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Abstract: The general problem of calculating of the propagation of electromagnetic radiation from
particles or stars moving in the vicinity of a supermassive black hole is considered in geometrical
optics approximation within the framework of the general theory of relativity. Different approaches
that can be used to calculate certain characteristics of radiation, including redshift, the intensity and
rotation of the plane of polarization, which have been presented in the literature are analysed herein.
The inverse problem—the calculation of the parameters of the motion of the source (star or particle)
from the data of the redshift, the intensity and the plane of polarization—is also considered.
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1. Introduction
Recent discoveries in the field of gravity (gravitational waves [1,2], black hole

images [3,4], microgravity [5], active galactic nuclei [6–8], motion of the stars near Galactic
Centre black hole [9–20]) show the great importance of such studies. The investigation all of
these phenomena directly or indirectly uses properties of the electromagnetic radiation that
propagates in the external gravitational field. As such, the problem of studying radiation
propagation through space–time in the framework of the general theory of relativity seems
very important.

In the present paper, we briefly review certain optical characteristics of electromagnetic
radiation in the external gravitational field and theoretical methods for its calculation and
study. There is a large number of studies in which certain aspects of the considered issue
have been discussed (see, e.g., [21–26]). However, our aim was to present a self-consistent
review of the problem. We consider the fundamental properties of electromagnetic radia-
tion in classical general relativity and show how it can be used for obtaining information
about the source of radiation.

The electromagnetic radiation characteristics of stars moving in the external gravita-
tional field of a black hole have been considered in many papers (see, e.g., [13–20,27–29]).
In [18,20], the calculation of the redshift of the star is considered. Furthermore, the inverse
problem—calculating the parameters of the motion of the star from the redshift—is solved.
The redshift function is calculated in the first Newtonian approximation. The problem
of calculating radiation from pulsars in the external gravitational field was considered in
the papers [28,29]. In these papers, the influence of the external gravitational field on the
precession of the pulsar was taken into account. However, the influence of the gravitational
field on the propagation of light was neglected. In our previous paper [30], we showed
that the last effect must also generally be taken into account. Unlike the cited papers, our
works use fully generally relativistic approaches in calculations. Therefore, our results
can be used not only in cases of weak external gravitational field, but also in cases of a
strong gravitational field (for example, in the immediate vicinity of a black hole). The
main approximation used in our study is that of the possibility of using classical physics
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and geometrical optics approximation (ω → ∞, where ω is the electromagnetic wave
frequency).

In our notations, Latin indices run from 1 to 4; Greek indices run from 1 to 3; and the
signature of the space–time metric glm is +2.

2. Geometrical Optics
In general, the electromagnetic field in curved space–time satisfies the Maxwell equa-

tion (see, e.g., [31]):
Flm

;m = jl , (1)

where jl is the four-vector electromagnetic current. The tensor of the electromagnetic field
Flm constructed from the electromagnetic potential Al is as follows:

Flm = Al;m − Am;l . (2)

Furthermore, we use the Lorentz condition:

Al
;l = 0 . (3)

We are only interested in the region where the electromagnetic field propagates in
vacuum. Then, we have jl = 0. Geometrical optics’ approximation of the solution of
Equation (1) can be obtained using the ansatz [31]:

Al(x) = Ãl(x)eiωS(x) . (4)

Here, x denotes a space–time point, Ãl(x) denotes the amplitude of the electromag-
netic wave, ωS(x) denotes its phase, and ω denotes its frequency. In terms of geometrical
optic limit, ω → ∞, while Ãl(x), ωS(x), and their derivatives have finite values. In the
formula (4), i denotes the imaginary unit. Due to the linearity of Maxwell equations, the
physical values of potentials can be obtained by taking the real part from the mathematical
solution (4). Taking into account that eiωS(x) 6= 0 for all space–time points x, from the
Lorentz condition (3) we obtain:

iωS,l(x)Ãl(x) + Ãl
;l = 0 . (5)

