ray photons as

π0 → γ + γ , (3)

while the charged pions decay into muons and neutrinos in one or two steps as

π+ → µ+νµ → e+ν̄µνe + νµ , (4)

π− → µ−ν̄µ → e−ν̄eνµ + ν̄µ . (5)

Thus, the produced muons subsequently decay to electrons e− (or positrons e+) and anti-
neutrinos (or neutrinos). These are the main reactions feeding the neutrino and gamma-ray
production channels in the p-p and p-γ mechanisms employed in our model.

All particles that take part in the neutrino and gamma-ray production processes
lose energy while travelling along the acceleration zone, which could be due to different
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mechanisms, as it is illustrated in Figures 1–3 for the systems SS 433, Cyg. X-1 and LMC
X-1. At first, the particles (p, π±, µ±, etc.) can be subjected to adiabatic energy losses due
to jet expansion along the ejection axis with a rate depending linearly on the jet’s bulk
velocity [41]. Another important cooling mechanism, that depends on the cold proton
density inside the jet, is due to inelastic collisions of the accelerated particles with the cold
ones. The inelastic cross section for the p-p scattering is given by [7–9,42]

σinel
pp (Ep) = (0.25L2 + 1.88L + 34.3)

[
1−

(
Eth
Ep

)4
]2

× 10−27cm2 , (6)

where L = ln(Ep/1000), with Ep in GeV and Eth = 1.2 GeV being the threshold for the
production of a single neutral pion. Respectively, for pion-proton inelastic scattering, it
holds that [43]

σinel
πp (Eπ) '

2
3

σinel
pp (Eπ) . (7)

In addition, the particles that are accelerated by the magnetic fields emit synchrotron
radiation. Thus, they gradually lose part of their energy with a rate that strongly depends
on the magnetic field and the particle’s energy.
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Figure 1. Cooling rates for relativistic protons and pions (π±) produced at the base of the jet z0

after the p-p and p-γ collision processes take place in SS 433 (first column) and Cygnus X-1 (second
column). Those mechanisms include synchrotron emission (solid lines), particle collision (dashed
lines), adiabatic cooling (dotted lines), p-γ interactions, as well as the particle reduction rate which
includes the decay and escape rate of the particles (dotted-dashed lines).
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Figure 2. Cooling rates for muons (µ±) produced in the jets of the systems SS 433 and Cygnus
X-1. Similarly to the electron case and because of their size, muons also lose energy due to Inverse
Compton scattering.
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Figure 3. Respective cooling rates for the system of our interest LMC X-1.

Furthermore, protons and pions interact with radiation fields coming from internal
or external regions of the jet, such as the system’s accretion disc [44], as well as the
synchrotron-emitting particles themselves, which leads to partial energy loss. Lighter
particles, mainly electrons, transfer part of their energy to low-energy photons via Inverse
Compton scattering [45]. In this work, we consider that muons may also be subjected to
an Inverse Compton energy loss mechanism due to their size and leptonic nature. This
assumption has been made in previous studies as well [2]. However, such contributions
can be ignored compared to those mentioned above.
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Table 1. Parameters describing geometric characteristics of the well-studied SS 433, Cygnus X-1 and
the extragalactic LMC X-1 binary systems.

Description Parameter SS 433 Cyg X-1 LMC X-1

Jet’s base z0 (cm) 1.28× 109 8.43× 108 3.10× 108

Acceleration limit zmax (cm) 6.40× 109 42.15× 108 15.50× 108

Black Hole mass MBH 9M� [46] 14.8M� [47] 10.91M� [48]

Distance from Earth d (kpc) 5.5 [20] 1.86 [21] 48 [48]

Angle to the line-of-sight θ (◦) 78.05 [46] 27.1 [47] 36.38 [48]

Jet’s half-opening angle ξ (◦) 0.6 [46] 1.5 [49] 3 1

Jet’s bulk velocity υb 0.26c [50] 0.6c [49] 0.92c 1

Maximum proton energy Emax
p (GeV) 3.52× 106 6.09× 106 1.04× 107

1 according to model.

