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Abstract: We review the application of the one-dimensional Mixing Length Theory (MLT) model
of convection in stellar interiors and low-mass stellar evolution. We summarize the history of
MLT, present a derivation of MLT in the context of 1D stellar structure equations, and discuss the
physical regimes in which MLT is relevant. We review attempts to improve and extend the formalism,
including to higher dimensions. We discuss the interactions of MLT with other modeling physics,
and demonstrate the impact of introducing variations in the convective mixing length, αMLT, on
stellar tracks and isochrones. We summarize the process of performing a solar calibration of αMLT and
state-of-the-art on calibrations to non-solar targets. We discuss the scientific implications of changing
the mixing length, using recent analyses for demonstration. We review the most prominent successes
of MLT, and the remaining challenges, and we conclude by speculating on the future of this treatment
of convection.

Keywords: convection; stellar interiors; stellar evolution

1. Introduction

The matter of energy transport in stars is notoriously complicated. In particular,
the details of convection in the stellar interior are difficult to probe by direct observation
and encompass the dominant sources of uncertainty in stellar models (Choi et al. [1], Tayar
et al. [2], Cinquegrana et al. [3], Joyce et al. [4]). Even the most specialized one-dimensional
(1D) stellar evolution codes must simulate the behavior of stars over enormous ranges in
temperature, density, and pressure as well as over evolutionary timescales. Simulations
and measurements of convection in non-astrophysical cases indicate the importance of both
large- and small-scale motions, and the need to adequately resolve both. When applied to
astrophysical problems—which involve timescales ranging from the duration of nuclear
processes (fractions of milliseconds) to tens of billions of years, and spatial scales ranging
from nuclear cross-sections to thousands of solar radii—this rapidly becomes intractable.
Because of the ranges involved, accurately simulating all of these scales simultaneously is
computationally infeasible. These requirements therefore demand a simplistic framework
for convection. Though convection is an intrinsically three-dimensional, turbulent, non-
linear, and time-dependent process, the practicalities of stellar modeling demand that we
parameterize convection in a static and one-dimensional way. Mixing length theory (MLT)
provides a solution.

The mixing length theory of convection describes the bulk movement of fluids in
analogy with molecular heat transfer. By considering a pocket within a convection zone as
a discrete “parcel” of fluid, with locally uniform physical characteristics, we may trace its
vertical displacement. Assuming the parcel is in pressure equilibrium with its surroundings
but not in thermal equilibrium, a relatively hot parcel will move towards a cooler region,
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and cooler parcels will move towards hotter regions. As hot parcels are under-dense
relative to their surroundings, it is a buoyancy force that causes them to rise and expand.
Cooler parcels, on the other hand, sink and compress. The characteristic distance over
which such a parcel can travel (along a radial line, in one dimension) before losing its locally
homogeneous physical characteristics can be thought of as the mean-free path of that parcel,
measured in terms of the pressure scale height, d ln(P)/d ln(T), of the stratified fluid.

First applied to stellar interiors more than 60 years ago, in an influential paper on
solar convection (Böhm-Vitense [5]), the mixing length theory of convection remains the
dominant framework for one-dimensional (1D) convective energy transport used in stellar
structure and evolution calculations. This longevity speaks not only to its robustness and ef-
fectiveness as a formalism, but also to the difficulty of constructing viable alternatives, even
in today’s era of exceedingly greater computing resources. With rare exceptions, all modern
1D stellar structure and evolution programs use MLT, or a close variant thereof, for convec-
tive energy transport. Popular stellar evolution tools for the low- and intermediate-mass
regimes include:

. ATON Rome Stellar Evolution Code (Ventura et al. [6], Ventura et al. [7]);

. Bag of Stellar Tracks and Isochrones (BaSTI; Pietrinferni et al. [8]);

. Cambridge STARS (Eggleton [9]);

. Code d’Evolution Stellaire Adaptatif et Modulaire (CESAM; Morel and Lebreton [10]);

. The Dartmouth Stellar Evolution Program (DSEP; Dotter et al. [11]);

. The Garching Stellar Evolution Code (GARSTEC; Weiss and Schlattl [12]);

. The Geneva Stellar Evolution Code (GENEC; e.g., Charbonnel et al. [13]);

. Modules for Experiments in Stellar Astrophysics (MESA; Jermyn et al. [14], Paxton et al. [15–19]);

. The Monash stellar evolution code (an adaptation of the Mount Stromlo Stellar Evolu-
tion code; Lattanzio [20,21], Frost and Lattanzio [22], Karakas and Lattanzio [23]);

. The PAdova and TRieste Stellar Evolution Code (PARSEC; Bressan et al. [24]);

. The Yale Rotating Stellar Evolution Code (YREC; Demarque et al. [25]).

Among these, only ATON and CESAM provide an alternative to MLT: the full spec-
trum of turbulence model of Canuto and Mazzitelli [26] and Canuto et al. [27], discussed
further in Section 7.1. For a more thorough overview of stellar evolution codes and their
specializations, see the introduction of Cinquegrana et al. [3].

Driven, in part, by ambitious space-based surveys such as Gaia [28], TESS [29], and Ke-
pler [30], by ground-based efforts such as LSST [31], APOGEE [32], LAMOST [33], GALAH [34],
and so forth, and by the rich data climate they are generating, there is renewed interest in
and understanding of the importance of model-derived fundamental stellar parameters.
Given the ubiquitous use of MLT in stellar evolution calculations, we now present a review
of 1D convection and its applications, especially to the theory and observation of low-mass
(∼0.5–1.0 M�) stars.

2. History

Here we summarize the key milestones in the development and extension of the
mixing length theory in its application to stellar interiors.

In 1925, fluid dynamicist Ludwig Prandtl developed a simplified model of Reynolds
stress by analogy with molecular heat transfer (Prandtl [35]). This set the precedent for
describing turbulent motions using a diffusion approximation, which is a defining feature
of all modern-day mixing length theory formulations. Almost 30 years later, Erika Böhm-
Vitense developed the first incarnation of mixing length theory for use in models of stars
and applied the framework to solar convection (Vitense [36]). Published 70 years ago at
the time of writing, Die Wasserstoffkonvektionszone der Sonne, or “The Hydrogen Convection
Zone of the Sun”, remains the canonical reference for MLT treatments in models of the Sun
and other stars, but it was not until 5 years afterwards that Erika Böhm-Vitense generalized
her theory to stars with different effective temperatures, in Böhm-Vitense [5].

Her work was extended by Henyey, Vardya, and Bodenheimer (Henyey et al. [37]),
who focused on the formal theory for representing the superadiabatic layers in convective
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envelopes. This yielded a modified MLT formalism that remains the optimal choice for use
in optically thin regimes in stellar structure and evolution calculations. Following this, Cox
and Giuli [38] presented an MLT formalism that was ideal for optically thick material.

In 1971, Erika Böhm-Vitense’s husband, Karl-Heinz Böhm, and J. Cassinelli studied
MLT in the context of the thin convective envelopes found on white dwarfs (Bohm and
Cassinelli [39]). Later that decade, Dmitri Mihalas (Mihalas et al. [40], Mihalas [41]) and
Kurucz [42] published studies of radiative transfer models of stellar atmospheres, in
connection with sub-surface convection zones characterized by MLT.

The advent of helioseismology (e.g., Basu et al. [43,44]) allowed for deeper understand-
ing of the Sun’s convection zone. In the late 1990s, Demarque et al. [45,46] investigated
the superadiabaticity of the Sun and the effects of MLT on the predicted acoustic pressure
modes (or p-modes) propagating in the convective cavity. To this day, p-mode asteroseis-
mology remains one of the most powerful tools for characterizing the outer envelopes of
low-mass stars, and is a powerful diagnostic for our theoretical treatments of convection.

3. Stellar Structure Context

Here we briefly summarize the principles of stellar structure and evolution, and the
thermodynamic quantities necessary to build an intuitive picture of mixing length theory.