Equation (5) must be satisfied in the geometrical optics limit ω → ∞. Therefore, we
obtain: {

Ãl
;l = 0 ,

S,l(x)Ãl(x) = 0 .
(6)

By substituting the ansatz (4) into Maxwell Equation (1), another system of equations
obtains in vacuum:

−ω2S,mS,m Ãl + ω2S,lS,m Ãm − iωS,l
;m Ãm + iωS,m

;m Ãl + 2iωS,m Ãl
;m − iωS,m Ãm;l−

iωS,l Ãm
;m +

(
Ãl;m − Ãm;l

);m
= 0 .

(7)

Taking into account geometrical optics approximation, we concluded that terms for
all pours of ω on the left-hand side are equal to zero. We also used Equation (6). Then, we
obtain the following equations:

S,mS,m = 0 ,

S,m
;m Ãl + 2S,m Ãl

;m = 0 ,(
Ãl;m − Ãm;l

);m
= 0 .

(8)

It follows from the first equation in (8) that the vector field km = ωS,m is isotropic. By
differentiating this equation with respect to xl , we obtain the equation:

S,m;lS,m + S,mS,l;m = 0 ,
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from which it follows that the vector field km represents vectors tangent to the certain
congruence of isotropic geodesics: kl;mkm = 0. Physically, this congruence consists of rays
of light that propagate through the gravitational field. km is the wave vector of light.

The second equation in (8) can be rewritten in the form:(
Ãm Ãmkl

);l ,

which represents a certain conservation law with the current Ãm Ãmkl . Physically, it means
that of the conservation of the “numbers of photons” along the ray [31].

3. Redshift of the Spectrum of Electromagnetic Radiation
In the previous section, we saw that the solution (4) of the Maxwell equations in

vacuum describes the wave that propagates along the null geodesic with the tangent vector
km = ωS,m. A very important characteristic of the electromagnetic wave in astronomy
and astrophysics is the redshift of the spectrum of radiation z. It can be defined by the
following formula (see, e.g., [18]):

z =
δλ

λ
. (9)

Here, λ is the wavelength of emitted light, and δλ is the difference between the
wavelengths of received and emitted light.

Consider a source of the electromagnetic field and an observer. They are both moving
in the external gravitational field along certain world lines that are parametrized by proper
times τs and τo, respectively, (see Figure 1). We parametrize isotropic geodesics by the affine
parameter µ, such that km = dxm/dµ. An isotropic geodesic describing the propagation of
radiation must lie on the surface S(x) = const. Indeed:

d
dµ

S = S,mkm = 0 .

World line of the source World line of the observer

(u )i
o

(u )i
s

τ

τ

s

o

S=S =const
1

S=S =const
2

μ

μ

Figure 1. Isotropic geodesics intersecting the world lines of the source and the observer.

Consider a set of such surfaces S = S1, S = S2. . ., for which eiωS(x) has a maximum.
This corresponds to the maximum value of the electromagnetic field. Part of the world
line of the source/observer between two nearest surfaces (for example, S = S1 and S = S2)
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will correspond to the emission/registration of one wave of electromagnetic radiation. Let
∆τs be the proper time of the emission of the whole electromagnetic wave and ∆τo be the
proper time of the detection of the whole electromagnetic wave. Therefore, we obtain:{

λ = c∆τs ,
λ + δλ = c∆τo .

