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Abstract: A theoretical investigation is carried out to study the propagation properties of ion acoustic
shocks in a plasma comprising of positive inertial ions, weakly relativistic ion beam and trapped elec-
trons in the presence of a quantizing magnetic field. By using the reductive perturbation technique,
the Korteweg–de Vries-Burgers (KdVB) equation and oscillatory shocks solution are derived. The
characteristics of such kinds of shock waves are examined and discussed in detail under suitable con-
ditions for different physical parameters. The strength of the magnetic field, ion beam concentration
and ion-beam streaming velocity have a great influence on the amplitude and width of the shock
waves and oscillatory shocks. The results may be useful to study the characteristics of ion acoustic
shock waves in dense astrophysical regions such as neutron stars.
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1. Introduction

A number of investigations have confirmed that the presence of a high electron/ion
beam in various space/astrophysical environments [1–3] makes drastic changes in the
propagation properties of nonlinear structures (e.g., solitons, shocks, rogue waves, double
layers etc.). During recent years, a variety of investigations have been reported to analyze
the characteristic properties of different kinds of nonlinear structures in a multicomponent
plasmas in the presence of an ion beam in the framework of Maxwellian/non-Maxwellian
distributions. The basic reductive perturbation approach was used to investigate the
nonlinear propagation of modest but finite amplitude dust ion-acoustic waves (DIAWs) in
an ion-beam-driven plasma, including Boltzmann electrons, positive ions, and stationary
negatively charged dust grains [4]. It was illustrated that the ion-beam component and
other plasma parameters have a great influence on the amplitude as well as the width
of DIAWs. The study of distinctive features of dust acoustic (DA) cnoidal waves in
unmagnetized multicomponent dusty plasma penetrated by an ion beam was carried
out theoretically [5]. The KdV equation was obtained to study the impact of different
plasma parameters on the distinctive features of negative potential DA cnoidal waves
using the reductive perturbation approach. Kaur et al. [6] reported the characteristics
of compressive and rarefactive ion acoustic solitary waves (IASWs) in an unmagnetized
plasma in the presence of an ion beam. The KdV, modified KdV, and Gardner equations
were developed using the reductive perturbation technique to investigate the effect of an
ion beam and other plasma factors on the properties of IASWs in various circumstances.
The cylindrical/spherical Korteweg–de Vries equation was derived in a plasma comprised
of superthermal electrons and ions and embedded with an ion beam in a nonplanar
geometry to study the propagation characteristics of dust acoustic solitary and rouge
waves [7]. Deka et al. [8] explored the nonlinear propagation of small amplitude ion
acoustic solitary waves in a relativistic degenerate magnetoplasma in the presence of an
ion beam. A plasma comprised of positive ions and a weakly relativistic ion beam in
the presence of quantized trapped electrons was considered. The nonlinear equations
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describing the development of a solitary waves were developed in terms of the Zakharov–
Kuznetsov (Z-K) equation. A one-dimensional quantum hydrodynamic model was used to
investigate the nonlinear propagation of ion acoustic waves in unmagnetized quantum
plasma in the presence of an ion beam [9]. The reductive perturbation approach was
used to generate the Korteweg–de Vries equation. The role of an ion beam in quantum
plasma appeared to have a major impact on the formation and structure of solitary waves.
Kaur et al. [10] developed the KdV-type equation to explore the propagation characteristics
of ion acoustic (IA) cnoidal waves in a magnetized degenerate quantum plasma composed
of positive inertial ions, weakly relativistic ion beam, and trapped electrons. The combined
effects of temperature degeneracy, quantizing magnetic field, and other physical parameters
on the properties of IA cnoidal waves were analyzed.