3.1. Stellar Structure Equations

In stellar evolution calculations, the equations of stellar structure are solved under
the assumptions of conservation of momentum, conservation of mass (or mass continuity),
and hydrostatic equilibrium. In the simplest scenario, it is assumed that hydrostatic
equilibrium is achieved through the balance of gravitation and pressure. The Eulerian
formulation1 of the canonical stellar structure equations is given by Equations (1a)–(1h):

ρ
dv
dt

= −∇P− ρ∇Φ Momentum conservation (1a)

∇2Φ = 4πGρ Gravitation (1b)

dP
dr

= −ρ
dΦ
dr

Hydrostatic equilibrium (1c)

dM
dr

= 4πr2ρ Mass continuity (1d)

dL
dr

= 4πr2ρε(ρ, T, µ) Conservation of energy (1e)

dT
dr

= − 3
16πac

κρL
r2T3 Radiative energy transport (1f)

= −GM
cpr2 Adiabatic convective energy transport (1g)

dρi
dt

= Qi Nuclear energy generation. (1h)

At its core, a stellar structure and evolution code is a polytrope solver. A polytrope is a
self-gravitating gaseous sphere, and this physical system provides a reasonable, first-order
approximation of an uncomplicated star. A self-gravitating, spherically symmetric ball of
fluid can be characterized using the dimensionless Lane–Emden equation:

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
+ θ2 = 0, (2)

where ξ can be taken as a proxy for r and θ as a proxy for density (ρ). We seek a solution
θ(ξ) ∼ ρ(r). The Lane–Emden equation must be solved under the assumption of an equation
of state relating pressure, density, and temperature, one example of which is the ideal gas
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law; however, temperature can be neglected in the simplest model. The polytropic equation
of state usually takes the form P = Kρ1+ 1

n , where n is the polytropic index and K is a
constant of proportionality. Obtaining θ(ξ)∼ρ(r) yields the stellar profile, which describes
the distribution of matter in the star.

Solving this equation provides a solution for the stellar structure; however, to compute
the stellar evolution, we must have a temporal component. In a real equation of state (e.g., the
ideal gas law), there is temperature dependence, and the thermodynamic state of the model
changes from time step to time step, according to nuclear energy generation. Monitoring how
the stellar structure solution—in particular, the outer boundary values for quantities such as
effective temperature Teff, luminosity, and radius—changes as a function of time provides
us with evolutionary tracks. The key ingredients a user must specify when generating an
evolutionary track are the mass, composition, and mixing length of the model. While mass
and composition are physical quantities in a way that mixing length is not, all three are
equally important in determining the model star’s evolutionary and structural behavior.

3.2. Thermodynamic Quantities and Convective Stability Criteria

During each time step, the model’s thermodynamic structure must be calculated.
This requires knowledge of whether any given radial shell is stable against convection.
To evaluate convective stability, we check the Schwarzschild [47] and/or Ledoux [48]
criterion.2 The Ledoux criterion for dynamical stability is given by

∇rad < ∇ad + [φ/δ]∇µ, (3)

where φ, δ are the partial derivatives of density with respect to temperature and com-
position, respectively; ∇rad, ∇ad are the radiative and adiabatic temperature gradients,
respectively; and ∇µ is the composition gradient. Under the simplification of homoge-
neous chemical composition (∇µ→ 0), this reduces to the Schwarzschild stability criterion:
∇rad < ∇ad .

When the applicable condition is satisfied, the zone being evaluated is dynamically
stable. Dynamically stable regions do not produce convective motions, and so the energy
flux is carried out exclusively by radiation (or conduction) in these regimes.

If the convective stability criterion is not met, however, convection will activate and
share in the transport of flux (i.e., luminosity or energy). In cases of efficient convection
(such as deep core convection—see Section 4), the flux is carried entirely by convection.
Stellar evolution calculations invoke MLT in cases where carriage of the flux is shared by
radiation and convection.

In this latter case, a useful toy model for mixing length theory is

Fconv =
1
2

ρvcPT
λ

HP
(∇T −∇ad) (4)

with
αMLT ≡

λ

HP
, (5)

where ρ, v, cP represent density, velocity, and specific heat, respectively, and the final
term captures the balance of the global temperature gradient, ∇T , against the adiabatic
temperature gradient, ∇ad (a more formal derivation is given in Section 6). The definition
in Equation (5) is that of the mixing length parameter, or αMLT. This is a dimensionless
parameter, characterizing the “distance,” measured in terms of the pressure scale height
HP = d ln(P)/d ln(T), that a parcel of convective material can travel.

This αMLT can be thought of in many ways, including as the convective mean-free path
(as discussed in Section 1), as a measure of the convective efficiency, or as a pseudo-physical
quantity that captures the change in entropy from the base to the top of the convection
zone (see end of Section 4). The quantity Fconv is determined according to two things: the
difference in temperature gradients and the value assigned for αMLT. The suppression
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or enhancement of surface convective flux can be modulated by αMLT: larger values for
αMLT mean that more flux is carried by convection. Changing this value has been shown
to impact the predicted surface properties of low-mass stars in ways that should not be
ignored (see Section 12).

4. Where Does the Choice of αMLT Matter in Stellar Models?

Stellar modelers typically classify main-sequence stars according to mass, in three
main categories: those that are fully convective (stars less than about 0.5 M�; e.g., M
dwarfs); those that have radiative cores and convective envelopes (0.5–1.2 M�, or stars
like the Sun); and those that have convective cores with radiative envelopes (>1.2 M�).
Figure 1 depicts the “convective configurations” of main-sequence stars of various mass.
Mixing length theory is used to characterize energy transport in stars of all masses and all
regions therein, but the choice of αMLT is only important for models in the lower two mass
categories, and not in the third. It is also important in models of, e.g., F-type stars, which
host a thin convective envelope as well as a convective core, with a radiative zone between
them. In this case, MLT is only relevant to the outer convection zone.

  

> 1.2 M
sun

Where the choice of ɑ
MLT

 matters on the main sequence

Stars with convective 
envelopes

Stars with radiative 
envelopes

not here

Fully 
convective 
stars

M < 0.5 M
sun

0.5 – 1.2 M
sun

Stars with both thin convective 
envelopes and convective 
cores: choice of ɑ

MLT
 only 

impacts the envelope

Figure 1. Classification of stars according to convective structure in the main sequence. While
all regions of the stellar model are treated using the MLT formalism, it is only fully convective
stars and stars with convective envelopes (including those with both convective envelopes and
convective cores) for which the choice of αMLT is relevant. This is because the temperature gradient is
approximately adiabatic in, e.g., convective cores (see Section 6 for more detail).

The impact of αMLT in mixing length theory is felt only in superadiabatic regions,
or regions where the temperature and density gradients align such that higher temperatures
correspond to lower densities, causing hot material to rise. This is because the mixing
length parameter is tied to a temperature excess that only exists in regions where the flux is
carried by a combination of radiation and convection (whereas the flux is carried entirely
by convection in the case of convective stellar cores, where the temperature gradient is
nearly adiabatic; see Section 6 for more detail).

Superadiabatic regions of low-mass stars include surface convection zones, sub-surface
convection zones, and (later in their evolution) red giant envelopes. In intermediate- to
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high-mass stars, conditions may also produce intershell convection, or localized, interior
pockets of convection situated between the core and the envelope.

Importantly, convection in the stellar core is not a case of superadiabatic convection.
While convection at the surface is very inefficient, conditions in the core locally approximate
an isentropic3 environment, meaning core convection is adiabatic. The standard prescription
for energy transport by convection in adiabatic regimes is given by Equation (1g). This can
be written (in Lagrangian form, i.e., m rather than r coordinates) as

dT
dm

= −T
P

Gm
4πr4∇, (6)

where ∇ represents the general temperature gradient (see Equation (7.32) and surrounding
discussion in Kippenhahn and Weigert [52]). Note that the form of ∇ is key: in the deep
interior, ∇ = ∇ad; in the regions where MLT applies, ∇ is instead given by the solution to
Equation (4).

Referring again to Equation (4), we see how mixing length theory’s key parameter,
αMLT, can be conceptualized as a measure of convective efficiency, with higher values
corresponding to the statement that a larger amount of flux is carried by convection.
Changes to the stellar structure induced by changes in αMLT will, therefore, be most
significant when convective efficiency is low.

Within a superadiabatic convective region, there is still a differential in the efficiency
of convection as a function of depth4. While the deepest portion of the outer convection
zone is nearly adiabatic, or asymptotically adiabatic, the top of the convective envelope is not.
The difference in entropy between these regions is also captured by αMLT.

