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Abstract: The discovery of gravitational waves from merging binary black holes has generated
considerable interest in examining whether these black holes could have a primordial origin. If a
significant number of black holes have to be produced in the early universe, the primordial scalar
power spectrum should have an enhanced amplitude on small scales, when compared to the COBE
normalized values on the large scales that is strongly constrained by the anisotropies in the cosmic
microwave background. In the inflationary scenario driven by a single, canonical scalar field, such
power spectra can be achieved in models that permit a brief period of ultra slow roll inflation during
which the first slow roll parameter decreases exponentially. In this review, we shall consider a handful
of such inflationary models as well as a reconstructed scenario and examine the extent of formation
of primordial black holes and the generation of secondary gravitational waves in these cases. We
shall also discuss the strength and shape of the scalar bispectrum and the associated non-Gaussianity
parameter that arise in such situations. We shall conclude with an outlook wherein we discuss the
wider implications of the increased strengths of the non-Gaussianities on smaller scales.

Keywords: inflation; primordial black holes; secondary gravitational waves; non-Gaussianities

1. Introduction

Without a doubt, the inflationary scenario is the most compelling paradigm for over-
coming the horizon problem associated with the hot big bang model and for simultaneously
providing a natural mechanism for generating the perturbations in the early universe (see,
for example, the reviews [1–10]). The simplest of inflationary models involve a single,
canonical scalar field governed by a smooth potential, which typically leads to a long
enough epoch of slow roll inflation to overcome the horizon problem. The perturbations
are induced by the quantum fluctuations associated with the scalar field and they are
expected to turn classical during the later stages of inflation. The increasingly precise
measurements of the anisotropies in the cosmic microwave background (CMB) over the
last couple of decades has led to strong constraints on the primordial scalar and tensor
power spectra on large scales, i.e., over the wave numbers 10−4 . k . 10−1 Mpc−1. The
observations by the Planck mission [11,12] and the BICEP/Keck telescopes [13] constrain
the primordial scalar amplitude AS , the scalar spectral index nS , and the tensor-to-scalar
ratio r at the pivot scale of k∗ = 0.05 Mpc−1 to be: AS = 2.1× 10−9 (a value referred to as
COBE normalization), nS = 0.9649± 0.0042 and r < 0.036 at 95% confidence. In addition to
the constraints on the power spectra, the data from Planck have also led to bounds on the
primordial scalar bispectrum, limiting the values of the corresponding non-Gaussianity
parameters fNL . The Planck data constrain the values of the parameters associated with
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the local, equilateral and orthogonal shapes of the bispectrum to be: f local
NL

= −0.9± 5.1,

f equil
NL = −26± 47 and f ortho

NL
= −38± 24 [14,15]. These constraints suggest that simple slow

roll inflationary models which are consistent with the data at the level of power spectra are
also consistent at the level of scalar bispectra [16,17].

In contrast to the CMB scales, the constraints on the primordial scalar power spec-
trum over the smaller scales are considerably weaker. With the detection of gravitational
waves (GWs) from merging black hole binaries [18–20], there has been interest in the lit-
erature to examine if these black holes could have a cosmological origin [21–25]. It has
been known earlier that, if the amplitude of the primordial perturbations at small scales
are adequately high (when compared to the COBE normalized amplitude over the CMB
scales that we mentioned above), then these perturbations can be expected to collapse and
form black holes when they reenter the Hubble radius during the radiation and matter
dominated epochs (for earlier discussions, see, for example, Refs. [26–28]; also see the
recent reviews [29–34]). However, in simple models of inflation that permit only slow roll,
the amplitude of the scalar power spectrum will remain roughly at (or less than) the COBE
normalized value even at smaller scales. A strong departure from slow roll during the
later stages of inflation is required in order to generate power spectra with an enhanced
amplitude on smaller scales that can produce a significant number of primordial black
holes (PBHs).

In this review, we shall focus on single field models of inflation driven by the canonical
scalar field. In such cases, it has been shown that a short period of ultra slow roll inflation
wherein the first slow roll parameter decreases exponentially results in increased scalar
power over scales that leave the Hubble radius just prior to or during the epoch of ultra
slow roll (for the original discussions, see Refs. [35,36]; in this regard, also see Refs. [37,38];
for recent efforts, see, for example, Refs. [39–49]). We should mention that though the first
slow roll parameter remains small during the period of ultra slow roll, the second and
higher order slow roll parameters turn large during the phase leading to strong departures
from slow roll inflation. Interestingly, it is found that inflationary potentials that contain
a (near) inflection point inevitably lead to a phase of ultra slow roll. Besides, it has been
found that potentials wherein a bump or a dip is added by hand or those that simply
contain a sharp change in slope can also lead to an epoch of ultra slow roll (in this regard,
see, for example, Refs. [50–52]). If inflation has to be terminated after the period of ultra
slow roll, the first slow roll parameter has to steadily rise towards unity. The rapid fall and
a steady rise in the first slow roll parameter leads to a peak in the spectrum of curvature
perturbations whose height is determined by the smallest value attained by the parameter.
Moreover, in such situations, it can be established that the scalar power rises as k4 before it
reaches the peak in the spectrum (for discussions in this regard, see Refs. [53–60]). A large
enough value for the peak in the scalar power spectrum (but less than unity to ensure that
the perturbation theory remains valid) can produce copious amounts of PBHs that can, in
principle, constitute all of cold dark matter today. We shall restrict our discussion in this
review to inflationary models that contain a (near) inflection point in the potential and lead
to an epoch of ultra slow roll.

