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Abstract: In earlier papers, we presented a binary evolutionary code for the purpose of reproducing
the orbital parameters, masses, radii, and location in the Hertzsprung Russell diagram (abbreviated
as HRD) of well-observed Algol systems. In subsequent versions, the effects of mass and angular
momentum losses and tidal coupling were included in order to produce the observed distributions
of orbital periods and mass ratios of Algol-type binaries. The mass loss includes stellar wind and
possible liberal evolution, when the gainer star is not capable to absorb all of the matter during
mass transfer from the donor star. We added magnetic braking to our code to better reproduce the
observed equatorial velocities. Large equatorial velocities of mass-gaining stars are now lowered by
tidal interaction and magnetic braking. Tides are mainly at work at short orbital periods, leaving
magnetic braking alone at work during longer orbital periods. The observed values of the equatorial
velocities of mass gainers in Algol-type binaries are mostly well reproduced by our code. According
to our models, Algols have short periods with a strong magnetic field.

Keywords: eclipsing binaries; binary evolution; stellar mass loss; magnetic braking

1. Introduction

The modelling of the evolution of close binaries started with the first papers of a series
from Paczynski [1–3], soon followed by papers from colleagues in Germany (Kippenhahn
& Weigert [4]) and from the USSR (Tutukov & Yungelson [5,6]). Paper [5] explored the loss
of matter and angular momentum during the period of mass transfer (further called Roche
Lobe Overflow, which is abbreviated as RLOF). Further developments can be found in the
review that was published by Eggleton et al. [7]. Nelson & Eggleton [8] used a fast code
producing large amounts of models to allow statistical studies. However, the code was
less suitable to produce models matching individual systems due to the use of averaging
equations. Song & Maeder et al. [9] and Song & Meynet et al. [10] provided fundamental
refinements of the theory of evolution of interacting binaries.

Van Rensbergen & De Greve et al. [11] started a series of papers for explaining the
observed distributions of mass ratios and orbital periods of Algol-type systems. Gradually,
improvements were introduced in the code to obtain better matches between observations
of individual systems and models. In the papers [12,13], we investigated mass loss from
the system (the liberal case) during eras of rapid mass transfer, while using a hot spot
mechanism. In [14], we presented models for systems with an accretion disk. Equatorial
velocities of gainers were modelled in [15] using magnetic braking to keep the equatorial
velocity far below critical during the evolution of the binary. These successive studies
still revealed some remaining discrepancies between theoretical and observed mass ratio
and orbital period distributions and raised new questions on the difference between the
theoretical rotational velocities (close to the critical one) and the observed values. In this
paper, we present a brief overview of the improved modelling work that has been done
over more than a decade, addressing these issues with some updated results.
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2. Paths through the Hertzsprung Russell Diagram (HRD)

Every observed binary has a large number of possible progenitors with different
values for their masses and different initial periods. Our evolution code recognizes a
progenitor as plausible when the calculated positions of donor and gainer in the HRD are
found to be close to the observations. The HRD is an effective temperature-luminosity
diagram. Observers refer to it as colour -magnitude diagram (abbreviated as CMD). As
an example, Figure 1 shows the evolutionary path of β Per: prototype of the Algol-type
binaries. The present characteristics of Algol are from the catalogue of Budding et al. [16].
All characteristics have been accurately retrieved by our code, except the Teff-values.
However, Zavala et al. [17] revised these Teff-values. Their value of Teff for the gainer is
closely approximated by our calculations. The progenitor is a (3.41 M� + 1.1 M�) binary
with an initial period of 1.4625 days. This binary lives two eras of RLOF. Nowadays, the
second era of RLOF (RLOF B during H-shell burning of the donor) is at work. Figure 1
shows that the observed location of the gainer is produced by the calculations, whereas
the calculated effective temperature of the donor remains larger than the observed one, as
mentioned in the catalogue of Budding et al. [16]. Figure 1 also shows the locations on the
Zero Age Main Sequence, where both stars start their life. During evolution, the originally
most massive donor becomes the less massive member of the binary. Presently, the most
massive gainer is still on the Main Sequence (abbreviated as MS) of the HRD, whereas the
less massive donor has evolved far away from the MS. The Algol paradox states that the
most massive member of an Algol-binary is less evolved than his less massive companion.
Figure 1 shows the well-known solution to this paradox.

