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Abstract: The unimodular theory of gravity admits a canonical quantization of minisuperspace
models without the problem of time. We derive instead a kind of Schrödinger equation. We have
found unitarily evolving wave packet solutions for the special case of a massless scalar field and a
spatially flat Friedmann universe. We show that the longterm behaviour of the expectation values
of the canonical quantities corresponds to the evolution of the classical variables. The solutions
provided in an explicit example can be continued beyond the singularity at t = 0, passing a finite
minimal extension of the universe.
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1. Introduction

The canonical quantization of general relativity leads to the so-called problem of time (see [1] and
references therein). In most non-perturbative approaches of quantum gravity time has disappeared
from the theory and is seen as an artifact of the classical limit. In contrast to this we will discuss here
the quantization of a minisuperspace model in the framework of unimodular gravity. This theory is
practically equivalent to general relativity at the classical level, but since it has a different canonical
structure time does not disappear from the quantum theory [2]. Investigations of unimodular quantum
cosmology can be found in [3,4] as well as more recently in [5] where unimodular quantum loop
cosmology is discussed. In [4] a semiclassical wave function via path integral for an empty universe
with positive curvature is constructed. The time evolution fails to be unitary. The model mentioned
in [3] is the spatially flat universe with a massless scalar field. Here the general solution is given only
formally, and the properties of the wave packet evolution in particular the question of unitary time
evolution are not discussed. The solutions in [5] apply for a flat universe filled with exotic matter with
the equation of state p = −2ρc2.

In this article we consider the quantization of spatially flat universe with a massless scalar field.
We construct a class of unitarily evolving solutions with a negative expectation value of the Hamiltonian
(that correspond classically to an infinitely expanding universe). Based on an example we investigate
the time evolution of characteristic expectation values and compare it to the classical dynamics.

2. Unimodular theory

The Einstein-Hilbert action of general relativity is given by

SEH =
1

2κ

∫
M

d4x
√
−g (R− 2Λ)− 1

κ

∫
∂M

d3x
√

h K , (1)

where
κ =

8πG
c4
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contains the velocity of light c and the gravitational constant G. The second integral is defined on
the spacelike boundary ∂M of the considered space-time region M. The space-time metric gµν

with det gµν ≡ g induces a three-dimensional metric hab with det hab ≡ h on the boundary ∂M.
The corresponding second fundamental form is denoted by Kab with the trace K. If we also take into
account the matter action Sm that describes the fields, the variation of SEH + Sm with respect to the
metric yields the Einstein equations.

Rµν −
1
2

gµνR = κ Tµν −Λ gµν, (2)

where the energy-momentum tensor is given by

Tµν = − 2√−g
δSm

δgµν . (3)

If we start instead with an Einstein Hilbert action (1) with Λ = 0 and vary it under the restriction
−g = 1, we obtain Einsteins equations with an arbitrary additional constant Λ , that can be identified
with the cosmological constant of general relativity [2].

Rµν −
1
2

gµνR = κ Tµν −Λ gµν (4a)√
−g− 1 = 0 . (4b)

This theory is called unimodular gravity. Any solution of unimodular gravity (4) is also a solution
of general relativity (2) for a specific cosmological constant and vice versa. The only difference
between the two theories is, that Λ is a natural constant in general relativity while it is a conserved
quantity in unimodular gravity. But since in both theories the cosmological constant can not vary
over the whole universe, we would have to investigate different universes to determine if solutions
with different Λ exist (unimodular theory) or if Λ is a “true” natural constant. So the two theories
are practically indistinguishable. Nevertheless the canonical structure of the theories differs [2] and
therefor the quantization of unimodular theory yields different results compared to the quantization
of general relativity [3]. In this article we will confine the discussion of the canonical structure to the
minisuperspace model we wish to quantize.