Interestingly, one finds that, when the curvature perturbations are enhanced over small
scales in order to lead to increased formation of PBHs, they also induce secondary GWs of
significant amplitudes when these wave numbers reenter the Hubble radius during the
radiation dominated epoch (for early discussions, see Refs. [61–64]; for recent discussions,
see, for instance, Refs. [65–69]). In fact, depending on the amplitude and location of the
peak in the spectrum of curvature perturbations, the induced GWs can be of strengths
comparable to the sensitivities of the ongoing and forthcoming GW observatories (for
a summary of the sensitivity curves and their updated versions, see Ref. [70] and the
associated web-page). Moreover, recall that, in slow roll inflation, the non-Gaussianity
parameter fNL that reflects the strength of the scalar bispectrum is of the order of the first
slow roll parameter, which is typically O(10−2) or less (see, for example, Refs. [71–73]).
However, when deviations from slow roll occur, the non-Gaussianities can be considerably



Galaxies 2023, 11, 34 3 of 39

larger (in this regard, see, for instance, Refs. [49,74–78]). The enhanced strengths of non-
Gaussianities can play a crucial role on the extent of PBHs produced (for very early efforts
in this context, see Refs. [79–81]; for recent discussions, see Refs. [51,82–94]) as well as the
strengths of the induced GWs [95–100].

The plan of this review is as follows. In the following section, we shall initially arrive
at the equations of motion governing the background and the perturbations using the
Arnowitt-Deser-Misner (ADM) formalism [101]. We shall then go on to introduce a handful
of inflationary models that contain a near inflection point which permit an epoch of ultra
slow roll inflation. We shall first describe the evolution of the background in such situations.
We shall then discuss the challenges that arise in ensuring that the scalar and tensor power
spectra in these models are consistent with the CMB data on large scales and describe
the manner in which the challenges can be overcome by reverse engineering the desired
potentials. In Sections 3 and 4, we shall discuss the formation of PBHs and the generation
of secondary GWs (during the epoch of radiation domination) in the various models and
scenario of interest. In Section 5, after highlighting a few points related to the third order
action that governs the scalar bispectrum, we shall describe the procedure for numerically
computing the scalar bispectrum. We shall then go on to present the scalar bispectrum
and the associated non-Gaussianity parameter that arise in some of the models that we
consider. Lastly, in Section 6, we shall conclude with an outlook wherein we discuss the
wider implications of the enhanced levels of non-Gaussianities on small scales.

Before we proceed further, let us make a few clarifying remarks regarding the con-
ventions that we shall follow and the notations that we shall use. We shall work with
natural units such that h̄ = c = 1 and set the reduced Planck mass to be MPl = (8 π G)−1/2.
We shall adopt the signature of the metric to be (−,+,+,+). Note that Latin indices will
represent the spatial coordinates, apart from k which will be reserved for denoting the wave
number. Also, an overdot and an overprime will denote differentiation with respect to the
cosmic and conformal time coordinates t and η, respectively. Moreover, a will denote the
scale factor, and the quantities H = ȧ/a andH = a H = a′/a will represent the Hubble and
the conformal Hubble parameters. Further, N will represent the number of e-folds, which
is defined through the relation dN/dt = H. A subscript N will denote the differentiation
with respect to the number of e-folds. Lastly, we shall denote the canonical scalar field that
we shall consider as φ, and a subscript φ will represent differentiation with respect to the
scalar field.

2. Inflationary Models, Power Spectra and Reverse Engineered Potentials

In this section, we shall consider inflation driven by a canonical scalar field and first
discuss the equations governing the background and the perturbations at the linear order.
In contrast to the more common approach of using the zeroth and first order Einstein’s
equations to arrive at the governing equations, we shall arrive at the equations using the
ADM formalism [101]. As we shall see later, the approach proves to be helpful when we
discuss the scalar bispectrum generated in the models of our interest. We shall then go
on to introduce a handful of inflationary models that lead to an epoch of ultra slow roll
inflation and discuss the scalar and tensor power spectra that arise in the models. We shall
illustrate that, in these models, if we desire a sufficiently large peak in the power spectrum
at small scales, there arises a challenge in ensuring that the scalar and tensor power spectra
are consistent with the constraints from the CMB on large scales. In order to circumvent
this difficulty, we shall discuss the method of reverse engineering desired potentials from a
specific form of the first slow roll parameter.