Figure 1. Hertzsprung Russell diagram (HRD) evolution of β Per. Starting at the red square, the
donor follows the red path (observed and calculated positions: triangles). Starting at the blue square,
the gainer follows the blue path close to the Main Sequence (observed and calculated positions:
filled circles).

3. Tidal Interaction

Neglecting tides and magnetic braking, Packet [18] showed that mass gainers con-
tinue to rotate with the critical velocity after the accretion of only 5% to 10% of their
own mass. This critical velocity is, in most cases, much faster than that observed. Van
Rensbergen et al. [11] calculated a grid of evolutionary tracks with a simple approach
for tidal interaction and the possibility for binaries to live through liberal eras during
their evolution.
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Darwin [19] developed tidal interaction as first. Tides act on both stars of the binary,
depending on their radius “R” and the semi major axis “a” of the binary orbit. A typical
synchronization time is given by:

τsync = q−2
( a

R

)6
(1)

The mass of the star undergoing the tide is in the denominator of the mass ratio q in
Equation (1). Tides tend to synchronize the angular velocities of the stellar rotation (Ω)
with the angular velocity of the orbit (Ωorb), as shown in Equation (4).

In order to distinguish strong tides from weak tides, Wellstein [20] proposed calculat-
ing the synchronization time with:

tsync = τsyncfsync (2)

For strong tides, Wellstein [20] uses fsync = 0.1, for weak tides fsync = 1 is taken
in Equation (2). Both of the values of fsync were used by Van Rensbergen & De Greve
et al. [11–13]. Strong tides should be preferred over weak tides in order to obtain a better
agreement between observed and calculated distributions of mass ratios an orbital periods.
Nevertheless, strong tides are also not able to predict the population of Algol-binaries with
the smallest observed orbital periods.

In order to avoid the random number fsync, Van Rensbergen & De Greve [14] cal-
culated tsync with a physical model, distinguishing convective from radiative envelopes.
Hurley et al. [21] use an expression of Hut [22] to calculate tsync for a star with a convective
envelope. Hilditch [23] gives an expression of Zahn [24] to calculate the tidal action on a star
with radiative envelope. In the following, we will designate these synchronization times
with tsync,Darwin. Assuming that mass accretion causes turbulence in the atmosphere, the
convective mode was always applied during RLOF. Meridional circulation, as proposed by
Tassoul [25], was added as a significant contributor to tidal interaction. Figure 2 shows the
effect of Tassoul’s mechanism, presenting the degree of synchronism of the 8 M� star in a
(8 M� + 3 M�)-system in the pre-RLOF phase. During RLOF, the separation of different
tidal effects is blurred by the mass transfer.

Figure 2. Deviation from synchronous rotation of a 8 M�-primary caused by tidal interaction with
its 3 M�-companion. The blue line illustrates the action of the Darwin mechanism. The addition of
the Tassoul mechanism to synchronization is shown by the red line.

Thus, the tidal synchronization time was calculated with:

1
tsync

=
1

tsync,Darwin
+

1
tsync,Tassoul

(3)
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Tidal synchronization tries to equalize the angular velocities of the stars (Ω) in a
binary with angular velocity (Ωorb) of orbital rotation. Because of tides, a rotating star with
moment of inertia I and angular velocity Ω will change its spin angular momentum by
an amount

∆Jspin = I(Ωorb −Ω)

(
1− e

∆ t
tsync

)
(4)

This equation shows that tides cease their action on the rotation of a star when
synchronism is achieved with Ω = Ωorb.

