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Abstract: Combined cosmological, astrophysical and numerical tests may shed some light on the
viability of theories of gravity beyond Einsteinian relativity. In this letter, we present two different
techniques providing complementary ways of testing new physics beyond the ΛCDM cosmological
paradigm. First, we shall present some of the latest progress and shortcomings in the cosmographic
model-independent approach for several modified gravity theories using supernovae catalogues,
baryonic acoustic oscillation data and H(z) differential age compilations. Second, we shall show
how once the Einsteinian paradigm is abandoned, the phenomenology of neutron stars changes
dramatically since neutron-star masses can be much larger than their General Relativity counterparts.
Consequently, the total energy available for radiating gravitational waves could be of the order
of several solar masses, and thus a merger of these stars constitutes a privileged wave source.
Unfortunately at the present time our persisting lack of understanding in the strong interaction sector
does not allow to distinguish the alternative theories from the usual General Relativity predictions.
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1. Introduction

The discovery of the accelerated expansion of the universe [1–3], the more recent detection of
gravitational waves as emitted from black-hole and neutron-star mergers [4–10] and the increased
precision in relativistic effects in the growth of large-scale structures [11–14] have propelled the
intensive study of extended (also dubbed modified) theories of gravity. Roughly speaking, the whole
pleyade of such theories generally aims to overcome the limitations that the cosmological Concordance
ΛCDM model suffers when applied to several astrophysical and cosmological tests in a broad range of
energies, from the Planck scale—and the lack of a consistent quantum field theory of gravity—to the
late-time cosmological scales—and the lack of explanation for observed acceleration. Many of these
proposals [15–19] aim to avoid the need of the usually invoked dark components, either through a
mere cosmological constant, as in the ΛCDM model, where dark energy is nothing but a cosmological
constant, or through artificial scalar fields which are added to the usual General Relativity (GR) term,
as in phantom/quintessence-like models.

Since the number of viable modified gravities at hand remain sufficiently large, complementary
techniques in both astrophysical and cosmological scales as well as in strong-gravity regimes, where GR
has never been directly tested, are the ideal tools to compare theoretical predictions with catalogues of
dataset, extracted, for instance, from both the cosmic microwave background, cosmological expansion,
large-scale structures, astrophysical configurations and gravitational-wave signals. Usually, such
comparisons suffer from the so-called degeneracy problem [20], meaning that several competitive
gravitational theories are capable of explaining the same phenomena with roughly speaking the same
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statistical significance. The breaking of such a problem with complementary tests is precisely the
leit-motiv of this communication.

Among competitive extended theories of gravity, some of the most successful ones include the
so-called scalar-tensor f (R) theories, where the gravitational Lagrangian includes powers of the Ricci
scalar R encompassed in an arbitrary function of R (c.f. [21–25] for extensive reviews on the subject);
or extended theories of teleparallel gravity F(T ) (c.f. [26–38] for results in the subject) where the
covariant action is written in terms of an arbitrary function of the torsion scalar T , which indeed
extends the usual teleparallel gravity approach.

The paper is organised as follows, in Section 2 we present the rudiments and main results when
model-independent (cosmographic) techniques are used to reconstruct f (R) and F(T ) Lagrangians
capable of causing the observed cosmological evolution once the Copernican principle is assumed.
Then, in Section 3 we shall present the main features of neutron stars for paradigmatic quadratic f (R)
theories with no intermediate approximation in the system of equations. Analysis will show that
distant observers would observe a gravitational mass greater than the GR counterpart for the same
particle-physics equation of state, the exterior solution asymptotically—although not exactly—being
Schwarzschild-like. Finally, we conclude the paper by presenting our main conclusions in Section 4 as
well as some prospects to improve the aforementioned analyses.

2. Cosmography

A possible way of alleviating the aforementioned degeneracy consists of combining different
cosmological measurements in order to reduce the phase space of free parameters. Nevertheless,
the caveat of any measurement is the implicit a priori assumption about the statistical validity of a
given cosmological model. For that reason, amongst several statistical treatments, model-independent
techniques aim to guarantee that the statistical outcomes do not depend upon the choice of
the model itself. Cosmography of the Universe indeed belongs to this class of techniques [39].
Cosmographic studies in extended theories have been limited to recent research [40,41] proving how
much disfavoured such a technique is in comparison with Gaussian processes of reconstruction [42].