2.1. Arriving at the Equations Governing the Background and the Perturbations at the Linear Order

As we mentioned, to arrive at the equations of motion governing the background and
the perturbations, we shall make use of the ADM formalism [101]. Recall that, in the ADM
formalism, the spacetime metric is expressed in terms of the lapse function N , the shift
vector N i and the spatial metric hij as follows:
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ds2 = −N 2
(

dx0
)2

+ hij

(
N i dx0 + dxi

) (
N j dx0 + dxj

)
, (1)

where x0 and xi denote the time and the spatial coordinates, respectively. We shall assume
that gravitation is described by Einstein’s general theory of relativity. Since we shall be
focusing on the epoch of inflation (to calculate the primordial power and bi-spectra), we
shall assume that gravitation is sourced by a canonical, minimally coupled, scalar field φ,
which is described by the potential V(φ). In such a case, the action describing the complete
system consisting of gravitation and the scalar field can be written in terms of the metric
variables N , N i and hij and the field φ as follows (see, for instance, Refs. [71–73,76,102]):

S [N ,N i, hij, φ] =
∫

dx0
∫

d3xN
√

h

{
M2

Pl

2

[
1
N 2

(
EijEij − E2

)
+(3)R

]

+

[
1

2N 2 (∂0φ)2 − N
i

N 2 ∂0φ ∂iφ +
N iN j

2N 2 ∂iφ ∂jφ

−1
2
hij ∂iφ ∂jφ−V(φ)

]}
, (2)

where ∂0φ = ∂φ/∂x0, h ≡ det. (hij) and (3)R is the curvature associated with the spatial
metric hij. The quantity Eij is given by

Eij =
1
2
(
∂0hij −∇iNj −∇jNi

)
, (3)

with E = hij Eij. Note that the variation of the above action with respect to the Lagrange
multipliers N and N i leads to the so-called Hamiltonian and momentum constraints,
respectively. Upon solving the constraint equations and substituting the solutions back in
the original action (2), we can arrive at the action governing the dynamical variables of
interest up to a given order in the perturbations.

2.1.1. Equations of Motion Describing the Background and the Slow Roll Parameters

We shall assume the background to be the spatially flat, Friedmann-Lemaître-Robertson-
Walker (FLRW) universe described by the following line element:

ds2 = −dt2 + a2(t)dx2 = a2(η)
(
−dη2 + dx2

)
, (4)

where, as we mentioned, t and η denote cosmic and conformal time coordinates. Since we
shall be interested in the situation wherein the FLRW universe is dominated by the canonical
scalar field φ described by the potential V(φ), we can arrive at the action governing the
scale factor a and the homogeneous scalar field φ upon substituting the above line-element
in the ADM action (2). At the leading order—i.e., at the zeroth order, with Ni set to zero
and hij = a2(t) δij—we find that the complete action describing the system is given by

S0[φ(t)] =
∫

dt
∫

d3x a3

[
−

3 M2
Pl

H2

N +
φ̇2

2N −V(φ)

]
. (5)

If we now vary this action with respect to the lapse function N , we arrive at the following
constraint equation upon setting N eventually to unity:

H2 =
1

3 M2
Pl

[
φ̇2

2
+ V(φ)

]
, (6)

which is the first Friedmann equation. On varying the above action with respect to the
scalar field (withN set to unity) leads to the equation of motion for the scalar field given by
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φ̈ + 3 H φ̇ + Vφ = 0. (7)

It is useful to note that the above two equations can be combined to arrive at the equation

Ḣ = − φ̇2

2 M2
Pl

. (8)

The first slow roll parameter is defined as [1–10]

ε1 = − Ḣ
H2 = −HN

H
=

φ̇2

2 H2 M2
Pl

=
φ2

N
2 M2

Pl

. (9)

The higher order slow roll parameters are defined in terms of the first slow roll parameter ε1
through the relations

εn+1 =
d ln εn

dN
(10)

for n ≥ 1. For instance, one can show that the second slow roll parameter can be written as

ε2 =
2 φNN

φN
. (11)

As we shall see, it is the first three slow roll parameters, viz. ε1, ε2, and ε3, that determine
the amplitude and shape of the inflationary power spectrum and bispectrum.

2.1.2. Scalar and Tensor Perturbations, Equations of Motion, Quantization and
Power Spectra

Let us now arrive at the action and the equations of motion governing the scalar and
tensor perturbations using the ADM formalism. To do so, it turns out to be convenient if
we choose to work in a particular gauge. We shall work in the so-called comoving gauge
wherein the perturbation in the scalar field, say, δφ, vanishes identically [71]. In other
words, in the gauge of our choice, the scalar field φ depends only on time. Let the scalar
perturbation be described by the curvature perturbationR and let the tensor perturbation
be characterized by γij. On taking into account these perturbations, it is convenient to
express the spatially flat FLRW metric (4) as [71]

ds2 = −dt2 + a2(t) e2R(t,x)
[
eγ(t,x)

]
ij

dxi dxj. (12)

The assumption for the scalar field φ, the above form of the FLRW metric and the solutions
to the Hamiltonian and momentum constraint equations allow us to arrive at the action
describing the scalar and tensor perturbations R and γij at a given order [71–73]. It can
be shown that, in the comoving gauge of interest, at the quadratic order, the actions
governing the curvature perturbationR and the tensor perturbation γij can be expressed
as [71,72,76,103]