4. Liberal Evolution

Peters & Polidan [26] introduced the concept of hot spots (also called HTAR: High
Temperature Accretion Regions) that are created at the trailing side of the gainer by the
mass-transfer from the donor hitting the gainer star. Van Rensbergen & De Greve [12,13]
used these hot spots to act together with rapid rotation of the gainer, attempting to surpass
the binding energy at the HTAR-location. More massive binaries reach that condition, as
they yield both characteristics, fast rotation and a very hot spot, during periods of rapid
mass transfer. The evolution of the binary will be liberal during such an era. The influence
of liberal evolution on the distribution of orbital periods and mass ratios of the evolutionary
models was compared to the observed distributions for 351 Algols, which were taken from
the catalogue of Budding et al. [16]. This catalogue uses different values of the mass ratio:
qLC is the mass ratio that is derived with the light curve solution and qMS is the mass ratio
derived to make the parameters of the gainer stars to fit Main Sequence characteristics.

Figure 3 compares observations and our models for the mass ratio distribution q = Md
Mg

,
where the subscript “d” is used for the donor star and “g” for the gainer. We updated
the comparison by taking the quantity qLC for the observed distribution instead of qMS,
as the latter value results in larger uncertainties than the former. The agreement between
observations and model is better than satisfactory, as compared to the result that was
obtained by Van Rensbergen et al. [13], with the injudicious use of qMS, which produces
too many Algols with large mass ratios, a result that is contradicted by observations.
The majority of Algols, having lower mass progenitors, evolve conservatively. The less
numerous more massive Algols evolve very differently as a consequence of their liberal eras.
However, since most Algols evolve conservatively, conservative and liberal simulations
yield similar distributions of the mass ratio.

The initial conditions for the simulations are from Salpeter [27] for the Initial Mass
Function (IMF) of the future donor, from Van Rensbergen et al. [28] for the initial mass ratio
distribution, and from Popova et al. [29] for the distribution of the initial orbital periods.

Figure 4 shows that the observed distribution of orbital periods of 376 Algols from
the catalogue of Budding et al. [16] is well reproduced by our simulation. The difference
of 376 with the earlier mentioned 351 comes from the fact that the period is known for
25 systems, for which the mass ratio still remains to be determined. In this case there is no
difference between the results obtained from the conservative and the liberal simulation.
However, our simulations yield almost no Algols with orbital periods shorter than one day,
in contrast with the ≈10 % found in the catalogue.
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Figure 3. The observed distribution of the mass ratio for 351 Algols (white) as compared to conserva-
tive (grey) and liberal (black) simulation.

Figure 4. Observed distribution of orbital periods for 376 Algols (grey) as compared to simula-
tion (black).

5. Magnetic Braking

Tides and liberal evolution cannot explain the observed rotational velocities of the mass
gainers published by Van Hamme and Wilson [30], Miller et al. [31], Glazunova et al. [32], and
Dervisoglu et al. [33]. Therefore, we investigated another possible process. In Section 5.1 we
explain how to calculate the magnetic field strength, while using a simple model of differential
rotation. The resulting magnetic braking rises with increasing values of the magnetic field
and the amount of mass loss through stellar wind. The mass losses by stellar wind are from
Vink et al. [34] for stars hotter than 12,500 K and De Jager et al. [35] for cooler stars. Details of
the calculation method can be found in Van Rensbergen & De Greve [15]. We further report
the results, including magnetic braking, in order to better understand the observed rotational
velocities of Algol-type systems.

