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Abstract: In this work, the modulational instability of dust-acoustic (DA) waves (DAWs) is theoreti-
cally studied in a four-component plasma medium with electrons, positrons, ions, and negative dust
grains. The nonlinear and dispersive coefficients of the nonlinear Schrödinger equation (NLSE) are
used to recognize the stable and unstable parametric regimes of the DAWs. It can be seen from the
numerical analysis that the amplitude of the DA rogue waves decreases with increasing populations
of positrons and ions. It is also observed that the direction of the variation of the critical wave number
is independent (dependent) of the sign (magnitude) of q. The applications of the outcomes from the
present investigation are briefly addressed.
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1. Introduction

Electron–positron–ion-dust (EPID) plasma has been identified in the galactic centre [1],
Saturn’s magnetosphere [2,3], Jupiter’s magnetosphere [3,4], the pulsar magneto-sphere [5–8],
supernova environments [8,9], interstellar medium [10–14], cometary tails [15–17], the solar
atmosphere [17–20], and laboratory experiments [21–25]. There are many electron–ion plasma
systems in which positron or charged dust species or both occur naturally due to many
mechanisms (viz., pair production [18], thermal heating [26,27], and radiative heating [28],
etc.). The dynamics of the EPID plasma medium (EPIDPM) and associated electrostatic
nonlinear waves have rigorously changed due to the existence of the light positron and
heavy dust grains in the EPIDPM [29–32]. The signature of the positron in the EPIDPM has
encouraged many authors to examine the nonlinear electrostatic pulses in the EPIDPM [29,30].
Banerjee and Maitra [29] considered a four-component EPIDPM, studied the electrostatic
potential structures in the presence of massive dust grains and light positrons, and observed
that the height of the potential structures increases with increasing dust number density
but decreases with increasing positron number density. Paul and Bandyopadhyay [30]
demonstrated dust–ion-acoustic waves in an EPIDPM and showed that only positive super-
solitons can exist.

Highly energetic particles have been observed in Saturn’s magnetosphere [2,3], Jupiter’s
magnetosphere [3,4], the vicinity of the Moon [33], Earth’s bow-shock [34], and galaxy clus-
ters [35], etc. Renyi [36] first noticed the deviation of these particles from a Maxwellian–
Boltzman distribution, and finally Tsallis [37] generalized the non-extensive q-distribution to
explain these particles. The parameter q in the q-distribution describes the deviation of these
particles from a Maxwellian–Boltzman distribution, and when q → 1, Tsallis distribution
coincides with the Maxwell–Boltzmann distribution [38–40]. Eslami et al. [38] examined
the dust-acoustic (DA) solitary waves (DA-SWs) in the presence of non-extensive plasma
species. Roy et al. [39] studied the DA shock waves (DA-SHWs) in a three-component dusty
plasma featuring non-extensive electrons and observed that the height of the DA-SHWs
decreases with q.

Galaxies 2021, 9, 31. https://doi.org/10.3390/galaxies9020031 https://www.mdpi.com/journal/galaxies

https://www.mdpi.com/journal/galaxies
https://www.mdpi.com
https://orcid.org/0000-0003-0410-7860
https://orcid.org/0000-0002-8879-8891
https://orcid.org/0000-0002-2536-3954
https://doi.org/10.3390/galaxies9020031
https://doi.org/10.3390/galaxies9020031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/galaxies9020031
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com/article/10.3390/galaxies9020031?type=check_update&version=2


Galaxies 2021, 9, 31 2 of 8

The modulational instability (MI) of electrostatic waves and associated rogue waves
are governed by the nonlinear Schrödinger equation (NLSE) [41–43]. Bains et al. [41]
studied the MI of the DA waves (DAWs) by deriving the NLSE in a three-component
dusty plasma with non-extensive plasma species and found that the critical wave number
(kc), which determines the stability of the electrostatic waves, increases with increasing
non-extensivity of the plasma species. Moslem et al. [42] analyzed the DA rogue waves
(DA-RWs) by considering q-distributed plasma species. Rahman et al. [43] examined
DA-RWs in a multi-component dusty plasma and observed that the temperature of the ion
enhances the height of the DA-RWs.