S2[R(η, x)] =
1
2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
, (13a)

S2[γij(η, x)] =
M2

Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 −
(
∂γij

)2
]
, (13b)

where z = a
√

2 ε1 MPl , with ε1 being the first slow roll parameter. The above quadratic
actions will evidently lead to linear equations of motion. In Fourier space, the modes
functions, say, fk and gk, associated with the scalar and the tensor perturbations are found
to satisfy the differential equations
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f ′′k + 2
z′

z
f ′k + k2 fk = 0, (14a)

g′′k + 2
a′

a
g′k + k2 gk = 0, (14b)

respectively.
As we indicated earlier, in the inflationary paradigm, the primordial perturbations

arise due to quantum fluctuations. On quantization, the scalar and tensor perturbationsR
and γij can be elevated to be quantum operators. The operators R̂ and γ̂ij can be decom-
posed in terms of the corresponding mode functions fk and gk—which satisfy the equations
of motion (14)—as follows:

R̂(η, x) =
∫ d3k

(2 π)3/2 R̂k(η) ei k·x

=
∫ d3k

(2 π)3/2

[
âk fk(η) ei k·x + â†

k f ∗k (η) e−i k·x
]
, (15a)

γ̂ij(η, x) =
∫ d3k

(2 π)3/2 γ̂k
ij(η) ei k·x

= ∑
s

∫ d3k
(2 π)3/2

[
b̂s

k εs
ij(k) gk(η) ei k·x + b̂s†

k εs∗
ij (k) g∗k (η) e−i k·x

]
. (15b)

In the expression for the operator describing the tensor perturbations, the quantity εs
ij(k)

represents the polarization tensor of the GWs with their helicity being denoted by the
index s. Moreover, in the above decompositions, the two independent sets of operators
(âk, â†

k) and (b̂s
k, b̂s†

k ) denote the annihilation and creation operators associated with the
scalar and tensor modes corresponding to the wave vector k and helicity s (with the latter
applying to the case of tensors). These operators are governed by the following, standard
commutation relations:

[âk, âk′ ] = [â†
k, â†

k′ ] = 0, [âk, â†
k′ ] = δ(3)

(
k− k′

)
, (16a)

[b̂s
k, b̂s′

k′ ] = [b̂s†
k , b̂s′†

k′ ] = 0, [b̂s
k, b̂s′†

k′ ] = δss′ δ(3)
(
k− k′

)
. (16b)

Note that the transverse and traceless nature of GWs leads to the conditions δij ki εs
jl(k) =

δij εs
ij(k) = 0. We should point our that we shall work with the normalization condition

δij δlm εr
il(k) εs∗

jm(k) = 2 δrs [71].
Often, it proves to be convenient to introduce the so-called Mukhanov-Sasaki variables

to describe the scalar and tensor perturbations. These variables are defined as vk = z fk and
uk = MPl a gk/

√
2 and, in terms of these variables, the equations of motion (14) that govern

the scalar and the tensor perturbations reduce to

v′′k +

(
k2 − z′′

z

)
vk = 0, (17a)

u′′k +

(
k2 − a′′

a

)
uk = 0. (17b)

The scalar and the tensor power spectra, viz. PS(k) and PT(k), are defined through the relations

〈R̂k(ηe) R̂k′(ηe)〉 =
(2 π)2

2 k3 PS(k) δ(3)(k + k′), (18a)

〈γ̂k
ij(ηe) γ̂k′

mn(ηe)〉 =
(2 π)2

2 k3

Πk
ij,mn

4
PT(k) δ(3)(k + k′), (18b)
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where the expectation values on the left hand sides are to be evaluated in the specified
initial quantum state of the perturbations and ηe is the conformal time at late times, close
to the end of inflation. The quantity Πk

ij,mn is given by [104]

Πk
ij,mn = ∑

s
εs

ij(k) εs∗
mn(k). (19)

Typically, the expectation values are evaluated in the vacuum state, say, |0〉, associated with
the quantized perturbations. The state satisfies the conditions âk|0〉 = 0 and b̂s

k|0〉 = 0 for
all wave numbers k and helicity s. The initial state is defined at very early times when all
the scales of cosmological interest are well inside the Hubble radius during inflation and
the quantum state is referred to as the Bunch-Davies vacuum [105]. The scalar and tensor
power spectra PS(k) and PT(k) can be expressed in terms of the mode functions ( fk, gk)
and the associated Mukhanov-Sasaki variables (vk, uk) as follows:

PS(k) =
k3

2 π2 | fk(ηe)|2 =
k3

2 π2
|vk(ηe)|2

z2(ηe)
, (20a)

PT(k) = 4
k3

2 π2 |gk(ηe)|2 =
8

M2
Pl

k3

2 π2
|uk(ηe)|2

a2(ηe)
. (20b)