5.1. Generation of the Magnetic Field of the Gainer

A solid body rotator with constant angular velocity Ω from the centre to the edge of
the star cannot develop a magnetic field. We use a model, wherein only the outer shell is
spun up by the mass-transfer from the donor hitting the gainer. During rapid RLOF the
outer shell rotates faster than the core of the gainer whose rotation is not accelerated. The
magnetic fields that are produced by the dynamo model of Spruit [36] are at work when
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the angular velocity increases with an amount ∆Ω over a distance ∆r. Packet [18] only
gives the amount of angular momentum that is added to the shell, being reduced by the
quotient of the impact-parameter d over the radius of the gainer Rg (rendering the spin-up
inefficient at close approach):

∆J+spin,shell = 6.04534 1054 Rg

(
Mg +

∆Mg

2

) 1
2
(

d
Rg

)
(5)

∆J+spin,shell is expressed in cgs units, whereas masses and radii are, respectively, in M�
and R�.

With every value of Jspin,shell corresponds a value of Ωshell=
Jspin,shell

Ishell
, which is a char-

acteristic value of the angular velocity in the shell. A magnetic field is created when
Ωshell > Ωcore. However, the value of Ω cannot change discontinuously from Ωcore to
Ωshell at the interface between core and shell. In order to accomplish the continuity of Ω(r)
and to avoid friction between the outer edge of the core and the inner surface of the shell,
we chose a radius-dependent angular velocity Ω(r) continuously increasing from Ωcore at
the interface between core and shell to Ωedge at the edge of the gainer.

5.2. Extent of the Shell

The gainer is now composed of an inner core in solid rotation that was surrounded by
a shell that rotates differentially. The core is not spun up or slowed down magnetically. Its
rotation is only modulated by tides. When the shell is spun up following relation (5), the
spin-down follows relation (4).

A core with a core fraction CF of the mass of the gainer leaves (1-CF) for the mass for
the shell.

Figure 5 shows the evolution with time of the equatorial velocity of the gainer starting
from a (6.36 + 2.7) M� binary with an initial orbital period of 1.89745 d. This is a plausible
progenitor for λ Tau, although any other binary in our collection of calculated cases could
have been chosen to illustrate our updated binary evolutionary scenario. The calculation
was performed for the system undergoing tides and magnetic braking with an initial value
of CF = 0.95. The evolution with time is compared with the evolution of the gainer in
the same system with a rigidly rotating and, hence, never magnetic gainer, for which the
rotation is only affected by tides. Also included in the figure is the evolution when neither
tides nor magnetic braking are active, showing that, in the latter case, the gainer remains
rotating with critical velocity once this velocity is achieved. The plausible progenitor for
λ Tau starts RLOF during core hydrogen burning of the donor (RLOF A). A critical rotation
of the gainer is achieved during this phase of rapid RLOF at ≈48 million years after ZAMS.
After that, RLOF A occurs at a lower speed. Tidal interaction and magnetic braking are then
strong enough to synchronize the rotation of the gainer. In Figure 5, one clearly sees that
synchronization settles more rapidly when magnetic braking helps tidal interaction. After
≈65 million years, during hydrogen shell burning of the donor, RLOF restarts. Critical
rotation is again attained. However, the rush to critical rotation is slowed down by the
combined action of tides and magnetic braking. The present observed state of λ Tau occurs
during this stage of rising rotational velocity. The gainer of λ Tau now has an equatorial
velocity that is far below the critical value.

When critical rotation is achieved during RLOF B, the orbital period is ≈30 days.
Figure 5 shows that tides are then too weak to prevent critical rotation. However, magnetic
braking will decrease the velocity below the critical value. This happens at the very end of,
and after, RLOF B.

Figure 6 shows the evolution of the magnetic field of the gainer in the binary that
is shown in Figure 5. Before RLOF A, the shell and core of the gainer have the same
synchronous rotational velocity. The core always continues to rotate almost synchronously.
When RLOF A starts, only the shell is spun up. When the shell rotates at critical velocity,
the magnetic field is at a maximum of ≈3000 Gauss for a short time. The magnetic field
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disappears when tides and magnetic braking have synchronized the rotation of the shell.
From the beginning of RLOF B, the shell is again spun up, and the magnetic field starts
to be built up again. The value of the magnetic field is lower than during rapid RLOF A.
A value of ≈750 Gauss is reached. The magnetic braking is then still sufficiently active to
synchronize the shell. After that, the magnetic field disappears again.