3. The Spatially Flat Friedmann Universe with a Scalar Field in Unimodular Theory

The metric of a homogeneous and isotropic spacetime (Friedmann universe)

ds2 = −N2(t)c2dt2 + a2(t)dΩ2
3 (5)

is characterized by the lapse function N(t) and the scale factor a(t). If the spatial curvature is zero,
dΩ2

3 is the line element of three-dimensional flat space.
Inserting the metric into the Einstein-Hilbert action (1) with Λ = 0 yields [1]

SEH =
3
κ

∫
dt N

(
− ȧ2a

c2N2

)
v0 ,

where v0 is is the volume of the spacelike slices according to (5).
The action of a scalar field in curved spacetime reads

Sm =
∫
M

d4x
√
−g

(
−1

2
gµνφ,µφ,ν −V(φ)

)
. (6)
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If

V(φ) =
(m0c

h̄

)2 φ2

2
the variation with respect to φ yields the Klein-Gordon equation for a particle with mass m0

OµOµφ =
(m0c

h̄

)2
φ . (7)

Since we consider a spatial homogeneous spacetime, the spatial derivatives of the field must be
zero. Inserting (5), we find

Sm =
∫

dt Na3
(

φ̇2

2N2c2 −V(φ)

)
v0 . (8)

Therefore the Lagrange function reads

L = v0εN
(
− ȧ2a

c2N2

)
+ v0Na3

(
φ̇2

2N2c2 −V(φ)

)
, (9)

where we have introduced the abbreviation ε ≡ 3/(κ). If we incorporate v0 into the variables a
and N as well as V(φ)

a→ v
1
6
0 a , N → v−

1
2

0 N , V(φ)→ v0V(φ) , (10)

we find for the rescaled Lagrangian

L = εN
(
− ȧ2a

c2N2

)
+ Na3

(
φ̇2

2N2c2 −V(φ)

)
. (11)

According to unimodular theory the lapse function (13) is determined by N = a−3 and the
Friedmann metric (with unscaled quantities) has the form

ds2 = −(c2/a6(t))dt2 + a2(t)dΩ2
3 (12)

Since the condition Na3 = 1 is not influenced by the scaling (10) we find for the rescaled
unimodular Lagrange function (11)

Luni = ε(− ȧ2a4

c2 ) + a6 φ̇2

2c2 −V(φ) . (13)

The momenta conjugate to the variables a and φ read

pφ =
1
c2 φ̇a6 pa = −

2ε

c2 ȧa4 . (14)

We obtain for the Hamiltonian of the unimodular theory

Huni =
c2

2

p2
φ

a6 −
c2

4ε

p2
a

a4 + V(φ) (15)

The Hamiltonian is a conserved quantity. If we write the Hamiltonian as a function of the
configuration variables a, φ and their derivatives

Huni =
1

2c2 φ̇2a6 − ε

c2 ȧ2a4 + V(φ) (16a)

we find that
Huni ≡ −

Λε

3
(16b)
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equals the Hamiltonian constraint of general relativity for N = 1/a3. We see that this special labeling
of the conserved quantity makes the solutions of unimodular gravity and general relativity coincide
(see Appendix A). Nevertheless the Hamiltonian according to general relativity differs from (15).

4. Classical Solutions of a Flat Friedmann Universe with a Massless Scalar Field

The simplest case of a matter Lagrangian is V = 0, which would correspond to the field of a
massless particle with spin zero (7). If instead a perfect fluid matter model is chosen, the solutions
for a massless scalar field can be shown to be equivalent to the solutions for the special case of stiff
matter (see [6]).

The Hamiltonian reads

Huni =
c2

2

p2
φ

a6 −
c2

4ε

p2
a

a4 . (17)

According to the equations of motion pφ is a conserved quantity

ṗφ = 0 (18)

and the time-dependence of the field is given by

φ̇ =
pφc2

a6 . (19)

If we assume pφ = 0, we obtain the de-Sitter solutions with Λ > 0. The conservation of
the Hamiltonian

− c2

4ε

p2
a

a4 = Huni = −
Λε

3

implies
ε

c2 (ȧa2)2 =
Λε

3
.