2.2. A Short List of Models Permitting Ultra Slow Roll Inflation

A wide variety of models which permit an epoch of ultra slow roll inflation have been
considered in the literature (for a short list of such efforts, see Refs. [39–49,106]). Curiously,
many of these models contain a point of inflection, i.e., a point where the first and the second
derivatives of the potential with respect to the scalar field (viz. Vφ and Vφφ = d2V/dφ2)
vanish (in this regard, see Appendix A). We shall consider six of these models and we shall
now briefly describe the models of our interest and the parameters that we shall work with.
For convenience, in our discussions that follow, we shall refer to these models as M1 to
M6. In the introductory section, we had mentioned that the CMB observations strongly
constrain the scalar amplitude, the scalar spectral index and the tensor-to-scalar ratio at the
pivot scale k∗. We shall assume that the pivot scale leaves the Hubble radius N∗ number
of e-folds before the end of inflation. We should point out that, in the absence of detailed
modeling of post-inflationary dynamics, there arises some uncertainty in the choice of N∗
and it is often assumed to lie in the range 50 . N∗ . 60 [11,12,107].

• Model 1: The first of the models that we shall consider, which leads to a period of
ultra slow roll inflation, is described by a potential that can be written in the following
fashion [39]:

V(φ) = V0
6 x2 − 4 α x3 + 3 x4

(1 + β x2)2 , (21)

where x = φ/v, with v being a constant. We shall work with the following choices for
the four parameters that describe the potential: V0 = 4× 10−10 M4

Pl
, v =

√
0.108 MPl ,

α = 1 and β = 1.4349. For these values of the parameters, the (near) inflection point,
say, φ0, is located at 0.39 MPl . (For a discussion on the determination of the inflection
points numerically in the inflationary models being considered, see Appendix A). If
we choose the initial value of the field to be φi = 3.614 MPl and ε1i = 10−3 (which
determines φNi, cf. Equation (9)), we find that inflation lasts for about 63 e-folds in the
model. Also, in this case, we shall set N∗ = 50.

• Model 2: The second potential that we shall consider can expressed in terms of the
quantity x = φ/v that we had introduced in the first model, and is given by [46]

V(φ) = V0
α x2 − β x4 + γ x6

(1 + δ x2)2 . (22)



Galaxies 2023, 11, 34 8 of 39

We shall consider the following set of values for the six parameters involved:
V0 = 1.3253× 10−9 M4

Pl
, v = 10 MPl , α = 8.53× 10−2, β = 0.458, γ = 1 and δ = 1.5092.

For these values of the parameters and the initial conditions φi = 17.245 MPl and
ε1i = 10−2, inflation continues for about 75 e-folds before it is terminated. Also, the
point of inflection is located at φ0 = 1.72 MPl . For this model, we shall choose N∗ = 55.

• Model 3: A potential referred to as the critical Higgs model is given by [42,43,47]:

V(φ) = V0

[
1 + a (ln x)2

]
x4

[1 + c (1 + b ln x) x2]
2 , (23)

where x = φ/µ and we shall set µ = 1 MPl . We shall choose the values of the other
parameters that describe the potential to be V0 = 7.05× 10−8 M4

Pl
, a = 1.694, b = 0.601

and c = 2.850. For these values, the point of inflection occurs at φ0 = 0.820 MPl . The
initial values of the field and the first slow roll parameter are taken to be φi = 8.00 MPl

and ε1i = 10−3. In such a case, we achieve about 103 e-folds of inflation. The pivot
scale is set to exit the Hubble radius at about 70 e-folds before the end of inflation to
achieve the feature at the desired wave number.

• Model 4: The fourth potential that we shall consider is given by [45]

V(φ) = V0

tanh

(
φ√

6 MPl

)
+ A sin

 tanh
[
φ/
(√

6 MPl

)]
fφ


2

(24)

and we shall work with the following values of the parameters involved:
V0 = 2 × 10−10 M4

Pl
, A = 0.130383 and fφ = 0.129576. For these values of the

parameters, we find that a point of inflection arises at φ0 = 1.05 MPl . If we set initial
value of the field to be φi = 6.1 MPl and the first slow roll parameter to be ε1i = 10−3,
we obtain about 66 e-folds of inflation in the model. Also, we shall choose N∗ = 50.

• Model 5: A model constructed from supergravity which permits a period of ultra
slow inflation is described by the potential [45,48]

V(φ) = V0

[
c0 + c1 tanh

(
φ√
6 α

)
+ c2 tanh2

(
φ√
6 α

)
+ c3 tanh3

(
φ√
6 α

)]2
. (25)

We shall work with the following values for the parameters involved: V0 = 2.1×
10−10 M4

Pl
, c0 = 0.16401, c1 = 0.3, c2 = −1.426, c3 = 2.20313 and α = 1 M2

Pl
. This

model too contains a point of inflection and, for the above values for the parameters,
the inflection point is located at φ0 = 0.53 MPl . We find that, for the initial values
φi = 7.4 MPl and ε1i = 10−3, inflation ends after about 68 e-folds. Also, in this case,
we shall set N∗ = 50.