(10)

From (9) and (10), we obtain:

z =
∆τo

∆τs
− 1 . (11)

Consider all isotropic geodesics which intersect the world lines of the source and
the observer. Phase ωS is a monotonic function of proper time τs. Due to this, we can
parametrize while considering points by an affine parameter along the geodesic µ and
parameter S that are proportional to the phase, characterizing the geodesic in congruence
(see also Figure 1). From the general properties of derivatives in the Riemannian manifold,
we obtain:

D
DS

dxj

dµ
=

D
Dµ

dxj

dS
,

therefore:
d

dµ

(
dxj

dS
dxj

dµ

)
=

dxj

dµ

D
DS

dxj

dµ
=

1
2

d
dS

(
dxj

dµ

dxj

dµ

)
= 0 . (12)

We introduce the following abbreviation:

∆xj =
dxj

dS
(S2 − S1) . (13)

From (12):
k j∆xj = const along the isotropic geodesic. (14)

In the geometrical optics limit (ω → ∞), the period of the emitted wave δτs and
the period of the observed wave tend towards zero. Due to this, the mentioned finite
increments will become the differentials: ∆τs → dτs, ∆xj → dxj, . . .

(k j)s and (k j)o denote the wave vector in the points of radiation and the observer
receiving the radiation, respectively. Furthermore, (uj)o and (uj)s denote the four-velocity
vector of the observer and of the star, respectively. From Figure 1 and relation (14), we
obtain:

(k j)s(uj)s∆τs = (k j)o(uj)o∆τo . (15)

From (11) and (15), it follows that:

z =
(k j)s(uj)s

(kl)o(ul)o
− 1 . (16)

Comparing this result with (11) and using the relation ω = 2π/∆τ, with an appropri-
ate choice of affine parameter µ, we find:

(kl)s(ul)s = ωs , (k j)o(uj)o = ωo . (17)

4. Luminous Intensity
Another important optical characteristic of electromagnetic radiation is luminous

intensity. As in the paper [32], we define this characteristic as

I =
dE

dτδΩ
, (18)
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where dE is the energy emitted during a period of time dτ per solid angle δΩ. For
astrophysical purposes, it is interesting to know the magnification coefficient K. It is the
detected to emitted luminous intensity ratio:

K =
Io

Is
, (19)

where indexes o and s relate to quantities at the point of the observer and of the source,
respectively. Then, we obtain:

K =
dEo

dEs

dτs

dτo

δΩs

δΩo
. (20)

We assume for a moment that radiation consists of photons with a frequency of ω.
Then, dE = h̄ωdN, where dN is the number of emitted photons and h̄ is the Plank constant.
We find that:

dEo

dEs
=

ωo

ωs
=

1
z + 1

, (21)

and:
τs

τo
=

1
z + 1

. (22)

Consider the elementary solid angle δΩ that is formed by wave vectors ki, ki + δki,
ki + δk̃i, ki + δki + δk̃i. In the flat space–time solid angle, dΩ has the following expression:

δΩ = n · (δn× δñ) , (23)

where n = ck/ω. The generally relativistic generalization of formula (23) has the form [32]:

δΩ =
c3

ω3

√
−geijmlulkiδkjδk̃m . (24)

Here, g = detglm and eijml is the Levi–Civita symbol, e1234 = 1.
Consider the external gravitational field of a Schwarzschild black hole. The metric of

the Schwarzschild black hole has the form (as can be seen, e.g., in [33]):

ds2 =
dr2

1− 2M/r
+ r2dθ2 + r2 sin2 θdϕ2 −

(
1− 2M

r

)
c2dt2 . (25)

Here, xi = {ct, r, θ, ϕ} are Schwarzschild coordinates. In M = GmBH/c2, G is the
gravitational constant and mBH is the mass of the black hole. Electromagnetic radiation
propagates from the source to the observer between two space–time points. Choosing
coordinate frame F̃ : {ct, r, θ̃, ϕ̃} such that the observer resides on the axis θ̃ = 0, ϕ̃ = 0, we
obtain that the trajectory of the ray of light lies in the plane ϕ̃ = const and (see, e.g., [33]):

k1 =
dr
dµ

= er
ωi
c

√
1− (1− 2M/r)D2/r2 ;

k2 =
dθ̃

dµ
= −D

r2
ωi
c

;

k3 =
dϕ̃

dµ
= 0 ;

k4 = c
dt
dµ

=
ωi

c(1− 2M/r)
, (26)

where D is the impact parameter. Factor es = ±1 takes into account either the receding or
approaching part of the trajectory of light under consideration. From (17), we find that ωi
is the frequency registered by the resting observer at infinity.
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From (26) and the boundary condition r → ∞ for θ̃ = 0, we obtain the following
analytical expression for the trajectory of the ray:

1
r
=

1
rr(θ̃, D)

=

1
P
− Qk2

2PM
cn2

[
θ̃

2

√
Q
P
+ F

[
arccos

(√
2M
Qk2

)
, k

]
, k

]
, (27)

where rr = r for the points of the world line of the ray:

Q =
√

P2 + 4PM− 12M ; (28)

k =

√
Q− P + 6M

2Q
, (29)

cn[ϕ, k] and F[ϕ, k] are the Jacobi cosine and the elliptic integral of the first kind, respec-
tively, (for which the definition can be found in [34]). For the real values, P has the physical
meaning of the closest distance approached (see, e.g., [35]). However, in all cases (complex
or real value), P can be expressed through the impact parameter D as follows:

P = − 2√
3

D sin

[
1
3

arcsin

(
3
√

3M
D

)
− π

3

]
.

We define δkj as the deviation of the wave vector due to deviation of the impact
parameter δD:

δkj =
ωi
c

{
−er(1− 2M/r)DδD

r2
√

1− (1− 2M/r)D2/r2
, − δD

r2 , 0, 0

}
. (30)

Another deviation δk̃j is defined as the deviation due to the rotation of the plane of
light propagation in the direction of φ̃ [32]:

δk̃j =
ωi
c

{
0, 0,

D
r2 δφ̃, 0

}
. (31)

We find that δΩo = sin θδφ̃δθ and use the relations (24), (30) and (31). We obtain:

δΩs

δΩo
=

1
(1 + z)2 sin θ̃

erD
r2
√

1− (1− 2M/r)D2/r2

∂D
∂θ̃

. (32)

Here, D is the solution of the equation:

rr(θ̃, D) = r , (33)

from which follows the solution of the boundary value problem for an isotropic geodesic.
Therefore, we can find D to be a function of r and θ̃. From (20)–(22) and (32), we obtain:

K =
1

(1 + z)4 sin θ̃

erD
r2
√

1− (1− 2M/r)D2/r2

∂D
∂θ̃

. (34)

5. Polarization Plane
The polarization plane of electromagnetic radiation can be determined by two vectors:

the wave vector ki and the vector of electric field Ei. It is known that Lorentz force is
directed in parallel to four-vector electric field. Therefore, the direction of the mentioned
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plane is measured by polarimeters. We studied the evolution of the wave vector in Section 2.
The electromagnetic field is defined as (see, e.g., [31]):

El = Flm(um)o . (35)

It is obvious from formula (35) that the vector Ei is dependent on the velocity (ui)o of
the observer’s reference frame in which it is measured. In keeping with the work of [36],
we introduce the following unit vectors:

am =
Ãm

A
; em =

Em

E
.

Here, A =
√

Am(Am)∗ and E =
√

Em(Em)∗. The asterisk in formulas denotes
complex conjugation. From Equation (8), it is easy to show that:

Daj

Dµ
= 0 . (36)

In order to determine the evolution of the polarization plane, we find the evolution
equation for vector ej alongside the isotropic geodesic. For this purpose, we obtain, in the
geometrical optics limit, that:

El = iωeiωS(ωo Ãl − kl Ãm(um)o
)

. (37)

For the norm, we obtain:

E =
√

ω2(ωo)2 A2 = ωωo A , (38)

and:

el = ial − i
am(um)o

ωo
kl . (39)

Differentiating (39) gives:

Del
Dµ

= −i
amkl
ωo

D(um)o

Dµ
. (40)

Here, we also take into account that am(um)o = 0. The main consequence of this
formula is the dependence of the evolution of a polarization plane on the motion of the set
of observers.