The importance of degenerate plasma and relativistic effects have been well described
in different investigations with the focus of the study on the environment of astrophysical
objects (namely viz., white dwarfs and neutron stars) [11–15]. The pseudo-potential ap-
proach was used to investigate arbitrary amplitude solitary waves (SWs) and double layers
(DLs) in an ultra-relativistic degenerate dense dusty plasma (containing ultra-relativistic de-
generate ultra-cold electron fluid, inertial ultra-cold ion fluid, and negatively charged static
dust) by Mamun et al. [16]. In a dense relativistically degenerate plasma, Ghai et al. [17]
investigated the connection between ion acoustic waves (IAWs) and a neutrino beam expe-
riencing flavor oscillations. The effect of neutrino beam characteristics on the instability
development rate was calculated numerically, including the energy of the incident neutrino
beam and the eigenfrequency of neutrino flavor oscillations. The effects of spin-up and
spin-down degenerate electrons on IA cnoidal waves in a magnetized degenerate quantum
plasma were studied using a theoretical approach [18]. The solution for IA cnoidal waves
was found using the Sagdeev pseudopotential technique, and the KdV type equation was
constructed using the reductive perturbation method. From analysis, it was seen that only
positive potential cnoidal waves are produced. The quantum hydrodynamic equations
were used to examine the oblique propagation of quantum electrostatic solitary waves in a
magnetized relativistic quantum plasma [19] by deriving the ZK equation. It was found
that two types of quantum acoustic modes, a slow acoustic mode and a rapid acoustic
mode, may propagate. El-Labany et al. [20] reported a paper on the interaction of two
IA solitary waves in a magnetized relativistic degenerate plasma. After obtaining two
Korteweg–de Vries (KdV) wave equations that describe the interacting IASs using the
extended Poincaré–Lighthill–Kuo (PLK) technique, the phase changes owing to interaction
were computed. In a degenerate quantum plasma, Saini et al. [21] developed the KdV
equation to explore the properties of IA solitary waves under the impact of spin-up and
spin-down electrons. The nonlinear Schrödinger equation (NLSE) was obtained from the
KdV equation using suitable transformations. Freak waves were examined using the NLSE
solutions of Akhmediev breathers and the Kuznetsov–Ma breathers.

A number of studies have witnessed the influence of trapped electrons in the regimes
of laboratory and space plasmas [22–26]. Solitary and breather waves in a plasma system,
including classical ions and degenerate trapped electrons, were studied using the reductive
perturbation approach and the nonlinear Schrödinger equation [24]. In degenerate dense
plasmas generated by ion beam, the influence of the quantized magnetic field and trapped
electrons on the properties of ion acoustic solitary waves was investigated [27]. The de-
velopment of the solitary wave in such plasmas was given by the Zakharov–Kuznetsov
(Z–K) equation, which takes into account classical magnetized positive ions and ion beams,
as well as the magnetically quantized trapped electrons. The impact of trapped electrons
with a quantized magnetic field in a degenerate quantum plasma was used to study the
nonlinear propagation of IA shock waves [25]. The reductive perturbation approach was
used to develop the nonlinear KdVB equation, and the impact of various plasma parame-
ters on IA shock waves was demonstrated. In quantum plasmas, a theoretical examination
of nonlinear propagation of ion acoustic shock waves in the presence of trapping effects
and Landau quantization was carried out [26]. The many KdVB solutions were examined,
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and the excitation from KdV oscillations to the shock solution was explained in the presence
of electron orbital motion. Landau quantization had a catastrophic influence on the height
(strength) of the nonlinear shock structures.

During the five decades, the study on understanding the dynamics of nonlinear
structures is one of the basic research topics in plasma physics. The mechanism of for-
mation of shock structures has been illustrated in detail in an investigation reported by
Kaur et al. [28]. The solutions of the Burgers/KdVB equation describe the formation of
shock structures in the given plasma environment. The effect of different plasma parame-
ters on structure and strength of shock waves was investigated. Ion-acoustic shock waves
(IASWs) were investigated in a degenerate relativistic plasma nuclei of heavy elements by
deriving the KdVB equation [29]. In a degenerate relativistic magneto-rotating quantum
plasma, a theoretical examination of heavy nucleus acoustic (HNA) nonlinear structures
was carried out [30]. The Zakharov–Kuznetsov–Burgers (ZKB) equation was developed
using the reductive perturbation approach, and the impact of various plasma properties
on the features of oscillatory shocks was investigated. In the recent past, Singh et al. [31]
studied the influence of the anisotropy effect on electron acoustic shocks by deriving the
KdVB equation in a superthermal magnetoplasma. Very recently, dressed shock waves
(DSWs) have been investigated by Kaur et al. [28] in a degenerate quantum plasma made
up of inertial heavy and light nuclei, as well as inertia-less ultra-relativistic degenerate
electrons, due to the contribution of higher-order nonlinearity and dissipation effects.
The higher-order effects of nonlinearity and dissipation were accounted for to derive an
inhomogeneous Burgers-type equation. The influence of various plasma parameters has
been analyzed on the characteristic properties of positive potential shocks and DSWs.