Nonetheless, there were indeed seminal references for cosmographic techniques in the context
of f (R) theories included [40,41,43,44], whereas for F(T ) they were restricted to [45]. In our recent
investigations [46] we expanded each class of extended theory under consideration in powers of
redshift z around the present time, making no additional assumptions on the values of the theory’s
parameters at the present epoch. In [46] we indeed combined data from the Union 2.1 SNIa catalogue,
BAO data and H(z) differential age compilations with the support of the most recent Planck data,
so the cosmological expansion can be tested on different epochs of the cosmological evolution. There,
we performed a Monte Carlo analysis using a Metropolis-Hastings algorithm with a Gelman-Rubin
convergence criterion and flat priors1, reporting 1–σ and 2–σ confidence levels. Our results showed
how previous analyses were unable to capture essential trends in the considered theories and led to
underestimation of the cosmographic bounds. In order to show the dependence of the results with
the considered redshift interval, we first used data in the very small redshift regime z < 1. We then
performed the same analyses but with all data points for every dataset, i.e., without limiting them to
z < 12. For f (R) theories, we found that all model parameters were compatible with zero at about
the 1–σ level, albeit the shapes of contour plots were different from pure ellipses, a fact related to
the higher-order character of these theories. In addition, such shapes change as one shifts from the
z < 1 analysis to the all–z analysis. Main results are shown in Figure 1. For F(T ) theories we again
found that all model parameters are compatible with zero at about the 1–σ level, while the 2–σ level

1 with the exception of rs(zdrag), in which a Gaussian prior was used and set at Planck’s best values [46].
2 This does not apply to BAO measurements, since all data points are confined inside z < 1. Hence, the same data were used

for both fits [46].
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enables larger parameter ranges, especially for higher derivatives. In fact, dimensionless parameters
proportional to the third and fourth derivatives of F(T ) turned out to be only constrained at the level
of O(102) and O(102) levels for z < 1 data, and O(1) and O(10) for the full dataset [46]. The best-fit
points, still relatively close to model parameters, were compatible with zero, although the posterior
probabilities are far from being Gaussian. Main results are shown in Figure 2. In both Figures 1 and 2,
h0 ≡ H(ztoday)/(100 km s−1Mpc−1) and ∆M holds for the luminosity distance nuisance parameter
defined as µfit(zi) = µUnion2.1(zi) + ∆M which depends on H0 and M.

Finally, for those two theories, we also compared our statistical results to standard criteria for
statistical significance, namely the AIC and BIC criteria. This discussion enabled us to state that when
expanding the standard ΛCDM cosmological model to the third order, the corresponding third orders
for both f (R) and F(T ) theories turn out to be statistically favoured by using the AIC criteria, however
disfavoured in the case of BIC. For further details refer to Section 5.6 in [46] in Table 8 therein.
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3. Spherical Configurations: Neutron Stars

As stated in the introduction, a window of particular interest in shedding light on the nature of the
gravitational interaction lies in high-energy configurations such as black holes3 as well as relativistic
(neutron and quark) stars. In such strong gravitational field regimes, predictions of extended theories
may complement the gravitational picture as provided by the low-curvature cosmological evolution at
late times. Herein, we shall illustrate how for viable classes of f (R) Lagrangians, the relations between
masses and radii parameters of relativistic stars differ from their Einsteinian counterparts dramatically.

As a straightforward consequence of the Tolman-Oppenheimer-Volkoff (TOV) [47] analysis,
once GR is assumed as the correct theory of gravity, there are certainly upper limits for realistic neutron
star masses, being the theoretical mass limit itself increased along the years, from O(0.6M�) for a
free neutron gas equation of state (EoS), to O(2.2M�) limits imposed by stiffer chiral interactions [48].
Thanks to the discovery of a neutron star with mass 1.974M� [49]—confirmed later on by other
measurements [50–53], the precise sighting [54] through binary system measurements, double neutron
stars features and pulsar systems [55], the validity of GR standard predictions have been indeed put
into question. Thus the interest for such configurations in extended theories of gravity, mainly in
scalar-tensor theories [56–71], has aimed to reconcile predictions with astrophysical results.

The approach we followed in both [68,72] was novel since for static and spherically symmetric
configurations (a) instead of assuming any perturbative analysis, the exact higher-order system
of differential equations was solved; and (b) the Schwarzschild solution was not assumed to be
exactly—but asymptotically—the exterior solution4. Consequently, the star outer spacetime may also
contribute to the total gravitational mass. Thus, the emergence of the so-called gravitational sphere
around the star provides an extra contribution to the gravitational mass as measured by distant
observers. Moreover, the obtained exterior solution crucially depends upon the chosen nuclear matter
EoS because the latter determines the value of the Ricci scalar at the star surface [68] and therefore the
amplitude of its damped oscillations.

In order to illustrate the power of this analysis, we present herein the main features of neutron
stars in the context of the paradigmatic f (R) = R + αR2 gravity5 and the well-known AP4 equation of
state [75] which hosts a three-nucleon potential and Argonne 18 potential with UIX potential. Indeed,
for α > 0, the chosen initial condition for R(r = 0) must guarantee that the Schwarzschild solution
is asymptotically approached at spatial infinity6. The performed analysis proved that for a given
density at the centre of the star, the stellar mass is indeed smaller than the GR counterpart. As a result,
the gravitational mass overcomes the GR counterpart for central density values higher than a given
critical central density. This effect was noticed for several EoS, including the case of quark stars as
can be found in [72]. Results are presented in Figures 3 and 4 where both GR and f (R) quadratic
predictions are depicted.