6. Inverse Problem
6.1. General Approaches

In previous sections, we considered the main optical characteristics of electromagnetic
radiation in the external gravitational field and several approaches for its calculations.
However, for astrophysical purposes, it is more important to solve the inverse problem:
determining the motion of the source using the known data of its electromagnetic radiation.
For example, such a problem appears when we determine the motion of S-stars in the
vicinity of the Galactic Centre. For the solution of this problem, the redshift and astrometric
positions of the stars can be used. For the solution of the inverse problem, it is necessary to
consider the χ2 function [17,18,20]:

χ2 = χ2
P + χ2

Z , (41)

χ2
P =

N

∑
j=1

[
(αj − αobs,j)

2 + (β j − βobs,j)
2

σ2
P

]
, χ2

Z =
N

∑
j=1

[
(zj − zobs,j)

2

σ2
Z

]
,
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where N is the number of observations, (αj, β j) and (αobs,j, βobs,j) are the angle coordinates
of the source in the jth observation, calculated from the theoretical model and obtained from
observations, respectively. zj and zobs,j are the redshift in the jth observation, calculated
from the theoretical model and obtained from observations, respectively; σP and σZ are the
root mean square deviations for the astrometric position and redshift, respectively. In these
cases in which only one type of data exists, we obtain χ2 = χ2

Z or χ2 = χ2
P, respectively.

All observational data are denoted by D, and the set of all possible parameters is
denoted by �. From the Bayes theorem, we obtain:

P(�|D) = P(D|�)P(�) = e−χ2/2P(�) . (42)

Assume that P(�) has a uniform distribution. Then, the maximization of the probability
P(�|D) is reduced to the minimization of χ2. Due to the complexity of obtaining expressions
in practice, this minimization is usually performed using statistical algorithms such as the
Metropolis–Hastings method [37].

6.2. Reconstruction of the Motion of the Source Using Redshift and Luminous Intensity
An approach to the solution of the inverse problem in the case of an external gravita-

tional field of a Schwarzschild black hole is presented in [32]. This approach does not need
any a priori known equations of motion of the source while the assumption of light propa-
gation along isotropic geodesics in Riemannian space–time is used. It creates possibilities
of independently finding all four coordinates and four components of the velocity vector of
the source (uj)s. Therefore, the mentioned approach that is most useful for testing certain
theories of gravity and for the study of the distribution of sources near a black hole distorts
the metric. The approach proposed in [32] is based on the solution to the following system
of equations:

Kgeom
−1 (φ, r)

Kgeom
0 (φ, r)

=
Iobs
−1 (τ)(1 + zobs(τ))4

Iobs
0 (τ)(1 + zobs(τ))4

; (43)

Kgeom
1 (φ, r)

Kgeom
0 (φ, r)

=
Iobs
1 (τ)(1 + zobs(τ))4

Iobs
0 (τ)(1 + zobs(τ))4

.

Here, the geometrical magnification Kgeom can be found from magnification coefficient
Kn (see Section 4):

Kn =
Io,n

Is,n
=

Kgeom
n (φ, r)
(1 + z)4 , (44)

where Is,n and Io,n are the luminous intensity of the emitted and registered radiation, respec-
tively. Index n is the order of the ray (see, e.g., [32,38]), Kn is the radiation magnification
of the order n, the calculation of which is described in Section 4. z is the redshift. Index
obs is related to the values that are obtained from observations. Therefore, (43) provide us
with possibilities of finding φ and r for the proper time τ (due to the axial symmetry of the
problem, it is possible to find only one angle coordinate of the source). This method can
only be used in cases when more than one image of the source is observed (with indexes
n = −1, n = 1).