The most prominent theory for studying the dynamical properties of any plasma
system is bifurcation theory. Samanata et al. [32] presented a study to demonstrate the
features of nonlinear traveling wave solutions of the Kadomtsev–Petviashvili (KP) and
Zakharov–Kuznetsov (ZK) equations by employing bifurcation theory. Using the reductive
perturbation approach, Saha and Chatterjee [33] used the bifurcation theory to illustrate
the prominent characteristics of nonlinear electron acoustic waves in an unmagnetized
quantum plasma consisting of cool and hot electrons. In the present study, we have investi-
gated the characteristic properties of shock waves in a plasma comprising of positive ion
fluid, a weakly relativistic ion beam and trapped electrons in the presence of a quantizing
magnetic field. By employing the reductive perturbation technique, the KdVB equation is
derived, and further oscillatory solutions are studied. The manuscript is arranged as fol-
lows: Section 2 presents the fluid equations. In Section 3, the KdVB equation is obtained. In
Section 4, the parametric analysis is provided, and in Section 5, the results are highlighted.

2. Basic Equations

The method proposed by Landau and Lifshitz [34] has been employed to derive
the expressions for free electrons and trapped quantized degenerate electrons. Electrons
moving in a plane perpendicular to the magnetic field become quantized in the presence
of a strong magnetic field with energy levels εl

e = lh̄ωce + (p2/2me)− eφ, where −eφ is
the potential of the trapped electrons, ωce = eB0/mec and pz is the momentum of the
electrons along the direction of the magnetic field. Electron trapping occurs for eφ =
lh̄ωec + (p2

z/2me), where εl
e < 0 and εl

e > 0 are the energy of trapped and free electrons.
The electrons are occupied within the range ε to ε + dε, and summing up all Landau levels,
the number density of electrons can be written as [34],

ne =
p2

FeH

2π2h̄3

√
me

2

∞

∑
l=0

∫ ∞

0

ε−1/2

1 + exp(ε−W/T)
dε, (1)

where W = eφ + µ− lh̄ωce, µ is the chemical potential, H = h̄ωce/εFe, ne0 = (p3
Fe/3π2h̄3)

is the equilibrium density, pFe is the momentum on the Fermi surface, T = (πT/2
√

2εFe).
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The effect of the quantizing magnetic field appears through H. On solving integration on
RHS of Equation (1), we obtain [10,27]

ne

ne0
=

3
2

H(1 + φ)1/2 + (1 + φ− H)3/2 − HT2

2
(1 + φ)−3/2 + T2(1 + φ− H)−1/2, (2)

where φ = eφ/εFe. On expanding R.H.S. of Equation (2) upto order of φ2, we obtain,

ne

ne0
=

H
2
(3− T2) +

3H
4

(1 + T2)− 3H
16

(1 + 5T2) +
3
2

(
H
2
(1 + T2) + (1− H)1/2

−T2

3
(1− H)−3/2

)
φ +

3
8

(
−H

2
(1 + 5T2) + (1− H)−1/2 − T2(1− H)−5/2

)
φ2. (3)

To investigate the nonlinear propagation properties of shock waves, we consider a
plasma consisting of positive ions, weakly relativistic ion beam and trapped electrons in the
presence of quantizing magnetic field. The basic fluid equations (continuity, momentum
and Poisson) are given as [10,27],

∂Nj

∂T
+∇(NjUj) = 0, (4)