Recently, Esfandyari-Kalejahi et al. [44] investigated the electrostatic DA-SWs in an
EPIDPM and observed that the amplitude of DA-SWs increases with increasing charge of
the dust grains. Jehan et al. [45] studied DA-SWs in a four-component dusty plasma by
considering inertial massive dust grains and inertialess iso-thermal electrons, positrons,
and ions. To the best knowledge of the authors, no theoretical investigation has been made
to understand the stability of the DAWs in a four-component EPIDPM. Therefore, in this
paper, we study the MIs of DAWs and the formation of DA-RWs in an EPIDPM.

The rest of the paper is organized as follows. The governing equations are presented
in Section 2. The MIs of DAWs and associated DA-RWs are given in Section 3. Finally, a
brief conclusion is provided in Section 4.

2. Governing Equations

We consider the propagation of DAWs in an unmagnetized EPIDPM with inertial,
warm, negatively-charged, massive dust grains (mass md; charge qd = −Zde; tempera-
ture Td; number density Nd) and inertialess q-distributed electrons (mass me; charge −e;
temperature Te; number density Ne), positrons (mass mp; charge +e; temperature Tp; num-
ber density Np), and ions (mass mi; charge qi = +Zie; temperature Ti; number density
Ni), where Zd (Zi) is the number of electrons (protons) residing in negatively (positively)
charged dust grains (ions). The dynamics of the EPIDPM is governed by these equations:

∂Nd
∂T

+
∂(NdUd)

∂X
= 0, (1)

∂Ud
∂T

+ Ud
∂Ud
∂X

+
1

mdNd

∂Pd
∂X

=
Zde
md

∂ϕ̃

∂X
, (2)

∂2 ϕ̃

∂X2 = 4πe[Ne − Np − Zi Ni + ZdNd], (3)

where Ud is the dust fluid speed, Pd is the pressure of the dust grains, and ϕ̃ represents
the electrostatic wave potential. To obtain the normalized form of Equations (1)–(3), we
introduce the normalized parameters; namely, nd → Nd/nd0, ne → Ne/ne0, np → Np/np0,
and ni → Ni/ni0, where nd0, ne0, np0, and ni0 are the equilibrium number densities of
the dust grains, electrons, positrons, and ions, respectively; ud → Ud/Cd, where Cd =
(ZdkBTi/md)

1/2 and kB is the Boltzmann constant; ϕ→ ϕ̃e/kBTi; t = T/ω−1
pd , where ω−1

pd =

(md/4πZ2
de2nd0)

1/2; and x = X/λDd, where λDd = (kBTi/4πZdnd0e2)1/2. The pressure
term of the dust grains can be recognized as Pd = Pd0(Nd/nd0)

γ, with Pd0 = nd0kBTd
and γ = (N + 2)/N, where N is the degree of freedom, and for the one-dimensional
case, N = 1, then γ = 3. The equilibrium quasi-neutrality condition can be written as
ne0 + Zdnd0 ' np0 + Zini0. Now, after employing the normalizing parameters, we can
write the normalized form of Equations (1)–(3) as

∂nd
∂t

+
∂(ndud)

∂x
= 0, (4)

∂ud
∂t

+ ud
∂ud
∂x

+ δnd
∂nd
∂x

=
∂ϕ

∂x
, (5)

∂2 ϕ

∂x2 = (µp + µi − 1)ne − µpnp − µini + nd. (6)
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Other plasma parameters are considered as δ = 3Td/ZdTi, µp = np0/Zdnd0, and
µi = Zini0/Zdnd0. Now, the non-extensive q-distributed electron, positron, and ion number
densities can be expressed as [37,43]

ne =
[
1 + (qe − 1)σϕ

] qe+1
2(qe−1) , (7)

np =
[
1− (qp − 1)αϕ

] qp+1
2(qp−1) , (8)

ni =
[
1− (qi − 1)ϕ

] qi+1
2(qi−1) , (9)