• Model 6: The sixth and last model that we shall consider is motivated by string theory,
and is described by the potential [44]

V(φ) =
W2

0
V3

{
Cup

V1/3 −
CW√
τK3(φ)

+
AW√

τK3(φ)− BW

+
τK3(φ)

V

[
DW −

GW

1 + (RW/V) τ3/2
K3 (φ)

]}
, (26)

where τK3(φ) = exp [2 φ/(
√

3 MPl), W0 = 9.469 M2
Pl

, V = 103, Cup = 0, CW =

0.04, AW = 0.02, BW = 1.00, DW = 0, GW = 3.081× 10−5 V , and RW = 7.071×
10−4 V . To achieve the required duration of inflation, we shall set φi = 10.0 MPl and
ε1i = 2× 10−3. These initial conditions lead to about 68 e-folds of inflation. We shall
set N∗ = 50 to compute the power spectra arising in the model.
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2.3. Evolution of the Background in Ultra Slow Roll Inflation

We shall solve the equations of motion governing the background and the perturba-
tions numerically to arrive at the scalar and tensor power spectra in a given inflationary
model. To make the numerical computation efficient, as is usually done, we shall use
the number of e-folds N as the independent time variable. Note that the first Friedmann
Equation (6) and the equation of motion (7) can be combined to arrive at the following
equation for the scalar field:

φNN +

(
3− φ2

N
2 M2

Pl

)
φN +

(
3 M2

Pl
− φ2

N
2

)
Vφ

V
= 0. (27)

Given the potential describing the scalar field, the values of the parameters and the initial
conditions (viz. φi and ε1i, with the latter determining φNi), we utilize the fifth order Runge-
Kutta method, with an adaptive step size, to evolve the above equation [108,109]. Once the
solution for the scalar field is at hand, all the other background quantities, including the
slow roll parameters, can be expressed in terms of the scalar field and its time derivatives.

Let us now understand the evolution of the background in the inflationary models of
interest. We can gain an overall perspective of the dynamics involved from the behavior of
the field in the phase space φ-φN . In Figure 1, we have presented the phase portrait of the
scalar field for the two models M1 and M2. We should highlight three points regarding the
figure. Firstly, it is clear that the trajectories with different initial conditions quickly merge
with the primary trajectory of interest (viz. the one evolved from the initial conditions
mentioned above). Secondly, independent of the initial conditions, the speed of the scalar
field reduces considerably as it approaches the point of inflection. It is this behavior that is
responsible for the epoch of ultra slow roll inflation in these models. In fact, we find that,
around the point of inflection, certain trajectories with insufficient velocities may stagnate
and not evolve beyond the point. Lastly, the slow roll approximation fails to capture the
dynamics of the field near and beyond the point of inflection.
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φ/M
Pl
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2
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φ
/d

N
)/

M
P

l

M1

0 2 4 6 8 10 12

φ/M
Pl

−2

−1

0

1
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(d
φ
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N
)/

M
P

l

M2

Figure 1. The portrait of the scalar field in the phase space has been illustrated for the two models M1
and M2 (on the left and the right, respectively). We have plotted the trajectories for different initial
conditions (as solid curves in different colors), along with the specific initial conditions (plotted in
red) that we shall be focusing on in our later discussion. For the initial conditions apart from the ones
of our interest, we have considered two values of φNi for each value of φi (plotted in same color). In
the case of the primary trajectory, we have indicated the lapse in time every two e-folds (as black
dots on the red curves). We have identified the point of inflection (with black vertical lines) and we
have also illustrated the evolution arrived at using the standard slow roll approximation (as dotted
blue curves).



Galaxies 2023, 11, 34 10 of 39

In Figure 2, we have plotted the evolution of the first two slow roll parameters in the
six models M1 to M6. Note that all the models permit a short epoch wherein the first slow
roll parameter ε1 decreases rapidly and the second parameter ε2 remains nearly a constant.
In fact, from Equation (7), it is straightforward to establish that, when a slowly rolling field
approaches a regime wherein Vφ ' 0, φ̇ will begin to behave as a−3. This implies that the
first slow roll parameter behaves as ε1 ∝ a−6, thereby leading to ε2 ' −6 during the epoch.
It should be clear from the figure that the first two slow roll parameters indeed roughly
exhibit such a behavior during the epoch of ultra slow roll in all the models of interest.
Interestingly, we find that, in some cases, inflation is briefly interrupted for about an e-fold
or so (a scenario dubbed as punctuated inflation; in this context, see Refs. [49,110,111])
before the epoch of ultra slow roll sets in, and inflation is eventually terminated at a later
stage when the first slow roll parameter crosses unity again.
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100
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M3
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N
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−3

0

2

ε 2

10−10

10−5
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ε 1
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M6
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N

−6

−3

0

2
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Figure 2. The behavior of the first two slow roll parameters ε1 (on top) and ε2 (at the bottom) have
been plotted for the models M1 to M3 (on the left) and for M4 to M6 (on the right). In these plots, we
have indicated the values of ε1 = 1 and ε2 = −6 (in dashed black). We should point out that, when
ε1 crosses unity, inflation is either interrupted (provided ε1 returns to a value smaller than one soon
after) or terminated (if it does not). Note that the value of ε2 = −6 corresponds to the case wherein
Vφ vanishes identically, a point we have discussed in the text.