3 c.f. [25] for a review about the existence and main features of black holes in theories beyond GR.
4 In the context of f (R) theories, it is a well-known fact that the matching conditions at the edge of the star do not impose

the Ricci curvature to vanish [73]. This fact constitutes a straightforward violation of the Jebsen-Birkhoff theorem in f (R)
theories [73,74].

5 c.f. [68] for a thorough analysis regarding the so-called f (R) Hu-Sawicki model.
6 For α < 0, results in [72] concluded that, although outside the star the Ricci scalar shows damped oscillations, the total

gravitational mass would increase with the radial distance, showing the lack of realism of such an α parameter space.
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Figure 3. Upper panel: relation between the gravitational mass (M) and radius of the star for AP4
EoS in R2-gravity when compared with the General Relativity predictions (left); relation between the
gravitational mass and the central density of the star (right). The symbol α10 refers to α× 1010 cm2.
Lower panel: the dependence of the contribution of gravitational sphere into gravitational mass
∆M = M − Ms with stellar mass Ms ≡ m(rsur f ace) (left); surface gravitational redshift zs defined
as zs = (1− 2Ms/rs)−1/2 − 1 , where Ms holds for the stellar mass, as a function of gravitational
mass (right).
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4. Conclusions

In this communication we have presented a brief overview of two powerful techniques
which are called to shed light on the underlying nature of the gravitational interaction, namely
model-independent cosmographic methods, targeting the framework of two extensions of General
Relativity, and the main features of compact neutron stars with a paradigmatic realistic equation of
state in scalar-tensor theories.

First, our cosmographic analysis was only based on the most general assumptions. Our results
noticed discrepancies with previous literature for several classes of reconstructed extended dark-energy
theories. In particular, according to the statistical results presented above for the cosmographic
analysis, the reconstructed gravitational Lagrangians do not need to exactly mimic the standard linear
dependence with the Ricci scalar at present times. Obviously, further work is needed so this technique
becomes more competitive. For instance, future analyses must take higher-redshift catalogues into
account, desirably with different redshift windows of data points. Moreover, there are still several
challenges faced by this method to be addressed. In particular: (i) the need for a clear definition of the
ideal auxiliary variable, their range of applicability and a thorough testing against mock data; (ii) the
definition of a robust statistical method—if any—in order to establish a trade-off between number of
data points, number of cosmographic parameters and the required statistical evidence to safely rule
out models; and (iii) motivated statistical priors over the extra parameters in higher-order theories in
order to get competitive constraints for these theories.

Complementary, once theory-dependent extensions of General Relativity are considered, the study
of compact stars remains as a mandatory task in order to extract novel theoretical and observational
conclusions raised by extended theories in such strong gravity regimes. In fact, the resolution of the
generalised system of Tolman-Oppenheimer-Volkoff equations for paradigmatic scalar-tensor theories
has indeed proved first of all, the existence of solutions for a wide range of the model parameters, and
second, the possibility to overcome General Relativity upper bounds for the allowed mass. More to the
point, in [72] we proved how for the viable parameters space of αR2 models the f (R) predictions for
the neutron stars maximal mass ranged from 2–2.6 M� and therefore was in agreement with observed
stars. Analogous results were found for the popular Hu-Sawicki f (R) model in [68].

In addition, we have confirmed how a careful matching of the interior and exterior spacetime
regions implies that (i) in the context of f (R) theories, we have shown the existence of exterior static
and spherically symmetric physical solutions differing from the usual Schwarzschild solution; (ii) the
asymptotic gravitational mass to be unbounded for sufficiently large values of α; and (iii) the Ricci
scalar is not identically zero at the surface of the star although (for α > 0) it is rapidly suppressed by
damped oscillations and asymptotic flatness is eventually recovered. Qualitatively, our results showed
how the extra scalar mode present in f (R) theories can be thought of as an additional energetic content
around the star. More precisely, the existence of this mode seems to prevent the gravitational collapse
and increases the asymptotically observed gravitational mass as shown in the Figure 3. Consequently,
neutron star mergers in the context of scalar-tensor theories, would host a higher available energy than
that in their Einsteinian counterparts. This may lead to a more efficient and detectable emission of
gravitational waves [68,76–81]. Obviously, in the recently opened era of gravitational-wave physics,
there is still some room [82,83] for such phenomena to help unveil the real nature of the gravitational
interaction. Nevertheless, at the present time our lack of understanding of the strong interaction
sector remains larger than the corrections arising from the modifications of gravity. Therefore, current
observational data cannot provide much information on the underlying theory of gravity unless
complementary tests both in the strong grativity regime and particle physics are performed.
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