We then find for the scale factor
a = (

√
3Λct)

1
3 . (20)

Note that this solution of unimodular theory coincides with a solution of general relativity with a
choice of coordinates with N = 1/a3 in (5).

If pφ 6= 0,

− c2

4ε

p2
a

a4 +
c2 p2

φ

2a6 = −Λε

3

yields

ȧ2a10

c2 =
Λ
3

a6 +
1
ε

p2
φc2

2
.

We obtain

a(t) =

6

√
p2

φ

2ε
ct + 3Λ c2 t2

1/6

(21a)

φ(t) =
1
6

√
2εSign[pφ]ln

 t Z

1 + Λ
2

√
2 ε
p2

φ
t

 , (21b)

where Z is an integration constant that determines φ(0). For the scale factor we have assumed a(0) = 0.
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5. Quantization of a Flat Friedmann Universe with a Massless Scalar Field

The canonical quantization of the unimodular Hamiltonian of the model (17) yields for the
massless case (V = 0)

p̂a = −ih̄
∂

∂a
, p̂φ = −ih̄

∂

∂φ
, (22)

Ĥ =
h̄2c2

4ε

1
a5

∂

∂a
a

∂

∂a
− h̄2c2

2
1
a6

∂2

∂φ2 .

Here we have chosen the factor ordering that gives the part of the Hamiltonian that is quadratic
in the momenta the form of a Laplace Beltrami operator [1].

The evolution of the wavefunction ψ(a, φ, t) is determined by

Ĥψ = ih̄
∂

∂t
ψ . (23)

The Hamiltonian is symmetric with respect to the inner product defined by the measure a5dadφ,
where a ∈ (0, ∞) and φ ∈ (−∞, ∞).

With the transformation
A = a3/3 B =

3√
2ε

φ , (24)

and the volume element 3
√

2εAdAdB, the Hamiltonian assumes the form

Ĥ =
h̄2c2

4ε

{
1
A

∂

∂A
A

∂

∂A
− 1

A2
∂2

∂B2

}
.

This expression has the appearance of the wave equation in polar coordinates, which shows that
our minisuperspace is flat. The Hamilton operator equals the wave operator in Rindler spacetime.
We bring the Hamiltonian into the simplest form using a transformation to light-cone coordinates:

u = Ae−B v = AeB . (25)

We obtain the Hamiltonian

Ĥ =
h̄2c2

ε

∂2

∂u∂v
(26)

The volume element is given by
√

ε
2 dudv and u ∈ (0, ∞), v ∈ (0, ∞). This is equivalent to a volume

element du dv, if the wave functions are accordingly normalized. We will search for solutions of ( 23)
that are square integrable. Moreover they should fulfill the condition for a unitary time evolution that
is given by

〈ψ(t1)| Ĥ|ψ(t2)〉 = 〈Ĥ ψ(t1) |ψ(t2)〉 ∀ t1, t2 . (27)

For t1 = t2 this condition ensures that the norm of the wavepackets is preserved:

d
dt
〈ψ|ψ〉 = 0 . (28)

Differentiating (27) with respect to t2 results in the conservation of the expectation value of
the Hamiltonian

d
dt
〈ψ|Ĥ|ψ〉 = 0 .

Higher time derivatives yield

d
dt
〈ψ|Ĥn|ψ〉 = 0 for n = 2, 3, . . . .
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For the Hamiltonian (26) the condition (27) is equivalent to∫ ∞

0
ψ∗(0, v, t1)

∂

∂v
ψ(0, v, t2)dv−

∫ ∞

0
ψ(u, 0, t2)

∂

∂u
ψ∗(u, 0, t1)du = 0 . (29)

If we choose two real functions f1(x), f2(x) where f1(0) = ± f2(0) then any solution of (23)
that obeys

ψ(0, v, t) = C(t) f1(v) ψ(u, 0, t) = C(t) f2(u) , (30)

fulfills (27). All solutions that evolve according to (30) with an arbitrary function C(t) and are square
integrable at t = 0 remain within the linear subspace of the space of square integrable function
characterized by (30).