2.4. Scalar and Tensor Power Spectra in Ultra Slow Roll Inflation

Let us now discuss the numerical evaluation of the scalar and tensor power spectra
(in this context, see Refs. [49,77,78,112–115]). As in the case of the background, we shall
work with e-folds N as the independent time variable. In such a case, the differential
Equation (14) governing the perturbations can be expressed as follows:

f k
NN + (3− ε1 + ε2) f k

N +

(
k

a H

)2
f k = 0, (28a)

gk
NN + (3− ε1) gk

N +

(
k

a H

)2
gk = 0, (28b)

where, for convenience, we have denoted ( fk, gk) as ( f k, gk).
During inflation, the initial conditions on the perturbations are imposed when the

physical wavelengths a/k are well inside the Hubble radius H−1, i.e., when (a H)/k� 1 or,
equivalently, when k/(a H)� 1. In fact, to be precise, the conditions are to be imposed on
the scalar and tensor perturbations when k�

√
z′′/z and k�

√
a′′/a, respectively [77,78].

It should be clear from Equation (17) that, in such a limit, the k2 term will dominate and,
as a result, the Mukhanov-Sasaki variables vk and uk will exhibit oscillatory behavior, i.e.,
they behave in the same manner as they would in Minkowski spacetime. Such a behavior
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should not be surprising. The quantities
√

z′′/z and
√

a′′/a roughly determine the scale
of curvature of the inflationary background and the limits k �

√
z′′/z and k �

√
a′′/a

correspond to the domain wherein the physical wavelengths are much smaller than the
curvature scale. In such a domain, the initial conditions imposed on the Mukhanov-Sasaki
variables vk and uk are given by

vk(ηi) = uk(ηi) =
1√
2 k

e−i k ηi , (29a)

v′k(ηi) = u′k(ηi) = −i

√
k
2

e−i k ηi , (29b)

where ηi denotes an adequately early time when the conditions are imposed. The vacuum
state that is associated with such initial conditions is popularly known as the Bunch-Davies
vacuum [105], as had mentioned earlier. In terms of the mode functions fk and gk, the
above initial conditions correspond to

f k(Ni) =
1√

2 k z(Ni)
, f k

N(Ni) = −
1√

2 k z(Ni)

[
i k

a(Ni) H(Ni)
+

zN(Ni)

z(Ni)

]
, (30a)

gk(Ni) =

√
2

MPl

1√
2 k a(Ni)

, gk
N(Ni) = −

√
2

MPl

1√
2 k a(Ni)

[
i k

a(Ni) H(Ni)
+ 1
]

. (30b)

where zN = dz/dN and we have dropped the overall and unimportant phase factor
exp (−i k ηi) in all the expressions.

Numerically, one finds that it is often sufficient to impose the initial conditions
when k ' 102

√
z′′/z and k ' 102

√
a′′/a on the scalar and tensor perturbations, re-

spectively [49,77,78,112–115]. With the solutions to background at hand, we can evaluate
the coefficients in the Equation (28) governing the perturbations. Starting with the initial
conditions (30), we use the fifth order Runge-Kutta method [109] to evolve the scalar and
tensor perturbations until late times. In simple scenarios involving slow roll inflation,
the amplitudes of the modes quickly approach a constant value soon after they leave
the Hubble radius. Therefore, typically, the spectrum of scalar and tensor perturbations
are evaluated on super-Hubble scales, say, when k ' 10−5

√
z′′/z and k ' 10−5

√
a′′/a.

However, in scenarios that permit a period of ultra slow roll, the amplitudes of the modes
which leave the Hubble radius just prior to or during the epoch of ultra slow roll inflation
can be affected even after they leave the Hubble radius1 Due to these reasons, in the models
of our interest that lead to an epoch of ultra slow roll inflation, we evaluate the scalar and
tensor power spectra close to the end of inflation, well past the epoch of ultra slow roll.