5. Limitations and Physics Not Captured by MLT

Mixing length theory requires a number of naïve—and in some cases, outright
incorrect—physical assumptions. First of all, MLT models an advective process, using
a diffusive approximation. Advective processes are those that transport material or energy
through the bulk motion of fluids, whereas MLT supposes that particle-like fluid parcels
diffuse through the region, to redistribute heat. In the physical world, fluids and particles
behave quite differently, and radiative hydrodynamics has shown that the concept of a
homogeneous unit of convective material sustained over any appreciable distance is not
valid: convection proceeds via a continuum of constantly changing upflow and downflow
channels. Likewise, MLT treats convective boundaries as if they are rigid. In reality, con-
vective boundaries are permeable, flexible, and subject to the inertia of convective motions
carrying convective plumes across the convective–radiative boundary. Local mixing occurs
in these regions, and MLT cannot account for this.

Another simplification supposed by MLT is that fluid parcels travel along strictly ver-
tical paths: this limitation is primarily due to the 1D aspect of the formulation. In physical
convection, there is continuous shearing, fragmentation, reorientation, and deletion of
the flow channels: none of these features can be captured using a formulation that relies
on strictly radial displacements. It should also be emphasized that standard MLT is not
time-dependent, which means that it cannot capture any physics happening faster than the
convective turnover time. In standard treatments, convective regions are assumed to be
instantaneously mixed over one evolutionary time step.

On the issue of flow channels, MLT fails to account for the fact that, in physical
convection, there is asymmetry between upflows (hot material rising) and downflows (cool
material falling). Taking, for example, the surface of the Sun or 3D simulations thereof,
we observe that a network of broad, spot-like convective cells with higher temperatures
is demarcated by a series of interconnected, cooler downflow lanes. The surface area
is dominated by plasma flowing upward, which expands as its density drops, and this
material travels in the same direction as the density gradient; however, the same is not true
of the down-flowing material, which travels against the density gradient, and generates
turbulence in the process. To satisfy both conservation laws and the density gradient,
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the upflows lose mass to the downflows, and the downflows accumulate contributions
from the upflow lanes at many different radial and density coordinates.

Because the upflows carry material that is uniformly from the deep interior of the
convection zone to the surface, the process is largely isentropic. There is no such uniformity
in the downflow lanes, however: the material in these lanes has a range of entropies,
and it is also denser. The downflows therefore cause turbulence, have higher speeds than
the upflows, and occupy a smaller area than the upflows. These conditions result in the
inward (towards the interior) transfer of kinetic energy, a process known as negative kinetic
flux. Negative kinetic flux is a physical property of convective plasma that classical MLT
cannot capture, though some modern extensions and revisions of MLT have attempted to
incorporate this feature (see Stein and Nordlund [53] for a detailed discussion of 3D plasma
physics).

It is likewise important to recognize that the mixing length parameter, αMLT, of most
MLT formulations is only loosely connected to any physical property of a star; it is often
thought of as a free, numerical parameter. The mixing length is, however, related to the
entropy jump between the asymptotically adiabatic portion of the convection zone (where
convection is most efficient) and the top of the convective envelope (where it is least
efficient). Although neither this entropy jump nor the density gradient, size, or depth of the
convective envelope is a readily observable feature of a star, these features can be probed
indirectly using asteroseismology. It is thus necessary to calibrate αMLT directly, and this
is most easily done using observations of our nearest star—a point to which we return in
Section 10.

6. Mixing Length Formulation

We reproduce here a standard derivation for the amount of flux carried by convec-
tion, modified from derivations presented in Cox & Giuli’s Principles of Stellar Structure,
Kippenhahn and Wieger’s Stellar Structure and Evolution, Cassisi & Salaris’ Stars and Stellar
Populations, and notes compiled by Matteo Cantiello and Yan-Fei Jiang (priv. comm.).

The pressure scale height, Hp, is a measure of the distance over which the total
pressure, P = Pgas + Prad, changes by a factor of 1/e. Under the assumption of hydrostatic
equilibrium, the definition

−d ln P
dr

≡ ρg
P

=
1

HP
(7)

holds.
MLT’s canonical “parcel of fluid” is taken to be in pressure, but not thermal, equilib-

rium with its surroundings. We next define (1) the average (ambient) temperature gradient
of the fluid, with respect to the pressure of all matter at some r, and (2) a temperature
gradient of the fluid parcel itself, also taken with respect to the total pressure. Let the
former be given by

∇ ≡ d ln T
d ln P

, (8)

and the latter by

∇parcel ≡
d ln Tparcel

d ln P
, (9)

where T and Tparcel are the average (ambient) temperature and the temperature of the
parcel, respectively. This scenario is depicted in Figure 2.

By first-order Taylor expansion, the difference between the parcel’s temperature and
the ambient temperature at some radial shift ∆r can be expressed as

∆T(∆r) = Tparcel(r + ∆r)− T(r + ∆r) ' ∆r
[dTparcel

dr
− dT

dr

]
. (10)
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Assuming that the temperature change over ∆r is small, T ' Tparcel, and so

∆r
[dTparcel

dr
− dT

dr

]
→ ∆rT

[
−d ln T

dr
−

(
−

d ln Tparcel

dr

)]
. (11)

Using the chain rule and the definition from Equation (7), we can rewrite

d ln T
d ln P

=
d ln T

dr
dr

d ln P
=

d ln T
dr

(−HP). (12)

We may now substitute the definitions from Equations (8) and (9) into Equation (11),
yielding

∆T(∆r) = ∆r
T

HP
(∇−∇parcel). (13)

We note that the moving parcel may well exchange heat with its environment, and so∇parcel
is a function of the rate at which this exchange takes place. However, the assumption that
the parcel does not exchange heat with its surroundings—i.e., that it is moving adiabatically—
is a reasonable and simplifying assumption for stellar conditions. In this case,

∇parcel → ∇ad =
d ln T
d ln P

∣∣∣∣
ad

. (14)

Take careful note of the difference between Equations (14) and (8): these are not interchangeable.
The adiabatic temperature gradient,∇ad, and the average or ambient temperature gradient,
∇, are not, in general, the same. We also do not necessarily know the definition of ∇ in a
convective region. Substituting∇parcel for∇ad and combining with Equation (13) yields

∆T(∆r) = ∆r
T

HP
(∇−∇ad). (15)

Meanwhile, the convective flux transported by a parcel of fluid moving upwards with
velocity v over some distance λ is given by

Fconv =
1
2

ρvcP

[(
dT
dr

)
ad
−

(
dT
dr

)]
λ, (16)

where ρ is density, cP is specific heat, and the factor of 1
2 emerges from the assumption that

half of the material in a given layer is rising while half is falling (see Salaris and Cassisi [54]
for more discussion of how this formula arises). Given the relationship

dT
dr

= − T
HP

d ln T
d ln P

= − T
HP
∇ (17)

and Equation (13), we have

Fconv =
1
2

ρvcP

[(
− T

HP
∇ad

)
−

(
− T

HP
∇
)]

λ. (18)

Rearranging, we see that Equation (4),

Fconv =
1
2

ρvcPT
λ

HP
(∇T −∇ad),

describing the toy model introduced in Section 3, emerges.
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We return briefly to stars with convective cores, as discussed in Section 4: in convective
cores, where convection is efficient, conditions are nearly isentropic, and the general
temperature gradient is an adiabatic temperature gradient. In this case, (∇T −∇ad) =
(∇ad −∇ad) = 0, so we can see that the choice of αMLT does not matter in this situation.

  

Cooler

r+Δr

D
is

ta
nc

e
 m

e
as

u
re

d 
in

 te
rm

s 
of

 H
P

Parcel loses its 
definition and merges 

with surroundings after 
traveling a distance Δr

Warmer

Parcel has a 
thermal excess

T
parcel

(r+Δr) - T(r+Δr)

ΔT(Δr) = 

r r

T
parcel

The parcel has its own 
temperature and 

temperature gradient 

The convective 
environment has an 
ambient temperature 
T and a general 
temperature gradient:

Figure 2. The distance a “convective blob” can travel is measured in multiples of the pressure scale
height, HP. The upward motion of the parcel is driven by the thermal excess of the fluid parcel,
compared to its surroundings. A larger mixing length implies that the parcel travels over a larger
pressure differential before denaturing, which corresponds to more efficient transport of the flux
by convection.

Specific Formulations

There are several implementations of MLT, some of which are more appropriate for par-
ticular physical scenarios. One of the most commonly used today is the Cox and Giuli [38]
prescription, which assumes high optical depth and no radiative losses, as does the original
formulation of Böhm-Vitense [5]. The methods of Henyey et al. [55], Mihalas et al. [40], and
Kurucz [56] all provide extensions of MLT to work in optically thin regimes. To use MLT in
regimes where electron degeneracy and pressure ionization are relevant, as in the convec-
tive envelopes of white dwarfs, the Bohm and Cassinelli [39] extension is most appropriate.