(
∂

∂T
+ Uj∇

)
(γjUj) =

(
e

mj

)
E +

(Uj

c

)
× B +

µ

mjNj
∇2Uj, (5)

∇2Φ = 4πe(Ne − Ni − Nb), (6)

where the relativistic factor is given by γj = (1 − u2
j /c2)−1/2, U2

j = U2
jX + U2

jY + U2
jZ,

(j = i, b) and E = −∇Φ.
The component form of the normalized version of the continuity and momentum

equation for ions and ion-beams is expressed as:

∂nj

∂t
+

∂(njujx)

∂x
+

∂(njujy)

∂y
+

∂(njujz)

∂z
= 0, (7)

γj
∂ujx

∂t
+

(
ujx

∂

∂x
+ ujy

∂

∂y
+ ujz

∂

∂z

)
(γjujx) = −ρj

∂φ

∂x
+ Ωbujy + η

∂2ujx

∂x2 , (8)

γj
∂ujy

∂t
+

(
ujx

∂

∂x
+ ujy

∂

∂y
+ ujz

∂

∂z

)
(γjujy) = −ρj

∂φ

∂y
−Ωbujx + η

∂2ujy

∂y2 , (9)

γj
∂ujz

∂t
+

(
ujx

∂

∂x
+ ujy

∂

∂y
+ ujz

∂

∂z

)
(γjujz) = −ρj

∂φ

∂z
+ η

∂2ujz

∂z2 , (10)

The normalized form of Poisson’s equation is:

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = µene − µbnb − ni. (11)

where j = i, b , γj = (1− v2
j /c2)−

1
2 , (γi = 1), η =

µωj

mjnjc2
s
, µe = Ne0

Ni0
, µb = Nb0

Ni0
, ρj =

mi
mj

and Ωb = eB0
ωmjcj

. The scaling parameters used for the normalization of above equations

are expressed as: t = ωjT, x, y, z = (X, Y, Z)/λFe, φ = ( εFe
e )Φ, nj =

Nj
Nj0

, uj =
Uj
Cs

where

λFeωj = Cs, ωj =
(

4πni0e2

mj

)1/2
and Cs =

√
εFe
mj

.
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3. Derivation of the KdV–Burgers Equation

We have used the reductive perturbation method to derive the KdVB equation.
The stretching coordinates are considered as:

ξ = ε1/2(lxx + lyy + lzz− λt) and τ = ε3/2t, (12)

where λ is the phase velocity, and ε is the smallest parameter that describes the strength of
nonlinearity. The state variables are expanded as:

nj = 1 + εn(1)
j + ε2n(2)

j + ...

ubx,y = ε3/2u(1)
bx,y + ε2u(2)

bx,y + ...

ubz = Vb0 + εu(1)
bz + ε2u(2)

bz + ...

uix,y = ε3/2u(1)
ix,y + ε2u(2)

ix,y + ...

uiz = εu(1)
bz + εu(2)

bz + ...

φ = εφ(1) + ε2φ(2) + ... (13)

We consider η = ε1/2η0, where η0 is the finite quantity of fluid viscosity. It is thought
that the values of η for heavier plasma fluids are expected to be less than unity in various
experimental scenarios. The same scaling parameter ε can be used to scale the smallness
of η as for the wave amplitudes. Furthermore, such a scaling of η is taken into account
in such a way that it only affects the dissipative term and not the dispersive or nonlinear
components. This is when the reductive perturbation approach comes into play. Otherwise,
the fundamental concept for the dissipation source may not be applicable for wave dynam-
ics. We substitute Equations (12) and (13) in Equations (7)–(11) and collect coefficients of
different powers of ε. The lowest order coefficients of ε for continuity equations, momen-
tum equations and Poisson’s equation after analytical manipulations yield the following
equations in first-order quantities.

n(1)
i =

l2
z

λ2 φ(1), (14)

u(1)
iz =

lz
λ

φ(1), (15)

n(1)
b =

l2
z

γb1(λ−Vb0lz)2 φ(1), (16)

u(1)
bz =

lz
γb1(λ−Vb0lz)