3. Solution of the Transfer Equation

The steady-state transfer equation, which fulfills the conditions mentioned above, is
given by [8,37,51]

∂N(E, z)b(E, z)
∂E

+ t−1N(E, z) = Q(E, z) , (8)

where N(E, z) denotes the particle distribution in units of GeV−1cm−3, while Q(E, z)
is the particle source (or injection) function giving the respective production rate (in
GeV−1cm−3s−1). Concerning the energy loss rate b(E), all the cooling mechanisms dis-
cussed are being represented as it is evident from the definition b(E) = dE/dt = −Et−1

loss.
For each particle, the decay rate is added to the particle escape rate from the jet accord-

ing to the relation: t−1 = t−1
esc + t−1

dec. The escape rate is approximated by t−1
esc = c/(zmax − z),

where zmax stands for the ending of the acceleration zone. It is worth mentioning that,
inside the jet the particle distributions are rather independent of time, so that the steady-
state approximation usually applied in the transfer equation and leads to Equation (8) is
a good approximation. This is also the case for the purposes of our present work, while
contributions of other terms of the full transfer equation are planned to be examined in
future works.

The general solution of the differential Equation (8) is given by [52–54]

N(E, z) =
1

| b(E) |

∫ Emax

E
Q(E′, z)e−τ(E,E′)dE′ , (9)

where

τ(E, E′) =
∫ E′

E
(dE′′t−1)/ | b(E′′) | .

In Figure 4, we plot the calculated distributions of relativistic electrons and protons ac-
celerated by shock-waves through the Fermi mechanism for three different values of the
proton-to-lepton ratio α = 0.01, 0.1, 100 in the electron case and three different values of
the distance to the central object in the proton case. The model with α = 100 corresponds
to purely hadronic jet. Obviously, the electron energy distributions Ne decrease as α in-
creases. Moreover, in the case of LMC X-1 system Ne are significantly larger compared to
those of the Cygnus X-1 MQ. Evidently, in order to calculate the neutrino and gamma-ray
emissivities, one needs to calculate first the energy distributions of all particles involved in
the reaction chain (see Section 2). These distributions are obtained in the next subsection.
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Figure 4. Energy distributions for relativistic electrons and protons produced in Cygnus X-1 (a,c)
and LMC X-1 (b,d). In the electrons’ case, the solid lines refer to the proton-to-electron ratio α = 0.01,
the dashed lines to α = 1.00, and the dashed-dotted ones describe electron distributions assuming
that α = 100 (i.e., they correspond to a purely hadronic model). For protons, the solid lines refer
to particle production at the jet’s base z0, while the dashed or dotted-dashed ones refer to different
distances to the central object, covering the length of the acceleration zone.

3.1. Particle Injection Functions
3.1.1. Relativistic Protons Injection Function

In previous works [1,38,55], the appropriate injection function for the relativistic
protons produced by the Fermi acceleration mechanism was assumed to be of power-law
type with exponent ≈2 [56,57]. In the jet’s rest frame, this power-law translates to the
following expression

Q(E′, z) = Q0

( z0

z

)3
E′−2 , (10)

where Q0 is a normalization constant calculated through the total luminosity that is carried
by the protons (or electrons) inside the jet (see Appendix A), where Emin

p = 1.2 GeV is the
minimum proton energy that is sufficient and necessary for the Fermi mechanism to occur.
The maximum energy is calculated by equating the particle acceleration rate with the total
energy loss rate, namely, t−1

acc ≈ ηceB/Ep = t−1
loss. For the binary systems of our interest, this

is approximated as Emax
p ' 107 GeV. The dependence on z is due to particle conservation

enforced on the respective current density [58]. Transformation of the source function of
Equation (10) to the observer’s reference frame gives [8,9,59]

Q(E, z) = Q0

( z0

z

)3 Γ−1
b (E− βbcosθ

√
E2 −m2c4)−2√

sin2θ + Γ2
b

(
cosθ − βbE√

E2−m2c4

)2
, (11)

where Γb responds to the jet’s Lorentz factor and θ is the angle between the jet’s ejection
axis and the line of sight.
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3.1.2. Pion Energy Distribution

The pion source function calculation requires the fast proton distribution, as well as
the p-p collision rate along with the pion spectra produced by each one of these collisions as

Q(pp)
π (E, z) = cn(z)

∫ 1

E/Emax
Np

(
E
x

, z
)