Figure 5. Evolution with age of the equatorial velocity of the gainer of a (6.36 M� + 2.7 M�) binary
with an initial period of 1.89745 days. Black line: tides and magnetic braking are not at work; red
line: tides act alone; blue line: tides and magnetic braking act together.

Figure 6. Evolution of the radial magnetic field strength (in Gauss) produced by the Spruit mechanism
for the binary mentioned in Figure 5. (Case A: red; Case B: blue).

6. Calculated Cases

Van Hamme & Wilson [30] defined the quantity F= veq
vsync

: the ratio between the equa-
torial velocity veq and the synchronous velocity vsync. Subsequently, they determined

R=
Fgainer−1

Fcrit,gainer−1 . This quantity R ∈ [0–1] is a measure of rotation. Specifically, R is 0 at syn-
chronous rotation and 1 at critical rotation. The use of the quantity R as a characteristic
measure of rotation has the advantage that minor differences in the evaluation of the
synchronous and critical velocities by different authors are ironed out. A determination
of veq is considered to be good when ∆R = |Rmodel − Robs| is small (near to 0) and it is
unacceptable when the same quantity is large (close to 1). We found 41 Algol-type binaries
for which the equatorial velocity of the gainer was published. These systems are shown in
Tables 1 and 2, running from ∆R = 0 at the top of Table 1 to the bottom of Table 2 where ∆R
≈ 1. The Tables show two lines for each system (first line: observed data; second line: data
from the model), showing that:



Galaxies 2021, 9, 19 8 of 11

• The observed equatorial velocities of 16 Algol-systems are very well confirmed by
theory (∆R < 0.1).

• Seventeen more Algols can be considered andl explained by the theory (∆R ∈ [0.11–
0.35]).

• No systems were found with ∆R ∈ [0.36–0.49].
• Seven other Algol-systems are weakly reproduced by the theory (∆R ∈ [0.50–0.90]).
• Only one Algol (U CrB) is badly reproduced by the theory (∆R > 0.90).

Table 1. Calculated equatorial velocities of gainers that best fit observations. Masses are in M�, orbital periods in days and
veq in km

sec . For each system, two lines are given, the first with data from observations and the second with the results from
the model. The masses mentioned by the observations of Glazunova et al. [32] are from Budding et al. ([16]).

System Mgainer obs Mdonor obs veq obs R obs Reference-Observations
Progenitor Mgainer calc Mdonor calc veq calc R calc Initial Period Progenitor

Very good Agreement ∆R ≤ 0.1

β Per 3.70 0.81 52.51 0.00 Dervisoglu et al. [33]
3.41 + 1.1 3.69 0.82 50.04 0.00 1.146250
HS Hya 2.47 0.70 45.41 0.01 Glazunova et al. [32]

2.37 + 0.8 2.47 0.70 78.97 0.00 1.18912
KO Aql 2.53 0.55 41.92 0.02 Dervisoglu et al. [33]

2.28 + 0.8 2.53 0.55 50.33 0.01 1.27150
CW Eri 2.59 0.74 33.28 −0.01 Glazunova et al. [32]

2.23 + 1.1 2.59 0.74 48.22 0.01 1.30138
ZZ Boo 3.43 0.96 9.51 −0.02 Glazunova et al. [32]

2.59 + 1,8 3.49 0.90 48.19 0.01 1.5
AU Mon 5.93 1.18 126.32 0.25 Dervisoglu et al. [33]

4.16 + 3.00 5.93 1.19 104.87 0.22 2.005
Y Psc 2.80 0.70 38.05 0.00 Dervisoglu et al. [33]