φ(1), (17)

From the first order Equations (14)–(17), we have determined the dispersion relation as

l2
z

λ2 = µeα1 +
µbl2

z
γb1(λ−Vb0lz)2 , (18)

where α1 = 3
2

(
H
2 (1 + T2) + (1− H)1/2 − T2

3 (1− H)−3/2
)

. This is a bi-quadratic equation
and it is not exactly solvable. We solved this equation numerically using MATHEMATICA-
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10 and obtained one pair of imaginary roots, one negative and one positive root. Since with
the negative root, no solitary structures are formed, the positive root of Equation (18) (i.e.,
positive value of λ) has been used for further analysis. Neglecting the relativistic effects in
the present investigation, the dispersion relation Equation (18) of this investigation matches
with the dispersion relation in the investigation of Deka and Dev [27]. Further collecting
higher-order coefficients of ε (see Appendix A—Equations (A1)–(A5)) and eliminating higher-
order terms by making use of Equations (14)–(17) in Equations (A1)–(A5), we obtain the
following KdVB equation

∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ3 = C
∂2φ

∂ξ2 , (19)

where,

A =
p
q

, B =
r
q

and C =
−η0

2

with

p =

[
l3
z γb2µb

2γb1(λ−Vb0lz)2 −
3l4

z µb

2γ2
b1(λ−Vb0lz)4

+
3l4

z
2λ4 −

µeα2

2

]
,

r =

[
1 +

λ(1− l2
z )µb

Ω2
Bb

+
(1− l2

z )

Ω2
bi

]
,

q = 2
[

l2
z

λ3 +
µbl2

z

γb1(λ−Vb0l3
z )

]
. (20)

For mathematical simplicity, we have considered here φ(1) = φ in Equation (19).
The solution of Equation (19) describes the propagation of shock waves, where A is the
nonlinear coefficient that determines the polarity of the shock structures, B is the dispersion
coefficient and C is the dissipation coefficient. In the absence of dissipation effects, the KdVB
Equation (19) is transferred to the KdV equation. In the absence of relativistic effects, this
KdV equation agrees with the KdV equation obtained in the limiting case (when C = 0)
from the ZK Equation (17) derived by Deka and Dev [27]. Further, it is highlighted that
the nonlinear structures observed in the present investigation are shocks, whereas in
Reference [27], nonlinear structures are solitons.

3.1. Solution of the KdV–Burgers Equation

To find the stationary solution of Equation (19), another frame of reference is con-
sidered as χ = (ξ −Uτ) where U is the speed of shocks. By introducing single variable
transformations in Equation (19) and integrating, we obtain the following equation:

−Uφ +
A
2

φ2 + B
d2φ

dχ2 = C
dφ

dχ
. (21)

The above second-order differential equation can be solved by using the tanh method.
After using the tanh approach, the analytical stationary solution of Equation (19) is deter-
mined as [35,36],

φshock = φm

(
4−

[
1 + tanh

( χ

W

)]2
)

, (22)
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here, φm = 3C2

25AB is the peak amplitude and W = 10B
C is the width and the speed of shock

waves is U = 6C2

25B . In a limiting case, when the dissipation coefficient vanishes (C → 0),
Equation (19) becomes KdV equation, and its solution is

φsoliton = φ0sech2
[ χ

W

]
, (23)

where φ0 = 3U0
A is the peak amplitude of the solitary wave, and W =

√
4B
U0

is the width of
the solitary wave. The influence of different plasma parameters on the characteristics of IA
solitons (µb, Vb0, Ωb, H and T) has been analyzed.