Fπ

(
x,

E
x

)
σinel

pp

(
E
x

)
dx
x

, (12)

where x = E/Ep. In the latter integral, Fπ(x, E/x) denotes the pion mean number produced
per p-p collision given by [42]

Fπ

(
x,

E
x

)
= 4αBπxα−1

(
1− xα

1 + rxα(1− xα)

)4

×
(

1
1− xα

+
r(1− 2xα)

1 + rxα(1− xα)

)(
1− mπc2

xEp

)1/2

, (13)

where Bπ = α′ + 0.25, α′ = 3.67 + 0.83L + 0.075L2, r = 2.6/
√

α′, and α = 0.98/
√

α′.
Additionally, n(z) is the cold proton density of the jet written as

n(z) =
(1− qr)Lk

Γmpc2πr(z)2υb
, (14)

where Γ is the cold proton Lorentz factor.
In the case of the p-γ interaction mechanism, for the produced pions, we have

Q(pγ)
π (E, z) = 5Np(5E, z)ω(π)

pγ (5Eπ , z)N̄(pγ)
π (5Eπ) , (15)

where ω
(π)
pγ is the p-γ collision frequency (see Appendix B). In addition, N̄(pγ)

π = ppn p1 + 2p2
is the mean number of positive or negative pions produced per p-γ collision. We have

p1 =
K2−K̄pγ

K2−K1
, where K̄pγ = t−1

pγ /ωpγ the mean inelasticity, K1 = 0.2, K2 = 0.6 and
p2 = 1− p1.

It is worth noting that, from Equations (12) and (15), the proton distribution is entering
the calculations of both the neutrino and gamma-ray emissivities through the pion injection
rate Qπ(E, z).

3.1.3. Muon Spectra from Pion Decay

For the muon energy distribution, both the mean right-handed and the mean left-
handed muon numbers per pion decay are required for obtaining the total injection function.
According to the CP invariance and provided that Nπ(Eπ , z) = Nπ+(Eπ , z) + Nπ−(Eπ , z),
it holds that [60]

Qµ±R ,µ∓L
(Eµ, z) =

∫ Emax

Eµ

dEπt−1
π,dec(Eπ)Nπ(Eπ , z)N±µ Θ(x− rπ) , (16)

where N+
µ and N−µ represent the positive and negative right (or correspondingly left)

handed muon spectra, respectively (see Appendix C). In Equation (16), we have used
x = Eµ/Eπ , rπ = (mµ/mπ)2, and Θ(y) the Heaviside function. Additionally, the pion de-
cay rate is given by t−1

π,dec = (2.6× 10−8γπ)−1 s−1, which implies that the pion distribution
is important for the muon distribution calculation.
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4. Results and Discussion
4.1. Neutrino Energy-Spectra from Pion and Muon Decay

After obtaining the energy distributions of the particles discussed above, one is able
to estimate the total number of neutrinos produced directly from pion decay, as well as
from muon decay. Thus, the total emissivity contains both contributions, as

Qν(E, z) = Qπ→ν(E, z) + Qµ→ν(E, z) . (17)

The first term represents the neutrino injection originating from pion decay as

Qπ→ν(E, z) =
∫ Emax

E
t−1
π,dec(Eπ)Nπ(Eπ , z)

Θ(1− rπ − x)
Eπ(1− rπ)

dEπ , (18)

where x = E/Eπ , while the second term gives

Qµ→ν(E, z) =
4

∑
i=1

∫ Emax

E
t−1
µ,dec(Eµ)Nµi (Eµ, z)

×
[

5
3
− 3x2 +

4
3

x3 + (3x2 − 1
3
− 8

3
x3)hi

]
dEµ

Eµ
, (19)

with x = E/Eµ. In the latter equation, the muon decay rate depends on their energy as
follows t−1

µ,dec = (2.2× 10−6γµ)−1 s−1. In addition, h3 = h4 = −h1 = −h2 = 1. From
the four different integrals of the latter summation, the first and second represent the
left-handed muons of positive and negative charge, respectively, while the third and fourth
stand for the corresponding right-handed ones.