6.3. Reconstruction of the Motion of the Components of a Binary Star That Moves in the Vicinity of
a Black Hole

In this subsection, we consider the problem of the reconstruction of the motion of the
binary star in the vicinity of a black hole using the redshift function only. Based of the
research in [39], we consider the relative motion of the component of the binary in Fermi
coordinates [33,40,41]. Consider the world line xi = ξ i(τ) of a certain observer and τ their
proper time. Along ξ i(τ), we define the co-moving tetrad (or vierbein) h(m)

i:

h(4)
i =

1
c

ui, h(i)
kh(j)k = η(i)(j) , (45)
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where ui = dξ i/dτ is the four velocities of the observer, η(m)(n) = diag(1, 1, 1,−1).

Any point in the vicinity of world line ξ i(τ) can be given coordinates {xî} in the
following way. At first, we construct a space-like geodesic hypersurface that is orthogonal
to the world line ξ i(τ) at the point O which belongs to ξ i(τ). All points on this hypersurface
have a coordinate x4̂ = cτ. Then, we find a geodesic line which goes through O and any
point P lying on the hypersurface. At the point O, we construct a vector tangent to the
geodesic. Finally, we assign to P three coordinates X(α) = σPh(α)i ηi, where σP is the
canonical parameter of the geodesic, evaluated at point P.

The equation of the relative motion of the components of the binary in co-moving
Fermi coordinates for ξ i(τ) that coincides with the world line of the centre of mass of the
binary has the following form [42]:

dv(κ)

dτ
=

(
G(m1 + m2)

r

)
,(κ)
− 2ε(κ)(α)(τ)ω

(α)v(τ)−

2c(m2 −m1)

(m1 + m2)
R(κ)

(ν)(µ)(4)x
(µ)v(ν) + 2D(κ)

(ν)x
(ν) .

(46)

Here, m1,2 are the masses of the components of the binary, and x(α) = X(α)
2 − X(α)

1 ,

X(α)
1,2 are the Fermi coordinates of the components of the binary with respect to its centre

of mass, vα
1,2 are their velocities, and v(α) = v(α)2 − v(α)1 , ω(α) is the angular velocity of the

tetrad:

ω(α) =
1
2

ε(α)(κ)(τ)h(τ)i
Dh(κ)i

Dτ
.

Furthermore, the following abbreviation is introduced:

D(µ)(ν) = −
c2

2
R(4)(µ)(4)(ν) +

1
2
(δ(µ)(ν)ω

2 −ω(µ)ω(ν)).

ε(α)(β)(γ) is the Levi–Civita symbol and the tetrad components of the curvature tensor
Rijkl can be calculated as R(m)(n)(p)(q) = hi

(m)hj
(n)hk

(p)hl
(q)Rijkl . For the source in a binary

system, the following relation holds (see [42]):

z(τ) = (1 + z0(τ))

(
1− 1

c
d

dτ
(n(α)X

(α)
1 )

)
− 1 + O

(
$2

M2 ,
v2

c2

)
, (47)

where $ is the order of relative distance between the components of the binary; v is their
relative velocity; z0(τ) is the redshift of the light of the imagined source that is located at
the centre of mass of the binary; τ is the proper time of the centre of mass of the binary;

and n(α) = k(α)/
√

k(β)k(β) is the normalised three-wave vector of the light ray at the point
of radiation.

The proper time of the star can be expressed by

t(τ) =
τ∫

0

(1 + z(τ′))dτ′ . (48)

Assume that only the function z(t) is known from the observation. It consists
of two parts: the slowly changing part z0(t) and the quickly oscillating part zr(t) =

d(n(α)X
(α)
1 )/(cdτ). In the paper [39], an approach that allows one to determine each part

of redshift independently is presented. Consider the case when radiation from only one
component (with mass m1) of the binary system can be received by the observer on Earth.
In order to use the formulas (46) and (47) for the motion of the stars and the redshift, it is
necessary to introduce a Fermi basis that satisfies the standard relations [33,40,41].
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The following abbreviations denote the parameters of the orbit relative to the picture
plane—the two-dimensional plane that is orthogonal to vector n(α):
• i ∈ [0, π]—orbital inclination is the angle between the picture plane and the plane of

the orbit;
• ωr ∈ [0, π]—pericentre longitude, counted along the orbital plane;
• ζ ∈ [0. 2π]—position angle, counted along the picture plane.