3.2. Solution of Oscillatory Shocks

Now, we are going to check another type of solution of Equation (19) by dealing with
certain asymptotic boundary conditions. From KdVB Equation (19), we write,

1
B

∂φ

∂τ
+

A
B

φ
∂φ

∂ξ
+

∂3φ

∂ξ3 −
C
B

∂2φ

∂ξ2 = 0. (24)

Using transformation χ = (ξ−Uτ) in the above equation and supposing that φ = φ0 + Φ,
where φ0 = 2U/A, φ� φ0 and on linearizing Equation (24) with respect to φ we obtain,

d2Φ
dχ2 −

C
B

dΦ
dχ
− U

B
Φ = 0, (25)

The above equation represents a well-known solution of a damped harmonic oscillator.
The oscillatory shock wave solution for Equation (19) is given by [37],

φosc =
2U
A

+ Q exp(−βχ) cos(ω1χ), (26)

where β = −C
2B is the damping factor, ω1 =

√
U
B

(
1− C2

4UB

)
, and Q is the arbitrary constant.

U
B represents natural frequency of the system.

3.3. Bifurcation Analysis

The Burger term of Equation (21) describes the homogenous and dissipative weakly
relativistic degenerate magnetoplasma, and the phase shift can be solved by dP

dχ rather than
P. Equation (21) is rearranged as

d2φ

dχ2 + h
(

φ,
dφ

dχ

)
dφ

dχ
+ G(φ) = 0, (27)

where h and G are obtained by comparing Equations (21) and (27). For the conservative
case (h = 0), the total energy is given as

P =
1
2

(
dφ

dχ

)2
+ V(φ) and

dP
dχ

=
dφ

dχ

(
d2φ

dχ2 +
dV
dφ

)
. (28)

In Equation (27), G(φ) = dV
dφ and the total derivative of P is obtained from

dP
dχ

= −h
(

φ,
dφ

dχ

)(
dφ

dχ

)2
. (29)
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It reduces with χ if h > 0. The term dP
dχ leads to the KdV Burgers equation,

dP
dχ

= −C
B

(
dφ

dχ

)2
. (30)

Equation (30) describes the nonconservative case. It is also a decreasing function.
If C = 0, then Equation (21) leads to a conservative system,

P =
1
2

(
dφ

dχ

)2
+ V(φ), (31)

where V(φ) = A
6B φ3 − U

2B φ2. For A > 0 and B > 0, the bifurcation analysis can be studied

by using Equation (31). The existence condition for solitons must be satisfied, i.e., d2V
dφ2 < 0.

From the phase plots, one can obtain the periodic orbits at the saddle point that defines the
family of periodic wave solutions.

4. Parametric Analysis

We have considered a plasma consisting of positive ions, a weakly relativistic ion
beam and trapped degenerate electrons in the presence of a quantizing magnetic field.
The effects of a quantizing magnetic field and temperature are described by H and T,
respectively. The plasma density with range of the order 1026–1028 cm−3, a magnetic field
with range 109−11 G and a Fermi temperature of order 3.6277× 107 K have been used to
carry out numerical calculations in the present investigation [38,39].

It is analyzed numerically that the nonlinear coefficient (A) is reduced with the increase
in the value of the ion beam density ratio (µb). Further, it is observed numerically that the
nonlinear coefficient (A) is increased with the increase in the value of the direction of the
cosine (lz). Since the nonlinear coefficient (A) is positive, only positive potential shocks are
observed in this plasma system.

4.1. Variation of Shock Wave Profile

Figure 1a,b represents the variation of pulse profile of shocks for the different values
of relativistic factor (via γb) and ion beam velocity (via Vb0). It is seen that the amplitude
of shocks is decreased with an increase in the relativistic factor γb. This is due to the fact
that the maximum amplitude of the shock wave profile is inversely proportional to the
nonlinear coefficient (A). Therefore, with the increase in the relativistic factor (via γb),
the nonlinear coefficient is increased, which in turn reduces the maximum amplitude of
the shock wave profile. On the other hand, in Figure 1b, with an increase in the beam
velocity (Vb0), the nonlinear coefficient (A) decreases, and due to a decrease in the nonlinear
coefficient, the amplitude of the shock waves is increased. Figure 2a,b depicts the variation
of the 3D shock wave profile for the different values of ion density ratio (µb) and magnetic
field strength (H). Figure 2a illustrates that as the value of ion beam density (via µb)
increases, the amplitude of the shock wave profile is increased. On the other hand, from
Figure 2b, it is seen that with the increase in the magnetic field strength (H), the amplitude
of the shock waves is decreased. Figure 3a presents the variation of the 3D shock profile
for different values of temperature degeneracy (T). It is observed that as the value of T
increases, the amplitude of shock waves is reduced. Figure 3b depicts the variation of the
3D profile of shock waves for the different values of viscosity η. An increase in the value of
η allows the amplitude of the shock wave to flourish.
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Figure 1. (Color online) Variation of the shock pulse profile for different values of (a) relativistic factor (γb), (b) beam
velocity (Vb0), with fixed values of lz = 0.6, η = 0.4, µb = 0.2 γb = 0.5, H = 0.2 and T = 0.2.