4.2. Gamma-Ray Emissivity for E > 100 GeV

In this work, we assumed that gamma-ray production is mainly due to neutral pi-
ons decay, which in turn are mainly products of p-p inelastic collisions. The respective
gamma-ray spectra have been calculated for photons of energy Eγ = xEp through the
expression [42]

Fγ(x, Ep) = Bγ
lnx
x

(
1− xβγ

1 + kγxβγ(1− xβγ

)4

×
(

1
lnx
−

4βγxβγ

1− xβγ
−

4kγβγxβγ(1− 2xβγ)

1 + kγxβγ(1− xβγ)

)
, (20)

where Bγ = 1.3+ 0.14L+ 0.011L2, βγ = 1/(0.008L2 + 0.11L+ 1.79), and kγ = 1/(0.014L2 +
0.049L + 0.801). In addition, we have L = ln(Ep/1 TeV). These results are consistent with
proton energies in the range 0.1 TeV < Ep < 105 TeV. Besides π0, Equation (20) considers
also the contribution of η mesons decay, which represents approximately the 25% when
x ≈ 0.1.

In the energy range of our interest Eγ ≥ 100 GeV, the gamma-ray emissivity, produced
at a distance z from the compact object along the jet’s ejection axis, is given by

Qγ(Eγ, z) = cn(z)
∫ 1

Eγ/Emax

dx
x

Np

(
Eγ

x
, z
)

Fγ

(
x,

Eγ

x

)
σ
(inel)
pp

(
Eγ

x

)
, (21)

(in units of GeV−1cm−3s−1). For Eγ < 100 GeV, the delta-function approximation is employed.

4.3. Neutrino and γ-ray Intensity Calculations

By introducing the calculated rates for the cooling mechanisms of particles that lead
to neutrino and gamma-ray production into the transfer equation discussed previously, see
Equation (8), along with the corresponding injection functions, where we are able to calcu-
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late the particle energy distributions. These results are shown in Figure 5 which includes
graphs corresponding to the charged pions produced by the p-p and p-γ interactions and
the muons that result from the pion decays.
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Figure 5. Energy distributions for pions (π±) (a,b) and muons (µ±) (c,d) produced in Cygnus
X-1 (a,c) and LMC X-1 (b,d). Particle production takes place at z0, where evident is the effect of the
energy-loss interactions to the particle distributions (solid lines) in comparison to the case where
only decay occurs (dashed lines).

We consider the aforementioned mechanisms and interactions taking place inside the
hadronic relativistic jets of the extragalactic binary system LMC X-1 located in our galaxy-
neighbor LMC (Large Magellanic Cloud) at a large distance from the Earth (about 48 kpc) [23].
The energy spectra of the produced high-energy neutrinos and gamma-rays are, then, numer-
ically calculated. For the sake of comparison, in Figure 5, the corresponding results for the
galactic Cygnus X-1 system are also shown.

In the next stage, integration over the acceleration zone gives the total intensity as [1,2]

I(E) =
∫

V
Q(E, z)d3r = πtan2ξ

∫ zmax

z0

Q(E, z)z2dz . (22)

All the calculations were performed through the development of a C-code (that
employs Gauss-Legendre numerical integration of the GSL library) and the use of the
parameter values listed in Table 1 mostly describing geometric characteristics of the systems
of interest.

As we mentioned, firstly we calculated the fast proton distributions for three different
distances z from the central object for the binary systems Cygnus X-1 and LMC X-1 as
illustrated in the graphs c and d, respectively, of Figure 4. It is evident that the total particle
density production decreases as we move closer to the ending of the acceleration zone even
though the (average) particle energy increases.

In Figure 5 graphs a and b, we show the energy distributions for pions that have
suffered energy losses caused by various mechanisms, such as synchrotron radiation
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emission, collisions with the rest of the jet matter, and so forth [1,2,55]. For comparison,
we also plot the respective distributions of particles that do not lose energy at all. We
notice that, in the energy range 104–106 GeV, the particle distributions (pions in this case)
appeared reduced by (99.720–99.999)%, for the system Cygnus X-1, and by (95.390–99.997)%
for LMC X-1, due to energy loss mechanisms. This indicates the significant effect caused
by the cooling mechanisms on the total particle distributions.