where σ = Ti/Te and α = Ti/Tp. For simplicity, we have considered qe = qp = qi = q,
where q is the non-extensive parameter defining the degree of non-extensivity of plasma
species; i.e., q = 1 corresponds to the Maxwellian distribution, and q < 1 (q > 1) corre-
sponds to the super-extensivity (sub-extensivity). We note that we are interested in DAWs
with a frequency of 10 to 100 Hz [20] and that the charging frequency of the dust species in
electron–ion plasma is on the order of 106 [20]. This clearly indicates that the dust charge
fluctuation is important only for the waves whose frequency is comparable to the dust
charging frequency. Thus, the dust charging time scale is completely negligible in compari-
son with that of the DAWs, and the effect of the dust charge fluctuation can be reasonably
neglected in any kind of study of the DAWs. We further note that the electron species is
assumed to follow a non-extensive distribution. Thus, the estimation of characteristic times
of electron thermalization for the plasma system under consideration is irrelevant. Now, by
expanding Equations (7)–(9) to the third-order in ϕ and thus substituting these expansions
into Equation (6), one can easily write

∂2 ϕ

∂x2 + 1 = nd + g1 ϕ + g2 ϕ2 + g3 ϕ3 + · · ·, (10)

where

g1 = [(q + 1){(µp + µi − 1)σ + µpα + µi}]/2,

g2 = [(q + 1)(q− 3){(1− µp − µi)σ
2 + µpα2 + µi}]/8,

g3 = [(q + 1)(q− 3)(3q− 5){(µp + µi − 1)σ3 + µpα3 + µi}]/48.

By employing the reductive perturbation method, one can easily derive the NLSE [46–48].
For the derivation of the NLSE, the stretched coordinates are considered as ξ = ε(x− vgt)
and τ = ε2t, where ε is small parameter (i.e., ε � 1) and vg is the group velocity of the
DAWs [46–48]. The dependent variables can be represented as [46–48]

nd = 1 +
∞

∑
m=1

εm
∞

∑
l=−∞

n(m)
dl (ξ, τ) exp[il(kx−ωt)], (11)

ud =
∞

∑
m=1

εm
∞

∑
l=−∞

u(m)
dl (ξ, τ) exp[il(kx−ωt)], (12)

ϕ =
∞

∑
m=1

εm
∞

∑
l=−∞

ϕ
(m)
l (ξ, τ) exp[il(kx−ωt)], (13)

where k (ω) stands for the carrier wave number (frequency). The derivative operators
are [46–48]

∂

∂t
→ ∂

∂t
− εvg

∂

∂ξ
+ ε2 ∂

∂τ
,

∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
. (14)
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Now, by substituting Equations (11)–(14) into Equations (4), (5), and (10), and under
consideration of m = 1 with l = 1, we can write Equations (4) and (5) as

n(1)
d1 =

k2

δk2 −ω2 ϕ
(1)
1 , u(1)

d1 =
kω

δk2 −ω2 ϕ
(1)
1 , (15)

and the dispersion relation of DAWs is

ω2 =
k2

g1 + k2 + δk2. (16)

The second-order (m = 2 with l = 1) equations are given by

n(2)
d1 =

k2

δk2 −ω2 ϕ
(2)
1 −

2iωvgk2 − 2ikω2

δ2k4 − 2δk2ω2 + ω4
∂ϕ

(1)
1

∂ξ
, (17)

u(2)
d1 =

kω

δk2 −ω2 ϕ
(2)
1 −

ivgkω2 + iδvgk2 − iω3 − iδωk2

δ2k4 − 2δk2ω2 + ω4
∂ϕ

(1)
1

∂ξ
, (18)

with the compatibility condition

vg =
ω2 − δ2k4 + 2δk2ω2 −ω4

kω
. (19)