Figure 2. (Color online) Variation of the three-dimensional profile of the shock wave for different values of (a) ion-beam
density ratio (µb), (b) magnetic field strength (H), with fixed values of lz = 0.6, η = 0.4, Vb0 = 0.4, γb = 0.5, and T = 0.2.

Figure 3. (Color online) Variation of Three-dimensional profile of shock wave for different values of (a) temperature
degeneracy (T) (b) viscosity (η), with fixed values of lz = 0.6, µb = 0.2, Vb0 = 0.4, γb = 0.5, and H = 0.2.

4.2. Variation of Oscillatory Shocks

The solution of the oscillatory shock waves can be presented in Equation (26), which is
plotted against χ for different parameters. From Figure 4, it can be seen that the amplitude
of oscillatory shocks is increased with the increase in µb (see Figure 4). Figure 5 depicts
the influence of η on the amplitude of the oscillatory shock waves. With the increase in η,
the amplitude of the oscillatory shock waves is also increased. Figure 6 presents the varia-
tion of oscillatory shock waves for different values of the relativistic factor (γb). Figure 6a
depicts the relativistic case, and Figure 6b depicts the nonrelativistic case. On comparing
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the results in both Figure 6a,b it is observed that the amplitude of oscillatory shock waves
for the nonrelativistic case is much larger than the relativistic case.

Figure 4. (Color online) Variation of oscillatory shock waves for different values of ion-beam density ratio (µb) (a) µb = 0.2
(b) µb = 0.21, with fixed values of lz = 0.6, η = 0.05, Vb0 = 0.4, γb = 0.5, H = 0.2 and T = 0.2.

Figure 5. (Color online) Variation of oscillatory shock waves for different values of viscosity (η) (a) η = 0.05 (b) η = 0.08,
with fixed values of lz = 0.6, µb = 0.2, Vb0 = 0.4, γb = 0.5, H = 0.2 and T = 0.2.

Figure 6. (Color online) Variation of oscillatory shock waves for different values of relativistic factor (γb) (a) for the
relativistic case (γb = 0.2) (b) for the nonrelativistic case (γb = 0), with fixed values of lz = 0.6, η = 0.05, Vb0 = 0.4, µb = 0.2,
H = 0.2 and T = 0.2.
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4.3. Variation of Sagdeev Potential and Phase Portraits

Equation (31) is used to study the bifurcation analysis. Figure 7a illustrates the
variation of Sagdeev potential G(φ) vs. φ for different values of ion-beam density (µb),
magnetic field strength (H) and temperature degeneracy (T). As it is seen from Figure,
the Sagdeev potential has one hump and one bend. It is observed that the depth of the
Sagdeev potential decreases with an increase in µb and H. On the other hand, the depth
of the Sagdeev potential increases with an increase in T. Figure 7b depicts a family of
periodic orbits at (2G/A, 0) comparable to the periodic wave solutions. The saddle point
(0,0) represents the solitary wave solution. Q < 0 shows that the family of periodic orbits
around the center point at (2G/A, 0) and Q = 0 represents the solitary wave solution
(homoclinic orbit) at the saddle point (0,0). The case of Q < 0 corresponds to the breaking
waves. Figure 7b shows a chain of open orbits that corresponds to a train of breaking of
waves. From the bifurcation analysis, we have analyzed the characteristics of solitary and
periodic waves for the different cases of Q. In studying the bifurcation analysis of waves,
the phase portraits and planar dynamical systems have a great significance [32,33].