Furthermore, the cooling processes may affect the shape of the power-law distributions
which become somewhat steeper (the index of the power-law changes) if the energy losses
are significant enough [61]. In addition, we notice the dominant contribution of the p-p
process compared to the p-γ one. The same conclusion may be extracted from the graphs c
and d of Figure 5 for the muon distributions. We furthermore observe that the cooling rate
characteristics are reflected upon the particle distributions as is implied from the deviation
of the two curves in the pion and muon case. The starting point of the deviation coincides
with the beginning of the dominance of the synchrotron mechanism over the particle decay.
Further, the solid curve (with energy losses) compared to the dashed one (only decay)
shows faster decrease [1,2,55].

Moreover, in Figures 4 and 5, we see that there are no significant differences between
results obtained for these two binary systems. This is due to the fact that their black hole
masses have similar magnitudes. The parameter, however, that has the strongest impact
is the jet’s half-opening angle ξ, which, roughly speaking, describes the degree of the
jet’s collimation. This is directly connected with the system’s magnetic field, which is
responsible for the collimation represented by the angle ξ.

After calculating all the necessary distributions, the neutrino and gamma-ray emissiv-
ities and the corresponding intensities and fluxes (weighted by the energy squared) are
readily obtained. These results are illustrated in Figures 6 and 7 along with the sensitivities
of the most prominent detectors suited for such high-energy observations. It should be
mentioned that gamma-ray fluxes from the LMC X-1 have not been detected yet, but the
sensitivities of the next-generation detectors (like the IceCube-Gen2, CTA, etc.) are quite
promising for performing relevant measurements in the near future.

Concerning Cygnus X-1, in Figure 6 (graph d), we compare our results with the
observational data coming from the MAGIC telescope [17,62] and conclude that for
E ' 102–103 GeV, the differential gamma-ray flux is of the order of 10−11–10−8 GeVcm−2s−1

(i.e., about two to three orders of magnitude smaller). One of the possible reasons of this
discrepancy could be the gamma-ray absorption of photons with an energy in this range
caused by a strong photon field emanated by the system’s companion star (not taking into
account in our present calculations) that will also be featured in future studies through
the calculation of the pair-production optical depth of Equation (A.1) in [30]. This absorp-
tion becomes important when the distance from the gamma-ray production region up to
the central object is smaller (or about equal) to the system’s binary separation (distance
between the two stellar objects) [29,30].

For the LMC X-1 system, our results show that the increase of the half-opening angle
ξ leads to a decrease in the gamma-ray production, which is an expected result since the
p-p collision rate drops with the jet’s expansion, as shown in Figure 7.

Before closing, it is worth noting that, even though high-energy neutrinos coming
from binary system LMC X-1 has not been detected yet, our present calculations may guide
planned next-generation detectors as, for example, the observatory detector IceCube-Gen2,
an IceCube expansion that is 10 times larger and has five times the effective area of the
latter. Such a tool may make source identification and neutrino detection much more
promising [63].
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Figure 6. Neutrino (a,c) and gamma-ray (b,d) intensities and their respective differential fluxes
produced by pion (π±) decay taking place at the base of the jet of the binary system LMC X-1 (solid
lines), as well as the well-studied system Cygnus X-1 (dashed lines). Additionally, the sensitivities of
detectors ANTARES [64], IceCube [65] and KM3NeT [66] are presented in graph c, and the respec-
tive sensitivities of MAGIC, HESS, and the foreseen sensitivity of the next-generation Cherenkov
Telescope Array (CTA) [67] are also presented in graph d. In graph d, the differential gamma-ray
flux points for Cyg X-1, as observed by the MAGIC telescope, are also presented for the sake of
comparison with the calculations.
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Finally, because our theoretical results are the first of this type, they would be useful
for comparisons with future calculations that may come out within the context of other
models and microquasar jet’s scenarios.

5. Summary and Conclusions

During the last few decades, the structure and evolution of relativistic astrophysical
plasma outflows (jets), and specifically those connected to compact cosmic structures,
became research subjects of intense interest. Towards this aim, a great research effort,
experimental, theoretical, and phenomenological is absorbed by various high-energy
phenomena, including production and terrestrial detection of high-energy cosmic radiation
and neutrinos, originating from Galactic and extragalactic sources heading towards the
Earth. In particular, we mentioned the jets of very large scale ejected from the galaxy’s
quasar systems involving supermassive black holes at the central region (AGN) and those
of much smaller scale involving stellar mass black holes and a companion star, known as
micro-quasars and X-ray binary systems.