The use of time-dependent convection has its origins in the study of stellar pulsa-
tions, beginning with the work of Unno [57] and Gough et al. [58] in adapting the mixing
length formulation to model the interaction of the turbulent velocity field with radial
pulsations (see Houdek and Dupret [59] for a detailed review of this topic). Recent inno-
vations in time-dependent convection include implementing the model of Kuhfuss [60]
in MESA (Jermyn et al. [14]), which reduces to the standard Cox and Giuli [38] treatment
over long timescales.

7. Alternatives and Extensions

The simplistic assumptions on which mixing length theory is based have long cried
out for a more sophisticated and realistic formulation. Numerous authors have suggested
potential changes to the mixing length formalism, including the inclusion of non-local ele-
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ments, use of a more consistent picture of the turbulent dissipation, use of more physically
motivated parameterizations, and/or use of more complex calibrations.

7.1. Alternative 1D Formulations

Improvements to MLT must balance increased sophistication against the need to
remain implementable in one-dimensional stellar evolution models. Many attempts have
been made; however, while such modifications often provide better answers in particularly
challenging regions of stellar evolution (e.g., time-dependent convection in late stages of
nuclear burning for massive stars), they are often discussed only in the local context of
a particular problem. The comparative simplicity and wide applicability of the standard
mixing length formalism has thus far prevented any wide adoption of a significantly
different alternative. We discuss a few alternative formulations of the mixing length theory
here, although we acknowledge that there is a wider body of work in this field than we can
adequately document here (see, e.g., Houdek and Dupret [59]).

One early challenge to the mixing length formalism was the fact that its purely local
formulation meant that it did not accommodate convective overshoot: MLT provided
no way to get convective regions to overshoot into adjacent, formally stable radiative
regions, even though observations of real stars seemed to demand some such process
(Gough [61], Renzini [62], Grossman and Narayan [63]). Attempts have been made to
recompute the theory in a non-local way, by including additional convective terms Kuh-
fuss [60], Eggleton [64], Xiong [65–67], Grossman [68], but such expansions rapidly develop
a significant number of extra terms as they try to include higher-order effects.

There are classes of modified mixing length models that can, in theory, address other
challenges, including time-dependent effects in a pulsating star (Gough [61]), the impact of
composition gradients, representation of the depth dependence of rotation and magnetism
(Ireland and Browning [69]), and so forth. Practically, however, such work has been limited
to specific problems addressed on an individual basis, rather than leading to a true overhaul
of the underlying framework.

There have also been more explicit attempts to include a physical description of
turbulence in the parameterization of convection. In the inviscid interior of a star, it is
expected that a wide spectrum of turbulent eddies contribute to the convective flux (Canuto
and Mazzitelli [26], Marcus et al. [70]), rather than the single eddy assumed by the standard
mixing length theory. This change in the treatment of energy transport corresponds to
differences in the flux carried and the resulting temperature structure (Canuto et al. [27]).
This model, known as full-spectrum turbulence, has been adopted in some stellar evolution
codes, including CESAM [10] and ATON [6].

7.2. Extensions to 3D

More recently, as three-dimensional simulations of convection have improved, re-
searchers have attempted to use these simulations to constrain the mixing length in a
way that more realistically represents the physics of convection. Such simulations can
incorporate not only the local and static mixing length, but information on the global deriva-
tives, asymmetries between upflows and downflows, the larger-scale properties of the star,
and transverse versus radial differences (Arnett et al. [71]). For reasons likely related to the
physics of turbulent dissipation (Arnett et al. [72]), most such simulations tend to find that
the value of the mixing length should vary only slightly with the composition, luminosity,
and surface gravity of the star (Trampedach et al. [73], Magic et al. [74], Sonoi et al. [75]).
However, some authors have attempted to better reproduce the temperature stratification
(T-τ) relations in the three-dimensional simulations (Tanner et al. [76], Salaris and Cassisi
[77], Mosumgaard et al. [78], Zhou et al. [79]). Still others have attempted to incorporate
additional physical information by calibrating the mixing length parameter directly to the
entropy profile (Spada and Demarque [80], Spada et al. [81]).

While trends between αMLT and other global properties (e.g., metallicity) from 3D
simulations often proceed in the same direction as the trends implied by calibrations
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of the mixing length in 1D stellar models to match observations of stars (Bonaca et al.
[82], Creevey et al. [83], Tayar et al. [84], Joyce and Chaboyer [85,86], Viani et al. [87]),
they rarely agree quantitatively. In particular, there is a large discrepancy in magni-
tude: 1D-to-observational calibrations suggest, in some cases, the need for a variation
in αMLT that is a factor of 10 larger than suggested by 3D simulations. One may compare,
e.g., Joyce and Chaboyer [86] to Trampedach et al. [73] on this issue. This suggests either
a need for improvement in three-dimensional simulations—for example, by extending
their temperature and density domains, or by extending their timescales—or the need for
additional corrections to the physics of 1D stellar evolution calculations that are currently
impacting the inferred mixing length (Choi et al. [1], Valle et al. [88]). We expect both the
3D and 1D communities will continue their efforts to search for a consensus method that
brings the two sets of models into agreement.

8. Standard 1D MLT and Its Interplay With Other Modeling Physics

In addition to the challenges related to the mixing length by itself, stellar modeling
relies upon a large number of other physical inputs, including formulations of convective
overshoot, opacities, equations of state, the treatment of diffusion, nuclear reaction rates,
and so on, and the interplay between αMLT and these other physical assumptions must be
considered. While entire articles have been written on each of these options, their associated
uncertainties, and their respective impacts on stars of various masses and evolutionary
states, our focus here is on how these other physical options interact with the mixing length.

8.1. Atmospheric Boundary Conditions

The creation of a stellar structure model is, in essence, a boundary value problem,
where choices about the outer boundary condition will have a significant impact on the
resulting solution. Unfortunately, the outer boundary is where radiation begins to escape
the star. This is precisely where the assumptions of stellar interiors begin to break down,
and where analytic solutions accumulate error. Most modelers deal with this problem by
assuming a relationship between the temperature and optical depth in this region (i.e., a
T-τ relation): this can be an analytical expression (e.g., Eddington, Krishna Swamy [89],
Ball [90]) or a table of values sourced from more sophisticated stellar atmosphere calcula-
tions that better include some of the physics of radiative transfer and loss (Kurucz [56]),
(Castelli and Kurucz [91]), (Hauschildt et al. [92]). These choices change the structure of
the model in the same region that is affected by the mixing length superadiabatic outer
layers of the star, and so the chosen atmospheric boundary conditions will change the
mixing length. This effect is most obvious in red giant stars, due to their larger convective
envelopes. The mixing length is sensitive to both the atmospheric relation adopted and the
optical depth in the atmosphere at which the boundary is set (Choi et al. [1]).

We note that stellar atmosphere calculations also require a choice of mixing length
(Gustafsson [93]), though the choice of the mixing length in the atmosphere models is
generally found to have only marginal impact on their physical predictions (e.g., abun-
dances inferred; Song et al. [94]); however, the mixing length chosen in stellar atmosphere
models is rarely forced to be the same as the mixing length chosen in the stellar evolution
models. Generally, this inconsistency is assumed not to matter, and the choice to ignore it
can be reconciled in a framework where the mixing length is viewed as a tuning parameter
accounting for other physical inconsistencies; however, it is more difficult to ignore this
inconsistency in a framework where the mixing length is thought to capture something
physical about convection.

There are also arguments that three-dimensional simulations provide a better estima-
tion of the relationship between temperature and optical depth, and that these should be
used as boundary conditions in lieu of the standard one-dimensional atmosphere models
(Trampedach et al. [73], Magic et al. [74], Tanner et al. [76]). Attempts have been made to
implement these boundary conditions in a way that takes into account the temperature,
metallicity, and luminosity of the star (e.g., Mosumgaard et al. [78,95]); however, in general,
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the effects on the stellar temperature and assumed mixing length have been smaller than ex-
pected (generally on the order of tens of Kelvin; Tanner et al. [76], Mosumgaard et al. [95]).