The coefficients of ε under consideration of m = 2 and l = 2 provide the following
relations:

n(2)
d2 = B1|ϕ

(1)
1 |

2, u(2)
d2 = B2|ϕ

(1)
1 |

2, ϕ
(2)
2 = B3|ϕ

(1)
1 |

2, (20)

where

B1 =
2B3δ2k6 − 4B3δω2k4 + 2B3k2ω4 − 3ω2k4 − δk6

2δ3k6 − 4δ2ω2k4 + 2δk2ω4 − 2δ2ω2k4 + 4δk2ω4 − 2ω6 ,

B2 =
2B1δk(δ2k4 − 2δk2ω2 + ω4) + δk5 + ω2k3 − 2B3k(δ2k4 − 2δk2ω2 + ω4)

2ωδ2k4 − 4δk2ω3 + 2ω5 ,

B3 =
3ω2k4 + δk6 − (2g2δk2 − 2g2ω2)(δ2k4 − 2δk2ω2 + ω4)

6δ3k8 − 12δ2k6ω2 + 6δk4ω4 − 6δ2k2ω6 + 12k4ω4 − 6k2ω6 .

Now, we consider the expressions for (m = 3 with l = 0) and (m = 2 with l = 0),
which lead to the zeroth harmonic modes. Thus, we obtain

n(2)
d0 = B4|ϕ

(1)
1 |

2, u(2)
d0 = B5|ϕ

(1)
1 |

2, ϕ
(2)
0 = B6|ϕ

(1)
1 |

2, (21)

where

B4 =
B6δ2k4 − 2δB6k2ω2 + B6ω4 − 2vgωk3 − δk4 − k2ω2

(δ2k4 − 2δk2ω2 + ω4)(δ− v2
g)

,

B5 =
B4δ3k4 − 2B4δ2k2ω2 + B4δω4 − B6δ2k4 + 2B6δk2ω2 − B6ω4 + δk4 + k2ω2

vgδ2k4 − 2vgδk2ω2 + vgω4 ,

B6 =
2vgωk3 + δk4 + k2ω2 − (2g2δ2k4 − 4g2δk2ω2 + 2g2ω4)(δ− v2

g)

(δ2k4 − 2δk2ω2 + ω4)(1 + g1δ− g1v2
g)

.

Finally, the coefficients of ε under consideration of m = 3 and l = 1 and with the help
of (15)–(21) provide the NLSE [46–48]:

i
∂φ

∂τ
+ P

∂2φ

∂ξ2 + Q|φ|2φ = 0, (22)
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where φ = ϕ
(1)
1 for simplicity. In Equation (22), the dispersion coefficient (P) can be

written as

P =
(vgk−ω)(ω3 − 3vgkω2 + 3δωk2 − vgδk3)− (δk2 −ω2)(δ2k4 − 2δk2ω2 + ω4)

2ωδk4 − 2k2ω3 ,

and the nonlinear coefficient (Q) can be written as

Q =
3g3(δ

2k4 − 2δk2ω2 + ω4) + 2g2(δ
2k4 − 2δk2ω2 + ω4)(B3 + B6)− F

2ωk2 ,

where F = 2ωB2k3 + 2ωB5k3 − δB1k4 − B1k2ω2 − δB4k4 − B4k2ω2.

3. Modulational Instability and Rogue Waves

When P and Q of the NLSE (22) have the same sign (i.e., P/Q > 0) then the DAWs
are modulationally unstable, and when the P and Q values of the NLSE (22) have the
opposite sign (i.e., P/Q < 0), then the DAWs are modulationally stable [46–49]. The point
at which transition of the P/Q curve intersects with the k-axis is known as the critical
wave number k (=kc). It may be noted here that for typical dusty plasma, a number of
authors have considered Ni0 ' (107–1013) cm−3 [19–21,50–53], Ne0 ' (107–1013) cm−3

[18–21,50–53], Np0 ' 7× 107 cm−3 [18,53], kBTe ' (3–8) eV [19–21,50–53], kBTp ' 8 eV
[18,53], kBTi ' (0.2–1) eV [19–21,50–53], kBTd ' (0.1–0.3) eV [19–21,50–53], and Zd '
103–104 [19–21,50–53], and for laboratory edge dusty plasma, Ne0 ' Ni0 ' 1013 cm−3,
kBTe ' kBTi ' 10 eV, kBTd ' 1 eV, and Zd ' 104 [24,25]. For simplicity, we have
considered for our numerical analysis α = 1.0, δ = 0.0003, µi = 1.4, µp = 0.3, and σ = 1.