4.4. Variation of Solitary Wave Profile

In a limiting case, when the dissipation coefficient C = 0, the KdVB equation then
approaches the KdV equation. Using the analytical solution of the KdV equation, we have
also studied the formation of solitary waves. Figure 8a depicts the variation of a solitary
wave profile for the different values of beam velocity Vb0. As the value of Vb0 increases,
the amplitude of solitary waves increases and the width remains the same. Nonlinearity
plays a very important role in the increase in the height of the solitary wave profile with
an increase in the value of the beam velocity Vbo. Figure 8b presents the variation of the
solitary wave profile for the different values of direction cosines lz. It is observed that with
the increase in lz, the amplitude as well as the width of the solitary wave decreased. It is
emphasized that different physical parameters have a great influence on the characteristics
of shocks and solitary structures in a given plasma system.

Figure 7. (Color online) (a) The variation of Sagdeev potential (G(φ)) vs. φ with reference curve (blue solid curve) at
µb = 0.2, Vb0 = 0.4, H = 0.2 and T = 0.2; black (dotted) curve for µb = 0.24; red (dot-dashed) curve for H = 0.4; magenta
(dashed) curve for T = 0.4. (b) The case of Q < 0 corresponds to the family of orbits (magenta dashed and green solid
curves), Q = 0 represents the solitary wave (blue solid curve) and for H > 0, represents the chain of open orbits with a train
of the breaking wave solution (red dot-dashed and black dotted curves).
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Figure 8. (Color online) Variation of solitary profile for different values of (a) beam velocity (Vb0), (b) direction cosine (lz),
with fixed values of µb = 0.2, U0 = 0.02, H = 0.2 and T = 0.2.

5. Conclusions

We have studied the characteristic properties of shock waves and oscillatory shocks
under the influence of different plasma parameters in a relativistic degenerate plasma
with positive ions and a weakly relativistic ion-beam in the presence of magnetically
quantized trapped electrons. Only positive potential shock waves are formed. An ion-beam
plays an important role in the formation of different types of shocks and changes in their
characteristics. The nonlinearity of the system decreases as the ratio of the concentration of
ion-beam to the concentration of ion (µb) and beam velocity Vb0 increases. The amplitude
of the shock profile is decreased (increased) for the increase in the values of the relativistic
factor γb (beam velocity (Vb0). Furthermore, with the increase in µb (H), the amplitude of
the shock wave is increased (decreased). The influence of different plasma parameters on
the oscillatory shock waves has also been studied. The amplitude of oscillatory shocks is
increased with the increase in µb and η. The relativistic factor γb has a strong influence
on the amplitude of oscillatory shock waves. As we are moving from a relativistic to
nonrelativistic case, γb = 0, the amplitude of oscillatory shock waves is enhanced. In the
absence of dissipation, a bifurcation analysis is also presented, and the characteristics
of solitary and periodic waves are studied. In a limiting case (with C = 0), the KdVB
equation approaches the KdV equation. The amplitude of solitary waves is enhanced
with an increase in the value of beam velocity (Vb0). This investigation may be useful to
understand the nonlinear phenomena responsible for the formation of ion acoustic shock
waves in astrophysical dense plasma environments, especially in white dwarfs.
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Appendix A

Comparing coefficients of higher-order terms of ε in the continuity equation for ion
and ion beam, respectively, are,

− λ
∂ni

(1)

∂ξ
+

∂ni
(1)

∂τ
+ lx

∂uix
(2)

∂ξ
+ ly
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(2)
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= 0, (A1)
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Collecting next order terms of the momentum equation of the z-component for ions
and beam,
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(2)
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Collecting higher-order terms of Poisson’s equation,

∂2φ(1)

∂ξ2 = µeα1φ(2) + µeα2φ(1) + µbn(2)
b − n(2)

i . (A5)

where α2 = 3
8{
−H

2 (1 + 5T2) + (1− H)−1/2 − T2(1− H)−5/2}.
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