The period of the relative motion of the components can be found with very good
accuracy by considering the function (1 + z(τ))/ f (t(τ)) that is approximately periodic:

T ≈ ∆TN
(N − 1)

(49)

where ∆TN is the interval of proper time that is bounded by the local maxima of the
function that consists of N maxima. Consider function zr(τ) through time interval T. The
local maximum of the function zr(τ) is denoted by za (the corresponding proper time τa)
and the following local minimum is denoted by zc (the corresponding proper time τc).
Then, τa < τc. Furthermore, times τb, τd are denoted such that zr(τb) = 0, zr(τd) = 0,
τa < τb < τc < τd and τd − τa = T. We define:

h1 =

τb∫
τa

zr(τ)dτ ; h2 = −
τd∫

τc

zr(τ)dτ . (50)

Using the Lemann–Files method (see, e.g., [43]), we obtain:
ωr = arctg

[
2
√
−zazc

za − zc

(h1 − h2)

(h1 + h2)

]
;

e =
za + zc

za − zc

1
cos ωr

.

Here, e is the eccentricity of the orbit. In the Newtonian limit, it is possible to find only
one more parameter of motion—that of the mass function M2:

M2 =
m2 sin i

(m1 + m2)2/3 = c
(

T
16πG

)1/3
(za − zb)

√
1− e2 . (51)

The presence of an external gravitational field decrees the symmetry of the system
relative to the considered approximation (Newtonian motion in flat space–time). Due to
this, it is possible to anticipate that the addition parameters can be found as a result of the
more detailed investigation of the inverse problem for the relative motion [39]. Finally,
the obtained results can be used as starting values for the minimization of the χ2 function
(see Section 6.1).

7. Conclusions
The presented theoretical investigation of electromagnetic radiation in an external

gravitational field offers possibilities for calculating registered optical characteristics. It
was shown that these characteristics depend on the external gravitational field and on the
motion of the source. It is thus possible, in principle, to determine the motion of the source
from the known optical characteristics of radiation. On the other hand, the presented
approach can be used for testing the general theory of relativity.

The existing approaches that offer the possibility of reconstructing the motion of the
source were presented. It was shown that we can have a simpler form of the solution,
from a theoretical point of view, if two or more characteristics of radiation are known. For
example, these can be redshift, the observation position and luminous intensity. However,
luminous intensity and astrometric position can usually be measured with much less
accuracy than the redshift. It is therefore interesting to study approaches that use redshift
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only. Such an approach was presented in Section 6.3 for the case of the source in the binary
star that moves in the external gravitational field of a supermassive black hole.

Another example is that of polarization plane evolution (see Section 5). These char-
acteristics can also be measured with quite good accuracy. We believe that the future
theoretical development of this approach may enable the study of the motion of the sources
of polarized radiation in an external gravitational field from the observation data of the
plane of polarization. For example, such sources may be pulsars in the vicinity of the
Galactic Centre black hole.

The presented approach for studying the propagation of an electromagnetic field is
only valid in classical (non-quantum) theory. However, it has certain benefits relative
to methods where radiation propagation is considered a motion of massless particles.
For example, the presented approach offers the possibility of using the properties of the
congruences of isotropic geodesics, but not solutions for each geodesic separately.

The presented approaches were formulated for the case of the general theory of
relativity. However, apart from the approaches in Section 6.3, they can immediately be
used in the case of all metric theories of gravity.
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