8.2. Convective Boundaries

Designing stellar models requires assigning the conditions for convection. This in-
volves a choice between the Schwarzschild and Ledoux criteria for convective stability (see
Section 3.2), as well as a choice in the mathematical and numerical approach to locating
the convective–radiative boundary (or boundaries). While these choices are arguably most
important for convective stellar cores (e.g., Pedersen et al. [96])5, they can nonetheless carry
significant implications for convective envelopes as well—for example, dredge-up events
and nucleosynthetic yields from TP-AGB stars are highly sensitive to these conditions
(Cinquegrana et al. [3], Karakas et al. [97]). As such, there are important choices to be
made about the physics of the lower boundary of the surface convective zone, where the
local temperature gradient is not as close to adiabatic as the temperature gradient near the
core and interactions with the mixing length can occur. This is the location of a process
sometimes referred to as convective undershoot.

Early work with the mixing length formalism suggested that the Schwarzschild cri-
terion was more likely to be appropriate for setting this boundary (e.g., Grossman and
Narayan [63]). Further work has been consistent with that result, indicating that while
boundaries tend to be instantaneously consistent with the predictions of the Ledoux crite-
rion, over time they will mix in additional material (Paxton et al. [15]) through processes
such as entrainment or oscillatory double diffusive convection (Mirouh et al. [98]), until
they grow to the size predicted by the Schwarzschild criterion (Anders et al. [51]).

8.3. Opacities

There are numerous physical assumptions that impact the detailed structure and
temperature profiles of the model, meaning that they change our expectations for a solar
model and, therefore, the mixing length required to reproduce the properties of the Sun
at the solar age (see Section 10). We discuss this here in the context of opacities, but an
analogous discussion could be imagined for composition, including individual abundance
variations (Pietrinferni et al. [99], Beom et al. [100]), the treatment of diffusion (van Saders
and Pinsonneault [101]), and any similar assumption that affects the superadiabatic layers.

Opacity in the stellar interior is generally treated in a simplistic way, in which one
assumes an abundance for each element present in the star and reads in a table correspond-
ing to that composition. The table contains an estimate of the Rosseland mean opacity
for the prescribed mixture as a function of density and temperature. This is then used
to compute how much energy can be carried by radiation. The radiative flux, in turn,
helps determine which regions will convect and what the temperature and density of
those regions will be: this means that changing the opacities will result in small changes
to the estimated radius and surface temperature of the star at any particular time. Since
calibrations of the mixing length in stellar models are generally done to fit a particular
radius and temperature at a particular time, calibrated models with different opacities will
require different mixing lengths, and these differences in mixing length will propagate into
differences in the evolutionary timescale, pulsations, and nucleosynthesis (Cinquegrana
and Joyce [102]).

8.4. Magnetic Fields

Resolved studies of the solar surface make clear that magnetism, and particularly
the concentration of the magnetic field, can impact the local properties of convection (e.g.,
Roudier et al. [103]). This sort of spatially resolved behavior is, however, challenging to
reproduce with one-dimensional stellar evolution models. Originally, such effects were
expected to be unimportant, and were therefore ignored: however, this is no longer the
case for all stars. In particular, large regions of concentrated magnetic field have been
observed on a variety of young stars, on M dwarfs, and on rapidly rotating evolved stars,
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including the sub-sub-giants (e.g., Gosnell et al. [104], Libby-Roberts et al. [105]). It is now
understood that magnetism in these regions influences the surface convective flux, and
that these effects can be parameterized in a way that mimics the behavior of the mixing
length (e.g., Ireland and Browning [69]).

The magnetic field is thought to act in some cases as an additional magnetic pressure
or energy density term that blocks the transport of flux through certain spatial regions,
and this effect has been parameterized in some 1D stellar evolution codes (e.g., YREC,
Somers and Pinsonneault [106]; MESA, Jermyn et al. [14].) One of the simplest ways to
incorporate this effect is by lowering the effective mixing length of the star, which will tend
to inflate the star in much the same way as surface magnetism. This inflation increases
consistency with the larger-than-expected observed radii of M dwarfs in binary systems
(Chabrier et al. [107], Somers and Pinsonneault [108]).

More sophisticated analyses can self-consistently incorporate the effects of magnetism
into a modified mixing length theory (Feiden and Chaboyer [109]), or add corrections for the
spatial inhomogeneities of star spots (Somers et al. [110]); however, all of these tend to alter
the structure in a manner similar to direct alterations to the mixing length. This highlights
the complex nature of the mixing length: while clearly a nonphysical parameterization, its
values may also point to physical changes in the properties of convection and its interactions
with the physics of the stellar interior.

9. What Does Changing the Mixing Length Do in Stellar Models?

The effects of changing the value of αMLT assigned in stellar evolution calculations
performed using the Dartmouth Stellar Evolution Program (DSEP; Dotter et al. [11]) are
shown in Figure 3. We note first of all that the effect of varying αMLT is itself mass-
dependent, with tracks at 2.5 or 5 M� showing no change along the main sequence with
varying αMLT, whereas those at 1.0 and 0.7 M� show a shift towards cooler temperatures
with decreasing αMLT: this is because, above a mass of approximately 1.2 M�, the structure
of the star switches from hosting a convective envelope on the main sequence to hosting
a radiative envelope, as explained in Figure 1. As changes to the mixing length will only
affect superadiabatic regions with inefficient convection, changing αMLT for models that
only exhibit core convection will have no impact. However, we also observe that the effects
of changing αMLT begin to manifest for the higher-mass tracks after the main sequence
turn-off: this corresponds evolutionarily to the development of a convective envelope,
which introduces into the model a region of inefficient convection where MLT applies.
We see here that lowering the value of αMLT results in an extension of the subgiant phase,
causing it to both lengthen in duration and shift towards cooler temperatures, for the 2.5
and 5.0 M� tracks.

For the groups of 1.0 and 0.7 M� tracks, changes to αMLT will have an impact through-
out their main sequence, subgiant, and red giant evolutionary phases, as a convective
envelope persists throughout these phases. Another observation is that changes to αMLT
are not linear: the temperature difference between tracks with αMLT = 2.5 vs αMLT = 1.9 is
much smaller, in both mass cases, than the difference in temperature caused by a change
from, e.g., αMLT = 0.5 to αMLT = 1.0. Intuitively, this is because the impact of changing the
efficiency of convection is greatest when the efficiency is low.

In Figure 4, we take a closer look at the 1M� case. The tracks in this figure were com-
puted with MESA rather than DSEP, and variations in the mixing length from
αMLT = 0.4—a value suitable for some M dwarfs (cf. Mann et al. [111])—to αMLT = 2.1,
which is slightly greater than MESA’s default (solar) value, αMLT, MESA default = 2.0. The same
trends observed for the 1.0 M� case in Figure 3 are visible here, including:
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(1) The shift towards cooler temperatures with lower αMLT;
(2) The difference in effect of a 10% change in αMLT at, e.g., αMLT = 2.1, compared to

αMLT = 0.8;
(3) The extension of the subgiant branch in duration, and towards cooler temperatures,

with decreasing αMLT;
(4) The negligible impact on luminosity.

Figure 3. Stellar tracks computed using the Dartmouth Stellar Evolution Program (DSEP) for a range
of masses and mixing lengths.

We note an additional feature in the tracks with the lowest mixing length values: a
hook emerges near the end of the main sequence for 1 M� tracks with αMLT = 0.4 and
0.5, which corresponds to the development of a convective core—a feature that would
not normally be present in a 1 M� model, but which emerges in this case, due to the
suppression of convective flux at the surface of the model, and the inward propagation
of those effects to the stellar interior. The impact of suppressing convective flux to this
degree is significant enough to cause a structural realignment throughout the stellar model—
specifically, an inflated radius—which results in a non-standard convective structure for
the solar-like tracks with αMLT < 0.6.

Impact on Isochrones

Isochrones—from iso meaning “single” and chronos meaning “time”—are models
that represent a snapshot in time as a function of stellar mass. Whereas stellar tracks
depict the time-evolution of a single star of particular mass, isochrones are constructed
by interpolating over grids of stellar tracks, each of which has a different initial mass but
otherwise identical input physics. As stars of different masses evolve at different rates,
points of equal age will occur during different evolutionary stages for different tracks.
The curve connecting these equal-aged points across masses is the isochrone. For a more
rigorous discussion of how these equal-aged points are defined, we refer the reader to
Dotter [112], who provides a description of the Equal Evolutionary Point, or EEP, method.
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Figure 4. MESA: all one solar mass, range of MLT values. Other assumptions: photosphere tables for
atmospheric boundary conditions and the Asplund et al. [113] solar abundance scale. The pre-ZAMS
evolutionary tracks are printed in fainter colors to avoid crowding and overlap with the ZAMS-RGB
tracks. Note that in the case of αMLT = 0.40, the model failed before reaching the ZAMS.