2.3 + 1,2 2.80 0.70 47.58 0.03 1.34865
WW Cyg 2.10 0.60 41.01 0.03 Dervisoglu et al. [33]
1.5 + 1.2 2.10 0.60 51.35 0.06 1.138
V505 Sgr 2.68 1.23 102.56 0.05 Dervisoglu et al. [33]
2.71 + 1.2 2.67 1.24 107.85 0.08 1.23198
TX UMa 4.76 1.18 63.62 0.04 Dervisoglu et al. [33]
4.24 + 1.7 4.75 1.19 71.78 0.00 1.44948

XY Cet 5.30 0.94 84.05 0.07 Glazunova et al. [32]
5.04 + 1.2 5.09 1.14 72.46 0.02 1.55429

SZ Psc 3.00 0.77 9.26 −0.03 Glazunova et al. [32]
2.47 + 1.3 3.00 0.77 44.38 0.03 1.4765
RZ Cas 2.10 0.74 87.65 0.06 Dervisoglu et al. [33]

2.14 + 0.7 2.10 0.74 62.93 0.00 1.33437
U Cep 3.57 1.86 437.37 0.87 Dervisoglu et al. [33]

3.33 + 2.1 3.56 1.87 488.95 0.95 2.13447
UV Psc 1.86 0.77 70.81 0.01 Glazunova et al. [32]

2.03 + 0.6 1.86 0.77 105.78 −0.09 1.3999
AI Dra 2.37 1.09 86.90 −0.06 Van Hamme & Wilson [30]

2.36 + 1.1 2.36 1.10 85.71 0.04 1.18128

Good Agreement ∆R ∈ [0.11–0.35]

CD Tau 2.5 1.0 20.91 0.00 Glazunova et al. [32]
1.9 + 1.6 2.5 1.0 77.27 0.11 1.91047
AT Peg 2.50 1.21 84.51 0.01 Dervisoglu et al. [33]

2.61 + 1.1 2.49 1.22 121.86 0.12 1.3406
TV Cas 3.78 1.53 80.48 −0.03 Dervisoglu et al. [33]

3.21 + 2.1 3.77 1.54 117.86 0.12 1.14467
RW Tau 2.43 0.55 94.00 0.18 Van Hamme & Wilson [30]

2.18 + 0.8 2.43 0.55 50.13 0.02 1.24613
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Table 1. Cont.

System Mgainer obs Mdonor obs veq obs R obs Reference-Observations
Progenitor Mgainer calc Mdonor calc veq calc R calc Initial Period Progenitor

VZ Hya 2.52 0.89 19.90 0.00 Glazunova et al. [32]
2.01 + 1.4 2.52 0.89 107.24 0.17 1.47042

X Tri 2.43 1.21 50.00 −0.16 Van Hamme & Wilson [30]
2.44 + 1.2 2.43 1.21 93.42 0.02 0.98383

Z Vul 5.39 2.26 135.02 0.18 Van Hamme & Wilson [30]
5.65 + 2.0 5.36 2.28 142.71 0.00 3.07536
IM Aur 2.38 0.77 139,76 0.20 Van Hamme & Wilson [30]

2.35 + 0.8 2.38 0.77 70.04 0.00 1.15531

Table 2. Calculated equatorial velocities of gainers fitting observations less good than in Table 1. The masses for V356 Sgr
are from ([37]). There are no systems found with ∆R ∈ [0.36–0.49].