6. Solutions with a Negative (Expectation) Value of the Hamiltonian

Introducing
τ = th̄c2/ε (31)

we can write for the Schrödinger Equation (23)

∂2

∂u∂v
ψ = i

∂

∂τ
ψ (32)

This equation looks rather simple and there are many possibilities to solve it. The challenge here
is to find solutions that ensure a unitary time evolution. We will obtain this goal by a superposition of
eigensolutions. An eigenstate ψΛ(u, v) with negative eigenvalue h ≡ −Λ ε/3 < 0 fulfills the equation

∂2

∂u∂v
ψΛ(u, v) = −Λε

3
ψΛ(u, v) , (33)

which gives the time-dependent solution

ψ(u, v, τ) = ψΛ(u, v)e
iΛ ετ

3 . (34)

The Laplace transformation (see f.i. [7]) of (33) with respect to v yields

s
∂LΛ(u, s)

∂u
− ∂ψΛ(u, 0)

∂u
= −Λε

3
LΛ(u, 0) (35)

where LΛ(u, s) is given by

LΛ(u, s) = L(ψΛ(u, ·)) =
∞∫

0

ψΛ(u, v)e−svdv , (36)

and we have used the differential rule of the Laplace transform [7] Solving (35), we obtain

LΛ(u, s) = e−
Λε
3s u LΛ(0, s) +

u∫
0

1
s

e−
Λε
3s (u−x) ∂ψΛ(u, 0)

∂u
dx

Applying the formula for the inverse Laplace transform (see [8])

L−1
{

1
s

e−
a
s

}
= J0

(
2
√

ax
)
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and the convolution theorem [7] we find for the inverse Laplace transform

ψΛ(u, v) =
∫ v

0
J0

[
2

√
Λ εu

3
√

v− x

]
∂ f1

∂x
dx

+
∫ u

0
J0

[
2

√
Λ εv

3
√

u− x

]
∂ f2

∂x
dx

+ J0

[
2

√
Λ ε

3
vu

]
f1(0) ,

where f1(0) = f2(0) .

The functions f1(x), f2(x) determine ψΛ(u, v) at the edges

f1(x) ≡ ψΛ(0, x) f2(x) ≡ ψΛ(x, 0).

The superposition of the corresponding eigensolutions (34) yields more general time-dependent
wavepacket solutions of (32)

ψ(u, v, τ) =
∫ ∞

0
eiτ ε Λ

3 ψΛ(u, v)F (Λ) dΛ . (37)

The solution is then characterized by the functions f1(x), f2(x), F(Λ). We assume that they can be
chosen appropriately to ensure that ψ(u, v, 0) is square integrable. We obtain for the time evolution at
the edges

ψ(0, v, τ) = C(τ) f1(v) ψ(u, 0, τ) = C(τ) f2(u) (38)

where C(τ) =
∫ ∞

0
eiε τ Λ

3 F(Λ) dΛ ,

which means that (37) meets the condition (30) for a unitary time evolution if f1(x), f2(x) are real
functions. Moreover it follows from the Riemann-Lebesgue lemma (see for instance [7]) for the Fourier
transform that

lim
τ→∞

C(τ) = 0 , (39)

if F(Λ) is an absolutely integrable function. This implies for the wavefunction at the edges

lim
τ→∞

ψ(u, 0, τ) = lim
τ→∞

ψ(0, v, τ) = 0 . (40)

It will turn out to be more convenient to represent F(Λ) as

F(Λ) =
∫ ∞

0
J0

[
2

√
ε Λr

3

]
G(r) ε

3
dr . (41)

The initial wavefunction then reads

ψ(u, v, 0) =
∫ v

0
G [u(v− x)]

∂ f1

∂x
dx +

∫ u

0
G [v(u− x)]

∂ f2

∂x
dx + G [uv] f1(0) . (42)

This is a consequence of the selfreproducing property of the Hankel transformation [7]

H(x) =
∫ ∞

0

√
xyJ0(xy)

∫ ∞

0

√
yzJ0(yz)H(z)dzdy , (43)
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which is equivalent to

G(α) =
∫ ∞

0
J0(2

√
αβ)

∫ ∞

0
J0(
√

βγ)G(γ)dγdβ , where G(γ) = H(
√

2γ)/γ
1
4 .