It is well known that changes to the physical assumptions of the constituent stellar tracks
will change the morphology of the isochrones, especially in mixing-sensitive regions, such
as the main sequence turn-off (MSTO) and subgiant branch (e.g., Joyce and Chaboyer [85]),
(Somers et al. [110], Song et al. [114]). In publicly available, pre-computed isochrone
databases, such as MIST (MESA Isochrones and Stellar Tracks; Choi et al. [115]), the user
can specify the composition of the tracks. Occasionally, it is also possible to specify
other physics, such as a degree of alpha-element enhancement (as in DSED, the Dart-
mouth Stellar Evolution Database; Dotter et al. [11]), the degree of overshooting, mass
loss, or inclusion of heavy element diffusion (as in BaSTI: Bag of Stellar Tracks and
Isochrones; Pietrinferni et al. [116]), and/or whether the underlying models are rotating
(e.g., MIST). Synthetic photometry for many observational systems is also available in many
isochrone databases.

However, there is no publicly available isochrone database that permits the variation
of αMLT. Figure 5 shows the effect of variation in αMLT for a set of isochrones whose
ages, compositions, and other physical assumptions are otherwise identical. As Figure 4
would suggest, the impact of lowering αMLT in the constituent stellar tracks propagates into
the isochrones, with ultra-low-αMLT models exhibiting a convective core at lower masses
than would be expected under typical physical assumptions. We likewise observe the
shift towards both lower effective temperatures and greater temperature sensitivity with
decreasing αMLT.
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Figure 5. A set of isochrones generated using MESA. All have identical compositions and ages,
but the mixing length is varied. The colors of the curves correspond to the mixing length value
assigned (uniformly) in the constituent tracks.

10. Solar Calibration of αMLT

Because the mixing length has neither an observable counterpart in real stars nor an
analog in 3D convection simulations, we must "guess" its value. Canonically, the value of
the mixing length is determined by a method known as solar calibration (e.g., Charbonnel
and Lebreton [117]). In this process, αMLT is iteratively adjusted in a solar model, until the
model’s temperature, luminosity, radius, and other observationally constrained features
(e.g p-mode asteroseismic spectrum) are reproduced to precisions of (ideally) at least 1 part
in 105 at the solar age. Historically, the Sun was the only star with a sufficient number of
independent observational constraints and sufficient precision on those constraints to make
this calculation feasible.

Differences in both algorithms and physical assumptions across stellar evolution codes
mean that the “solar-calibrated mixing length” is not a universal concept. The value of
αMLT,� must be independently determined within each stellar evolution code, and again for
each set of physical assumptions. For example, αMLT,� will, in general, be higher for solar
models that incorporate heavy element diffusion than for solar models that do not, and
will differ at the level of at least ∼ 10%, depending on the choice of atmospheric boundary
conditions. Table 1 of Joyce and Chaboyer [85] and Section 1 of Viani et al. [87] provide
clear demonstrations of the degree of variance in αMLT,� in the context of different input
physics within the same stellar evolution code (DSEP and YREC, respectively). Similarly,
Cinquegrana and Joyce [102] demonstrate that the difference between using a “default”
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solar value (calibrated to some arbitrary set of input physics) and using αMLT,� from a solar
calibration performed for a particular set of physical assumptions relevant to the science
case (in this case, the AESOPUS opacities and predictions for AGB stars) can be significant.
The simplex_solar_calibration functionality in MESA is designed to make this tedious
but important calculation easier for users.

11. Non-Solar Calibrations

While the Sun is our best source of high-precision observational constraints, it is not an
appropriate proxy for all stars. For the same reason, it is equally inappropriate to adopt the
solar-calibrated mixing length ad hoc in any given stellar model. Until recently, however,
there has simply not been an empirically motivated alternative.

Over the past few years, the identification of a handful of other stars with an appropri-
ate number of independent observational constraints has opened the door to empirically
calibrating the mixing length to non-solar targets. Due in particular to the availability
of dynamical masses and robust asteroseismic information, the most reliable non-solar
mixing length calibrations have been performed for Alpha Centauri A and B (Guenther
and Demarque [118], Nsamba et al. [119], and Joyce and Chaboyer [86]). The left panel of
Figure 6 is a reproduction from Joyce and Chaboyer [86], who found that, independent of
other modeling choices, the optimal mixing length for α Cen B was always larger than the
optimal mixing length for α Cen A in two-component models of the system, and that, in
the majority of cases, the solar-calibrated value fell between them.

Figure 6. (Left): Solar-normalized αMLT fits to Alpha Cen A and B. This panel appears as Figure 3 in
Joyce and Chaboyer [86], and is reproduced with permission. (Right): Optimal mixing length as a
function of mass for Alpha Cen A, B, and the Sun.

Less definitive but equally compelling work has been done on non-solar mixing length
calibrations to very metal-poor stars, including the work of [83] on subgiant HD 140283,
whose radius is known interferometrically. The need for sub-solar αMLT to reproduce the
well-constrained temperature and luminosity of this star was later corroborated by Joyce
and Chaboyer [85], who also found that sub-solar αMLT was necessary to fit stars of similar
metal-poorness ([Fe/H]∼−2.4), regardless of evolutionary phase.

The probable dependence of αMLT on metallicity has been explored by numerous
observers and 1D modellers in the past decade, including Tayar et al. [84], Viani et al. [87],
Bonaca et al. [82], Song et al. [114], Nsamba et al. [119], and Joyce and Chaboyer [85]. Like-
wise, experts in 3D radiative hydrodynamics have argued, based on simulations of convec-
tion in the surface layers of stars, that the mixing length should depend on composition as
well as surface gravity (e.g., Trampedach et al. [73], Magic et al. [74], Freytag et al. [120]);
however, the relationship between αMLT and mass remains more elusive. Notably, Kervella
et al. [121] found that models of the 61 Cygni binary system (M = 0.7 and 0.6 M�; Z ∼ Z�)
required a sub-solar mixing length, and argued that sub-solar values should be used for
lower-mass stars in general. A decade later, Joyce and Chaboyer [86] noted a possible trend
between αMLT and mass, as shown in the left panel of Figure 6.
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12. Scientific Applications of Changing the Mixing Length
12.1. Implications for Age Measurements

There are two major ways in which changes to the mixing length can dramatically
impact the estimation of stellar ages, which are used for a broad range of astrophysical
purposes, from identifying the evolution of planetary systems to the enrichment and
merger histories of galaxies. The first is directly: changing the mixing length changes the
temperature structure, which changes the nuclear burning rates, which changes the lifetime
of the star. Generally, increasing the mixing length decreases the main sequence lifetime,
while decreasing the mixing length will increase the main sequence lifetime; however, this
can become more complex, depending on how the model is calibrated. In a solar-calibrated
model, for example, increasing the mixing length requires a decrease in helium to match
the solar temperature at the solar age, which will then tend to increase the main sequence
lifetime back towards or even above its base length.

The second way in which changing the mixing length can impact the inferred ages
is less direct. As the models and their corresponding isochrones shift in temperature,
the inferred age, given a set of observed parameters, will also shift. As a concrete example,
one can imagine a red giant star observed by Gaia, whose luminosity can be inferred from
its parallax, and whose temperature and metallicity can be inferred from photometry and
spectroscopy. With those parameters, one has sufficient information to fit its age using
a model; however, if the model uses a solar mixing length for all stars, rather than a
metallicity-dependent one, we can expect the inferred mass of the star to shift by as much
as 0.2 M� (∼50 K) at [Fe/H] of ±0.5, even if the solar-metallicity models are properly
calibrated (Tayar et al. [84]). That shift in mass would represent a change in the inferred
age of several gigayears, even as large as a factor of two in some cases. Since the shift can
be metallicity-dependent, it would then change the inferred age–metallicity relation of the
galaxy, and fundamentally alter any inferences of its merger and enrichment history.

The right panel of Figure 7 demonstrates the degeneracy between metallicity and
αMLT, using DSEP stellar tracks. The box represents brightness and temperature constraints
for metal-poor subdwarf HD 140283, and the three different [Fe/H] assumptions in the
tracks correspond to the minimum, maximum, and median values of the star’s measured
metallicity (Creevey et al. [83]). This serves as an important indication that, even with
excellent precision on HD 140283’s metallicity, it is not possible to determine, based on
this information alone, whether αMLT = 1.3 or αMLT = 0.7 provides a better fit. At the
same location in luminosity–temperature space, the αMLT = 0.7 track would provide an
age estimate of order 1–2 Gyr younger than the age suggested by the αMLT = 1.3 curve.