In this work, we concentrated on the latter class, the two-body systems consisting
of a central object (usually a stellar mass black hole) and a companion star often of O-
type or B-type main sequence stars. The former absorbs mass from the latter, forming an
accretion disc of gas and matter which emits X-ray radiation due to very high temperatures
prevailing in the area of the accretion disk and black hole. The jets are formed when the
system’s magnetic field collects matter that is ejected away from the system in a collimated
and accelerated bulk-like plasma flow.

The mass outflow can acquire relativistic velocities and is expelled perpendicular to
the disc’s surface. In many models, these jets are treated magnetohydrodynamically by
assuming various reliable approximations. In the present work, we considered the jet’s
matter to be mainly hadronic, with a portion of it accelerated through shock-waves to
relativistic velocities. From the inelastic collision of relativistic protons on the cold ones (p-p
interactions mechanism), secondary neutral and charged particles (pions, kaons, muons,
etc.) are produced. Such secondary particles are also produced through the proton-photon
inelastic collisions channel (photopion production mechanism). These pions decay leading
to high-energy neutrino and gamma-ray emissions.

One of our main goals was the calculation of the energy-spectra of high energy
neutrino and gamma-ray produced inside such astrophysical jets. As concrete examples,
we have chosen the Galactic X-ray binaries Cygnus X-1 and SS 433 system, as well as
the extragalactic LMC X-1 binary system in order to simulate their neutrino and gamma-
ray intensities emitted. For the observation of such high-energy cosmic radiations and
particle (neutrino) emissions, extremely sensitive detection instruments are operating at the
Earth like the IceCube detector (deep under the ice at South Pole), the ANTARES, KM3NeT
(underwater in the Mediterranean sea), the CTA, and so forth, and next-generation detectors
have been designed as the IceCube-Gen2. The reliable theoretical predictions of the present
work for the LMC X-1 system, like the primary and secondary particles’ distributions inside
its jets, the estimation of the produced intensities as functions of the energy for different
half-opening angle values of its jets, as well as the other findings may offer guidance and
support to the aforementioned high-energy cosmic gamma-ray and neutrino detectors.
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Appendix A. Normalization Constant

The normalization constant for the relativistic proton source function depends on the
lower and upper limit of their energy as follows

Q0 =
8qrLk

z0r2
0ln(Emax

p /Emin
p )

. (A1)

The above result is calculated through the total luminocity carried by the protons that is
given by

Lp =
∫

V
d3r

∫ Emax
p

Emin
p

EpQp(Ep, z)dEp . (A2)

Appendix B. p-γ Collision Frequency

The p-γ collision frequency ω
(π)
pγ is given by

ω
(π)
pγ (Ep, z) =

c
2γ2

p

∫ ∞

eth
2γp

nph(ε)

ε2 dε
∫ 2εγp

εth

σ
(π)
pγ (ε′)ε′dε′ , (A3)

where εth = 0.15 GeV and the respective cross-section

σ
(π)
pγ = Θ(ε′ − 0.2)Θ(0.5− ε′)3.4× 10−28cm2 + Θ(ε′ − 0.5)1.2× 10−28cm2 . (A4)

The radiation density nph = nphX + nphS consists of the synchrotron photons produced
by both the relativistic electrons as well as the protons and an X-ray distribution for
2 keV < ε < 100 keV originated in a corona that surrounds the inner accretion disc. It holds

nphX(ε) =
LXe−ε/kTe

4πcz2ε2 , nphS(ε, z) ≈
εsynrj(z)

εc
. (A5)

Appendix C. Right and Left-Handed Muon Spectra

The right-handed positive and negative muon spectra produced by pion decay are

N+
µ =

rπ(1− x)
Eπx(1− rπ)2 , N−µ =

(x− rπ)

Eπx(1− rπ)2 , (A6)

where x = Eµ/Eπ and rπ = (mµ/mπ)2. According to CP invariance, the number of µ−L
produced by the π− decay is the same as the µ+

R produced by the π+ decay. Therefore,
as the pion energy distribution refers to the sum of both π+ and π− distributions, it is
N+

µR = N−
µL . Similarly, it holds the same for the negative right-handed muons.
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