The relation (43) applies to any absolutely integrable function H(z) on R+ of bounded variation.
We also deduce from (41) and (43) that we can choose the function G(z) in (42) arbitrarily under the
restriction that G(z2/2)

√
z is an absolutely integrable function of bounded variation.

Inserting (41) into (37) yields for the time-evolution

ψ(u, v, τ) = (44)

i
τ

∫ ∞

0

∫ u

0
e−

iv(u−x)
τ − ir

τ J0

[
2

√
v(u− x)r

τ

]
∂ f1

∂x
dxG(r)dr

i
τ

∫ ∞

0

∫ v

0
e−

iu(v−x)
τ − ir

τ J0

[
2

√
u(v− x)r

τ

]
∂ f2

∂x
dxG(r)dr

i
τ

∫ ∞

0
e−

iuv
τ −

ir
τ J0

[
2
√

u v r
τ

]
f1(0)G(r)dr .

We have obtained this result applying the formula for the Laplace transformation of a product of
Bessel functions [8] ∫ ∞

0
e−zs J0(2

√
az)J0(2

√
bz)dz =

1
s

e−
a+b

s I0

(
2
√

ab
)

with the parameters

s = −i τ , z = εΛ/3 , a = r , b = u(v− x) or b = v(u− x) or b = v u .

I0(x) is the modified Bessel function of the first kind (see for instance [9]) and fulfills I0(ix) = J0(x).

7. Example for a Wavepacket Evolution with a Negative Expectation Value of the Hamiltonian

In Section 6 we constructed solutions of (32) with a negative expectation value of the Hamiltonian
and a unitary time evolution. We had to require that the functions G(z), f1(x), f2(x) ensure that
the initial wave function (42) is square integrable. Investigating an explicit example shows that an
appropriate choice of these functions is possible. The lengthy algebraic calculations of this section
were performed with Wolfram Mathematica.

We define

G(z) = e−z
(

z3 − 6z2 + 3z + 3
)

(45)

f1(x) = e−x
(
−x3 + 3x2

)
(46)

f2(x) = 0 (47)

With the additional real parameters λ and µ, we find for the initial function according to (42)

ψ(u, v, 0) =
1√
n0

∫ v

0
G [λu(v− x)]

∂ f1(µx)
∂x

dx , (48)

where we have introduced a normalization factor that turns out to be

n0 =
135
3λ

.
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We obtain for the expectation value of the Hamiltonian

〈Ĥ〉 = −3λ

2
· h̄2c2

ε
. (49)

According to (24) and (25) the observable A = uv is related to the scale factor by

A = uv =
a6

9
.

The time evolution of 〈A2〉 is determined by (44):

〈A2〉 = 3
40λ(1 + τ2λ2)2 (50)

·
[
30 + 71τ2λ2 + 67τ4λ4 + 20τ6λ6 + 15τλ(1 + τ2λ2)2arctan(τλ)

]
.

We find for the late phase of the time evolution (where we have replaced τ by t (31)):

lim
t→∞

d2

dt2 〈A
2〉 =

3λ
(
h̄c2)2

ε2 = −2c2

ε
〈Ĥ〉 ,

which coincides with the classical behaviour according to (21a). We also find that the expectation value
of p̂φ approaches a constant value

lim
t→∞
〈 p̂φ〉 =

9π

16
· 3h̄√

2ε
, (51)

which shows that the classically conserved quantity pΦ is only a constant of motion in the late phase
of time evolution (see Figure 1).