Isochrones are the models most commonly used for age determinations, especially for
stellar populations. Figure 7 shows a set of DSEP isochrones generated with various mixing
lengths (colored curves) overlaid on HST photometry of the metal-poor globular cluster
M92 (gray points). We note, in particular, the sensitivity of the subgiant and red giant
portions of the isochrones to the choice of αMLT, likewise demonstrated in the MESA-based
isochrones of Figure 5. The figure suggests that αMLT = 1.75 provides the best match to the
data, which corresponds to a value∼20% below the solar calibration (αMLT,�,DSEP = 1.9258);
however, we are once again presented with the problem that the effects of changing
αMLT are difficult to disentangle from the effects of changing the underlying composition
assumptions of the isochrones—even more so than in the simpler (lower-dimensional) case
of stellar tracks. As sharply demonstrated by the results of Joyce et al. [4], we must also
reckon with the issue that the ages of isochrones are themselves degenerate with metallicity
and αMLT, and the uncertainties in isochrone-based age determinations that do not account
for this can be underestimated by a factor of two.
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Figure 7. (Left): Isochrones produced using the Dartmouth Stellar Evolution Program (DSEP) assume
a range of mixing lengths. HST data for the metal-poor ([Fe/H]∼−2.4) globular cluster M92 are
shown in gray. This figure appears as Figure 5 from Joyce and Chaboyer [85], and is reproduced
with permission. (Right): Stellar tracks from DSEP designed to fit tight constraints for the metal-
poor subdwarf HD 140283 are computed with a range of assumptions about composition and αMLT,
demonstrating that variations in one can mimic the other. This figure appears as Figure 2 in Joyce
and Chaboyer [85], and is reproduced with permission.

The upper left panel of Figure 8 shows the same models presented in Figure 5, but in
the log g–Teff plane instead. The remaining three panels show a subset of the tracks for which
the mixing length assumption is varied between “reasonable extremes” for stars with masses
between roughly 0.8 and 1.0 M�, and metallicities, from slightly super-solar to values as
low as [Fe/H]= −2.0. The tracks in these panels sweep αMLT = 1.4–2.3, corresponding to
values calibrated for similar stars in the literature (e.g., Creevey et al. [83], Tayar et al. [84],
Joyce and Chaboyer [85,86], Viani et al. [87], Tang and Joyce [122]). The black points show
a sample of 91 micro-lensed subdwarfs with spectroscopic parameters determined by
Bensby et al. [123]. The data serve to demonstrate that a physically motivated degree of
variation in αMLT produces a shift in effective temperature that is at least comparable to
the observational uncertainties on effective temperature; nor is the shift in log g negligible.
The upper right and the two lower panels show that the spread induced by variation
in αMLT is present in roughly equal measure for isochrones with ages of 12.6 Gyr and
7.1 Gyr, as well as for compositions near solar (Z = 0.0142) and [Fe/H]∼−0.3 (Z = 0.008),
demonstrating that this effect is not restricted to one particular age or metallicity regime.

12.2. Implications for Nucleosynthesis

Changing the properties of convection by means of a change in the mixing length
would also impact the expected nucleosynthetic processes, particularly for intermediate-
and low-mass red giant and asymptotic giant branch stars. Such models also generally as-
sume some sort of mixing length parameter, often a solar calibrated value (see, e.g., Lugaro
et al. [124], Karakas and Lattanzio [125]). Increasing the mixing length parameter would
increase the expected horizontal branch temperature, which then impacts the structure,
lifetime, and mixing of AGB and super-AGB stars significantly. It has been argued that
such changes can alter the predicted yields of some elements by as much as a factor of 3
(Doherty et al. [126]). It has also been found that using a different parameterization for
convection, e.g., full-spectrum turbulence rather than the mixing length, can substantially
change nucleosynthetic yields (Ventura et al. [127], Cinquegrana and Karakas [128]).
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Figure 8. Custom isochrones based on MESA stellar tracks assume a range of mixing length values.
In the upper right and lower two panels, spectroscopic parameters for micro-lensed subdwarfs
determined by Bensby et al. [123] are shown as black points, with their 1σ uncertainties shown
as horizontal and vertical black lines. This figure appears as Figure 11 in Joyce et al. [4], and is
reproduced with permission.

12.3. Implications for Stars in the Instability Strip

For some classes of pulsating stars, including γ Doradus and δ Scuti stars, the driving
of pulsations is related to the interaction between the oscillations and convection, which de-
pends on the properties, including size, of the convective zone (see (Houdek and Dupret [59])
for a thorough review of this topic). Changes in the mixing length will tend to change the
size of the convective envelope at a given effective temperature, and thus will change the
temperatures at which stars exhibit these oscillations. Specifically, decreasing the mixing
length moves the instability strip towards lower temperature (Dupret et al. [129]). As large
numbers of oscillating δ Scuti and γ Doradus stars have been detected by recent space
missions (Van Reeth et al. [130], Murphy et al. [131], Antoci et al. [132], Aerts et al. [133]), it
has now become possible to quantitatively compare the observed instability strips to pre-
dictions of models with different mixing lengths. Such comparisons seem to indicate that
the observed instability strip is wider than that predicted by models, and one method for
solving this would be to include models with a mass-dependent mixing length (Bowman
and Kurtz [134]).

Work on the pulsation frequencies and amplitudes of classical pulsators, including
Cepheids and RR Lyrae stars, has also indicated the dependence of the pulsations on the
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mixing length (e.g., Yecko et al. [135]), and the need for a more careful treatment of the
interaction between convection and pulsation than standard mixing length theory permits
(Stellingwerf [136]). The location of the red edge of the instability strip is particularly
sensitive to the interactions between convection and pulsation (Baker and Gough [137]),
(Stellingwerf [138], Bono et al. [139]), and analyses have indicated that the existence of
double-mode pulsators may also relate to choices about convection (Kolláth et al. [140]—
but see also Smolec and Moskalik [141]). More generally, reducing the mixing length tends
to increase the minimum mass of stars that develop blue loops and, therefore, pass through
the Cepheid instability phase. Similarly, changing the mixing length can shift the models
such that additional mass loss is required before stars can populate the RR Lyrae instability
strip. As even larger catalogs of carefully studied classical pulsators are being put together
at a range of metallicities (e.g., Jurkovic et al. [142]), ongoing analysis is likely to place
additional constraints on the necessary mixing lengths in these types of stars.

12.4. Implications for Galaxies

Studies of unresolved stellar populations, including star clusters and other galaxies,
generally estimate the stellar populations present by comparing observed spectrophotome-
try to models of stellar evolution, combined to synthesize the expectation for a population
(stellar population synthesis, e.g., (Maraston [143,144], Bruzual and Charlot [145], Conroy
et al. [146])). As these models are based on stellar evolutionary tracks, they inherit the uncer-
tainties of the underlying stellar models and their sensitivity to the choices of model physics,
including the mixing length. As changes to the mixing length cause significant shifts in the
temperature of the red giant branch, and the red giant branch contributes about a third of
the bolometric flux in old populations (Maraston [143,144]), changes to the mixing length
can substantially change the inferred ages of galactic populations (Goddard et al. [147]).
As the mixing length may be related to stellar mass and metallicity, there are possible
complexities that may be confusing our ability to infer the assembly and evolutionary
history of the universe, a real issue in this time of rapidly improving data of galaxies from
even earlier in time.

13. Successes of Mixing Length

The mixing length parameterization of convection has been astonishingly successful
despite its simplicity. It has facilitated the creation of models of our own Sun, and of other
stars, that have propelled our understanding of existing physics, have led to the discovery
of entirely new physics, and have, in turn, given us the ability to describe the evolution of
our galaxy and of the universe.

13.1. MLT and the Standard Solar Model

Models of stellar structure and evolution were used quite early on to comment on the
possible energy generation mechanisms of stars (e.g., Cowling [148], Oke [149]), and, even
in recent history, models of the Sun have been used as a stepping stone for discovering new
facets of the universe. In the early 1990s, models of the Sun gave a predicted central temper-
ature, fusion rate, and, therefore, neutrino flux that was inconsistent with measurements
(e.g., Bahcall and Pinsonneault [150]). This helped to force discussion of other options for
resolving the discrepancy, and eventually the neutrino oscillation model was accepted as a
reasonable solution to the controversy (see accounts such as Perkins [151]).