System Mgainer obs Mdonor obs veq obs R obs Reference-Observations
Progenitor Mgainer calc Mdonor calc veq calc R calc Initial Period Progenitor

Good Agreement
(continued)

∆R ∈ [0.11–0.35]

DL Vir 2.18 1.06 121.00 0.20 Van Hamme & Wilson [30]
2.44 + 0.8 2.17 1.07 136.81 0.00 2.18242

δ Lib 4.76 1.67 68.85 −0.09 Van Hamme & Wilson [30]
3.93 + 2.5 4.75 1.69 113.16 0.12 1.23263

λ Tau 7.19 1.87 90.96 0.05 Van Hamme & Wilson [30]
6.36 + 2.7 7.15 1.88 177.83 0.26 1.89745
V356 Sgr 10.40 2.80 212,81 0.37 Glazunova et al. [32]

8.7 + 6 10.90 2.64 118.34 0.14 1.86560
TW Dra 1.70 0.80 37.09 −0.02 Dervisoglu et al. [33]
1.5 + 1.0 1.70 0.80 121.51 0.23 2.092
RX Gem 4.40 0.80 157.60 0.38 Dervisoglu et al. [33]
3.0 + 2.2 4.40 0.80 298.59 0.69 1.85226
TW And 1.68 0.32 31.64 0.01 Glazunova et al. [32]
1.4 + 0.6 1.68 0.32 155.42 0.32 1.08976
W Del 2.01 0.42 30.00 0.03 Van Hamme & Wilson [30]

1.53 + 0.9 2.01 0.42 169.80 0.36 1.10746
SW Cyg 2.50 0.50 197.47 0.46 Dervisoglu et al. [33]
2.1 + 0.9 2.50 0.50 73.25 0.13 1.32299

Weak Agreement ∆R ∈ [0.5–0.90]

TT Hya 2.77 0.63 168.93 0.44 Miller et al. ([31])
2.0 + 1.4 2.77 0.63 482.24 1.00 1.68341
RY Per 6.24 1.69 214.60 0.39 Dervisoglu et al. [33]

4.45 + 3.40 6.22 1.63 556.23 0.99 1.98167
RS Cep 2.83 0.41 170.23 0.33 Dervisoglu et al. [33]

2.04 + 1.2 2.83 0.41 412.17 0.99 1.32215
AD Her 2.90 0.90 143.79 0.31 Dervisoglu et al. [33]
2.7 + 1.1 2.90 0.91 382.61 1.00 6.6282
RY Gem 2.66 0.24 70.53 0.14 Glazunova et al. [32]

2.35 + 0.55 2.61 0.24 376.12 0.87 1.12077
TU Mon 12.6 2.7 153.02 0.18 Dervisoglu et al. [33]
11.5 + 4.3 12.09 2.74 621.52 0.98 1.75065

U Sge 4.45 1.65 76.00 0.04 Dervisoglu et al. [33]
3.4 + 2.7 4.44 1.66 446.87 0.86 1.72982

No Agreement ∆R > 0.90

U CrB 6.78 2.87 60.59 0.04 Van Hamme & Wilson [30]
5.25 + 4.4 6.76 2.88 533.20 0.99 2.06346
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7. Conclusions

For a large part of Algol-type binaries with well observed characteristics, fairly accu-
rate models can be calculated matching the present position in the HRD. For some systems,
a better determination of fundamental parameters, such as Teff for the cooler donor star is
needed. The observed distributions of mass ratios and orbital periods of Algol-type bina-
ries are reasonably well reproduced by our models, although additional work is needed
to represent the very short period Algols, as can be seen in Figures 3 and 4. We suggest
shedding new light on the contact phase evolution, where very short orbital periods are
the rule. The present calculations show that magnetic braking added to tidal interaction
clearly helps to reduce the rotational equatorial velocity of the gainer star, away from the
critical one. Reasonable to good agreement between the observed and calculated rotational
velocities was obtained for 33 out of 41 gainers in Algol-type binaries. The unsatisfying
result for eight systems requires further investigation. It may be due to different causes.
The current period is well known, but that is not the case for the masses. If future analysis
would deliver other values for the observed masses, then this would result in different
progenitors, subsequently with a different veq-evolution. Additionally, the eight systems
all occur long after the minimum period (late case A or case B). A new approach towards
their previous contact phase may also produce different results. Our models predict that
Algol-type binaries may show a strong magnetic field for a short time during phases of
rapid mass transfer.
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