Now, the modulationally stable and unstable parametric regimes of the DAWs can
be seen from Figure 1. It is clear from the left panel of Figure 1 that (a) the DAWs are
stable for small values of k (k < kc) and are unstable for large values of k (k > kc) under
consideration of a sub-extensive q; (b) when q = 1.1, 1.5, and 1.9, then the corresponding
kc value is kc ≡ 3.0 (dotted blue curve), kc ≡ 3.2 (dashed green curve), and kc ≡ 3.4
(solid red curve); (c) the kc increases as q increases. Similarly, the right panel of Figure 1
represents the variation of the P/Q with k for different values of q under consideration of
a super-extensive q: (a) when q = −0.9, −0.5, and −0.1, then the corresponding kc value
is kc ≡ 1.40 (dotted blue curve), kc ≡ 1.55 (dashed green curve), and kc ≡ 1.95 (solid
red curve); (b) a negative q also leads to an increase in the critical wave number. Thus,
one can say that the direction of the variation of the critical wave number is independent
(dependent) of the sign (magnitude) of the q.

The modulationally unstable parametric regime (i.e., P/Q > 0) of the DAWs allows
the generation of highly energetic DA-RWs [54,55]:

φ(ξ, τ) =

√
2P
Q

[ 4(1 + 4iPτ)

1 + 16P2τ2 + 4ξ2 − 1
]
exp(2iPτ). (23)

We have also numerically analyzed Equation (23) in Figure 2 to illustrate the influence
of the number density and charge state of the plasma species on the formation of DA-RWs
associated with DAWs in the unstable parametric regimes (i.e., P/Q > 0). It is clear
from the left panel of Figure 2 that (a) the amplitude and width of the DA-RWs decreases
with increasing positron number density (np0) for a constant value of Zd and nd0; (b) the
increasing negative dust number density (nd0) enhances the amplitude and width of the
DA-RWs for a constant value of np0 and dust charge state Zd. The right panel of Figure 2
describes the variation of amplitude and width of the DA-RWs with space for different
values of µi, and it is obvious from this figure that (a) the height and width of the DA-RWs
increase (decrease) with an increasing dust (ion) number density for a fixed value of Zd and
Zi; (b) similarly, the nonlinearity of the EPIDPM increases (decreases) with the charge state
of the negative dust grains (positive ion) when their number densities remain constant.
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Figure 1. Plot of P/Q versus k for different values of positive q (left panel), and negative q (right
panel) when α = 1.0, δ = 0.0003, µi = 1.4, µp = 0.3, and σ = 1.

Figure 2. Plot of |φ| versus ξ for different values of µp and µi = 1.4 (left panel), and plot of |φ| versus
ξ for different values of µi and µp = 0.3 (right panel) when α = 1.0, δ = 0.0003, q = 1.5, and σ = 1.

4. Conclusions

In this paper, we have investigated DW-RW-associated DAWs in an EPIDPM with
inertial negative dust grains and inertialess non-extensive electrons, positrons, and ions.
The dynamics of the EPIDPM and the DA-RWs are governed by the standard NLSE. The
results that have been found in our present investigation can be summarized as follows:

• Both modulationally stable (i.e., P/Q < 0) and unstable (i.e., P/Q > 0) DAWs are
observed;

• The direction of the variation of the critical wave number is independent (dependent)
of the sign (magnitude) of the q;

• The amplitude of the DA-RWs decreases with increasing population of non-extensive
positrons;

• Excess non-extensive ions reduce the height of the DA-RWs.

The results of our present investigation will be useful in future to understand the MIs
of DAWs and associated DA-RWs in the galactic centre [1], Saturn’s magnetosphere [2,3],
Jupiter’s magnetosphere [3,4], the pulsar magneto-sphere [5–8], supernova environments [8,9],
interstellar medium [10–14], cometary tails [15–17], the solar atmosphere [17–20], and
laboratory experiments [21–25].
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