0.5 1.5 2.5

t

Q

9π

16

P

Figure 1. The quantity M ≡ 〈pφ〉
(

3h̄√
2ε

)−1
converges to 9π

16 . We have chosen λ = 1 ·m−3, µ = 1 ·m−3/2

and time is scaled by Q =
√

2
3 ·

ε
h̄c2λ

.

Nevertheless at the beginning of the time evolution, the observable A2 that is proportional to the
sixth power of the scale factor assumes a constant value Figure 2.

S =
9

4λ
.
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0.5 1.5 2.5

t

Q

S

A

Figure 2. The time-evolution of the expectation value of A2 according to the initial wave packet (48),
compared to the classical evolution (dashed line). S is the minimal extension according to the quantum
evolution. µ , λ and Q are defined as in Figure 1.

We can also prove that the linear part of the classical time evolution of A2 (21a) is reproduced by
the late time behaviour of the expectation value. Inserting for (51), we find

lim
t→∞

(
d
dt
〈A2〉 − t · d2

dt2 〈A
2〉
)
=

9π

16
· h̄c2

ε
= pφ ·

√
2√

ε3h̄
,

which shows that the time evolution of the expectation value approaches the classical evolution (see
Figure 2). For the variance of A2 we find

(∆A2)2 ≡
〈

A4〉− 〈A2〉2
=

768 + tλ(27π(9 + 14t2λ2 + 5t4λ4) + 2tλ(1133 + 823t2λ2 + 128t4λ4))− 54tλ(9 + 14t2λ2 + 5t4λ4)ArcCot[tλ]
(80(λ2 + t2λ4)

−
9(30 + 71t2λ2 + 67t4λ4 + 20t6λ6 + 15tλ(1 + t2λ2)2 ArcTan[tλ])2)

1600λ2(1 + t2λ2)4 ,

(52)

which yields

lim
t→∞

(DeltaA2)2

t4 =
19λ2

20
(53)

8. Discussion and Conclusions

It is important to note that the system behaves more and more classically at late times.
An approximate classical behaviour far away from the singularity was also predicted for the case
of exotic matter in [5]. This is in contrast to quantum mechanics, where systems start with classical
motion developing quantum properties in the late phase of time evolution, as the revival phenomena
show impressively (see f.i. [10]). However this classical behaviour for late times does not apply to all
aspects of the time evolution because the uncertainty of the observable A2, that is related to the scale
factor increases with time. We think that this would not happen with a more realistic matter model.

The construction of solutions according to (37) also works for negative times and so the solutions
can be continued beyond the classical singularity at t = 0. In the special case we investigated (50)
this would yield a contracting universe that passes a minimal extension before expanding again.
The question of solutions with a positive expectation value of the Hamiltonian remains open. Moreover
we think that unimodular quantum gravity gives the opportunity to investigate effects of cosmological
evolution (as inflation, acceleration of the expansion universe) in the framework of a quantum theory
of gravity without being confined to a semiclassical limit.
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Appendix A. Hamiltonian Constraint According to General Relativity

Inserting the metric (5) into the Einstein-Hilbert action with cosmological constant yields

SEH =
3
κ

∫
dt N

(
− ȧ2a

c2N2 −
Λ
3

a3
)

v0 .

Rescaling also Λ
Λ→ v0Λ , (A1)

in addition to (10) we find for the rescaled Lagrangian

L = εN
(
− ȧ2a

c2N2 −Λ
a3

3

)
+ Na3

(
φ̇2

2N2c2 −V(φ)

)
. (A2)

The variation of (A2) with respect to N yields

−
(

ȧ
aNc

)2
+

Λ
3
+

1
ε

(
φ̇

2N2c2 + V(φ)

)
= 0 .

This equation establishes a relation of the variables and their first derivatives. It represents
the Hamiltonian constraint of general relativity and equals (16) for N = 1/a3. Nevertheless the
Hamiltonian differs from the respective expression in the canonical quantization of general relativity
with cosmological constant (see also [11])

Ĥ = − p2
ac2

4aε
+

p2
φc2

2a3 +
Λa3

3
+ a3V (φ) . (A3)
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