More recently, absolute solar abundances have been an ongoing discussion. Spectro-
scopic analyses and helioseismic inversions based on solar models originally computed
similar metal abundances for the Sun (Grevesse and Noels [152], Grevesse and Sauval [153]),
but the incorporation of three-dimensional effects, and the impact of Non-Local Ther-
modynamic Equilibrium effects, into spectroscopic analyses seemed to argue for lower
overall abundances (Asplund et al. [113]) that were incompatible with solar modeling
(Basu and Antia [154]). New measurements of the solar rate of production of neutrinos
from the CNO cycle seem to argue for a result more consistent with the results of solar
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modeling (Appel et al. [155]), as do some more recent estimates from spectroscopic analyses
(Magg et al. [156]), and so, again, these may represent an instance where stellar models
based on mixing length theory have encouraged the shift to a new standard paradigm,
with implications for a wide range of analyses.

13.2. MLT and Asteroseismology

Models of stellar structure and evolution based on mixing length theory have also
been sufficiently accurate to permit detailed asteroseismic analyses, allowing for the study
of the detailed interior profiles of other stars, based on the exact frequencies and frequency
ratios of their oscillation modes. While whole books can and have been written on the
possibilities (Aerts et al. [157]) and methods (Basu and Chaplin [158]) of such analyses, we
highlight here a few of the results that have enhanced the understanding of the physics of
stellar interiors.

Comparisons of observations to stellar models created using mixing length theory have
allowed for the identification of modes and mode patterns sensitive to the stellar interior,
including sensitivity to the size of the convective core, and thus for mixing in overshoot
regions (Van Reeth et al. [130], Pedersen [159], Deheuvels et al. [160], Constantino et al. [161]).
They have also allowed for the identification of modes of mixed character, which probe the
rotation profile of the interior of the star (Beck et al. [162], Deheuvels et al. [163], Mosser et al.
[164]), and have potentially identified stars that have undergone interactions (Rui and Fuller
[165], Deheuvels et al. [166], Li et al. [167], Matteuzzi et al. [168], Tayar et al. [169]). Models
have identified modes that are missing or altered (García et al. [170], Stello et al. [171]),
and it has been argued that these can probe the internal magnetic field strength and
structure (Fuller et al. [172], Bugnet et al. [173]). More generally, asteroseismic analyses
combined with stellar models have allowed for the estimation of ages for large populations
of stars (e.g., Pinsonneault et al. [174]), and these results have then been used to infer
the evolutionary histories of our own (Silva Aguirre et al. [175]) and other (Chaplin et al.
[176], Grunblatt et al. [177]) galaxies, as well as having served as training sets for much
larger explorations (Ness et al. [178], Leung et al. [179]).

14. Observational Challenges of Mixing Length

Given the remarkable success of one-dimensional evolutionary models of stars and
their utility for studies of everything from extrasolar planets to the populations of the earli-
est galaxies, one might question whether there is still a need to devote effort to discussions
of the choice of αMLT. We argue that such conversations must continue. Large numbers of
stars are now observationally characterized to levels of precision that show that our simple
assumptions about the mixing length generate demonstrably incorrect models. This has
been identified through the careful calibration of individual stars (Joyce and Chaboyer [86]),
the use of populations of clusters (Joyce and Chaboyer [85], Brasseur et al. [180], Cohen et al.
[181], Smiljanic et al. [182]), constraints on other populations of stars (Ness et al. [183]),
asteroseismic analysis of dwarf and giant stars (Bonaca et al. [82], Tayar et al. [84], Viani et al.
[87], Metcalfe et al. [184], Creevey et al. [185], Silva Aguirre et al. [186]), efforts in the M dwarf
regime (Somers and Pinsonneault [108], Feiden and Chaboyer [109]), and work on the
location of the instability strip (Bowman and Kurtz [134]), to name only a few examples.

The most interesting and challenging part of the MLT landscape is that these analyses
do not all agree with each other. Although each argues for a change in the mixing length,
to better match observations, these changes do not converge to a single different value
or scaling relation. Perhaps there exists a relationship between the mixing length and
variables, such as mass, metallicity, surface gravity, temperature, magnetic field, etc., that
could match all of the observational constraints over all regimes; however, no such single
solution has yet been shown to work. It could also be the case that these discrepancies
are showing us that the current mixing length framework is ultimately insufficient for the
modern observational data climate, and that there is a real need for a new paradigm.
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Another open question concerns the inability of more sophisticated three-dimensional
simulations to predict a mixing length that matches the requirements from the obser-
vations (see, e.g., Figure 9, reproduced from Tayar et al. [84]). The translation from a
three-dimensional simulation to some estimate of a mixing length is not straightforward
(Trampedach et al. [73], Magic et al. [74]), as there is no clear physical definition for such
a parameter, so the lack of correspondence could be a translation issue rather than evi-
dence of missing physical understanding. Three-dimensional simulations of convection
also have their own challenges (Miesch [187]), as do observational calibrations to place
stars on a fundamental scale (Tayar et al. [2]). Even so, the inability to predict the mixing
length from well-known physical principles calls into question its long-term viability as a
relevant model.
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Figure 9. (Left): The effective mixing length required to match observations in a set of 1D stellar
evolution models (black points) does not agree with the predictions of 3D simulations (gray bands)
as a function of metallicity. (Right): The effective mixing length required to match observations
in a set of 1D stellar evolution models (black points) does not agree with the predictions of 3D
simulations (teal and red points) as a function of surface gravity. Reproduced with permission from
Magic et al. [74] and Tayar et al. [84].

15. The Future of MLT

Having reviewed both the extraordinary successes and the substantial limitations
of the mixing length theory of convection, we now speculate on what the future holds
for MLT.

First and foremost, we expect the evolution of MLT to be driven observationally.
As both data quality and data volume increase at unprecedented rates, the data will require
models of a higher standard, to make sense of abundant, high-precision observational
constraints from multiple sources, and to extend the interpretation of data to regimes where
the data are not yet sufficient to constrain the model.

On the 5–10-year horizon, we can expect to see empirical calibrations of αMLT to
an increasingly broad, globally representative sample of non-solar targets, and for these
data-driven values to increasingly replace ad hoc use of the solar prescription. Carefully
characterized targets with well-constrained masses, compositions, and radii will be assem-
bled into a list of calibration targets used to determine the appropriate mixing length for an
individual model grid; we expect these targets to come from a combination of eclipsing
binary analysis, open cluster membership, and/or photometric, astrometric, spectroscopic,
and asteroseismic data. Grids of models that span various physical assumptions will be
generated, to estimate the appropriate mixing length for each star’s particular composition,
temperature, and surface gravity. Arguments will be made about whether a single mixing
length should then be used to fit all stars with mass X and/or metallicity Y, whether there
is a scaling relation between αMLT and other stellar parameters that should be applied
universally or in particular evolutionary phases/mass regimes, or whether models should
be using a static mixing length, rather than one that changes over time, at all. Comparisons
will be made to three-dimensional models to determine if they can be processed in such
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a way as to provide useful insight on the changes to the mixing length. Stellar evolution
codes will be modified to accommodate such schemes, and, over time, we will learn which
approaches are better.

We expect that this paradigm of iterative, data-informed revision and improvement
will persist for a time, and then the data will once again improve. At that point, it will
become clearer whether the calibrated mixing length framework is sufficient to predict the
evolution, temperature, and ages of stars to an acceptable precision. When that happens,
the researchers of the future may finally have to find an implementation of convection with
greater physical fidelity, to use in stellar evolution calculations; alternatively, they may
once again discover that the humble mixing length prescription once again requires only
slight modifications to do a truly excellent job predicting the behavior and evolution of
stars across the Hertzsprung–Russell diagram. In either case, researchers will be driven to
make choices that preserve stellar models’ place as a fundamental pillar of astrophysics.
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Notes
1 Meaning the one-dimensional distance element is taken to be the fractional radius dr, rather than the mass, dm.
2 For discussion of the difference between these criteria and where they are applicable, consider reading e.g., Gabriel et al.

[49], Salaris and Cassisi [50], Anders et al. [51].
3 That is, where entropy is constant.
4 More precisely, it is the lack of an efficiency differential in the convective core that makes the choice of αMLT irrelevant in this

regime.
5 The treatment of core convective boundaries is particularly important for determining whether massive stars will meet the Mcore

criterion for death as a supernova.
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