In Figure 3, we have plotted the scalar and tensor power spectra that arise in the
models M1 to M6. While the power spectra are nearly scale invariant over large scales,
clearly, the scalar spectra exhibit a sharp rise in power at small scales. It is interesting to
note that, in contrast to the scalar spectra, the tensor spectra exhibit a suppression of power
over small scales. Evidently, it is the epoch of ultra slow roll inflation that is responsible
for the enhancement in the scalar power at small scales. Apart from the values of the
parameters characterizing the potential, the spectra are also determined by the choice of
the quantity N∗, which is the time when the pivot scale of k∗ = 0.05 Mpc−1 leaves the
Hubble radius. Our choices for the values of the parameters of the potential and N∗ were
guided by the following conditions: (1) there should be significant amplification of power
on small scales and (2) the scalar and tensor power spectra should be consistent with the
constraints from the CMB on large scales. In Table 1, we have listed our choices of N∗ and
the values of the scalar spectral index nS and the tensor-to-scalar ratio r at the pivot scale in
the models M1 to M6. If one compares these values of nS and r with the constraints from
the CMB (viz. that nS = 0.9649± 0.0042 and r < 0.036 [11–13], which we had quoted in
the introductory section), it is clear that, apart from the model M3, all the other models are
rather inconsistent with the CMB data. Either nS is at least 4-σ away from the mean value
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and/or r is larger than the strongest bound from the CMB observations. Even in the case of
M3, we had to choose a large value of N∗ (larger than the typical value of 50 < N∗ < 60)
to achieve a reasonable level of consistency with the CMB data. We should mention that
the values of r that we have obtained in these models can be roughly understood by the
behavior of the potentials over large values of the fields. For instance, in M1, the potential
behaves as V(φ) ∼ φ4/(φ2)2 over large φ, which is asymptotically flat. This leads to a low
value of r, which is typical for a plateau-type potential. On the other hand, in M2, we have
V(φ) ∼ φ2 over large values of φ. Hence, in such a case, we obtain a value of r ∼ 0.2, as
can be expected from a quadratic potential.
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Figure 3. The scalar power spectrum PS (k) (in solid lines) and the tensor power spectrum PT (k) (in
dashed lines) that arise in the models M1 to M6 have been plotted for the parameters and initial
conditions that we have discussed. As expected, all the scalar power spectra exhibit a strong peak on
small scales due to the epoch of ultra slow roll inflation that occurs in these models.

Table 1. The scalar spectral index nS and tensor-to-scalar ratio r, evaluated at the pivot scale of
k∗ = 0.05 Mpc−1, are tabulated for the models M1 to M6. We have also listed the values of N∗ for the
different models that we have worked with to achieve the nS and r mentioned below. Note that, apart
from the case of M3, the other models lead to nS and r that are fairly inconsistent with the CMB data.

Models M1 M2 M3 M4 M5 M6

N∗ 50 55 70 50 50 50
nS 0.945 0.946 0.956 0.933 0.936 0.940
r 0.015 0.244 0.041 0.011 0.012 0.017

2.5. Reverse Engineering Desired Potentials

We have seen that, while the models M1 to M6 lead to an epoch of ultra slow roll
inflation and to a strong peak in the scalar power spectrum on small scales, they generate
primordial spectra that are not consistent with the CMB data on large scales. Actually, the
hurdle seems to crop up in most single field models involving the canonical scalar field
wherein ultra slow roll inflation is achieved with the aid of a (near) inflection point in the
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potential. When one attempts to modify the parameters so that the spectra are consistent
with the CMB data, two challenges are encountered. Either there arises a prolonged
duration of inflation or the power at small scales is not enhanced significantly. Moreover, in
such models, it proves to be difficult to shift the location of the peak in the power spectrum.
In particular, when the peak is higher and is closer the CMB scales, the inconsistency with
the CMB data turns out to be greater.

A method to overcome these difficulties in canonical, single field models of inflation is
to reverse engineer potentials that simultaneously lead to spectra that are consistent with
the constraints from the CMB on large scales and produce significant power on small scales
(for discussions in this context, see Refs. [49,53,59,120,121]). In order to do so, one begins
with the desired functional form of the first slow roll parameter ε1(N), i.e., one that admits
a brief period of ultra slow roll after an initial epoch of slow roll, before the termination
of inflation. Given ε1(N), from the definition (9) of the first slow roll parameter, we can
express the time evolution of the scalar field φ(N) and the Hubble parameter H(N) in
terms of the following integrals:

φ(N) = φi −MPl

∫ N

Ni

dN
√

2 ε1(N), (31a)

H(N) = Hi exp
[
−
∫ N

Ni

dN ε1(N)

]
, (31b)

where φi and Hi are the values of the scalar field and the Hubble parameter specified at
some initial e-fold Ni. In other words, if the initial conditions φi and Hi are provided,
the functional form of ε1(N) completely determines φ(N) and H(N). It is easy to show
that, using the Friedmann equation (6) and the definition of the first slow roll parameter,
the potential V(N) can be expressed in terms of H(N) and ε1(N) as

V(N) = M2
Pl

H2(N) [3− ε1(N)]. (32)

Therefore, using ε1(N) and H(N), we can construct V(N) as well. Also, as should be clear
from the above equation, we require Hi to determine the overall amplitude of the potential.
With φ(N) and V(N) at hand, we can then construct the potential V(φ) parametrically.
We should add that, once we have φ(N) and H(N), all the other background quantities
can be computed using them.

We shall consider the following form for ε1(N) which leads to an intermediate epoch
of ultra slow roll inflation for suitable choice of the parameters involved [49]:

ε1(N) = [ε1a (1 + ε2a N)]

[
1− tanh

(
N − N1

∆N1

)]
+ ε1b + exp

(
N − N2

∆N2

)
. (33)

Given such a form for ε1, apart from arriving at the potential describing the background,
we can determine the coefficients in Equation (28) and evolve the perturbations from the
initial conditions (30) to eventually arrive at the scalar and tensor power spectra. Let us
clarify a few points regarding the parameters (ε1a, ε2a, N1, ∆N1, ε1b, N2, ∆N2) that appear
in the above expression for ε1(N). The first term within the square brackets containing
the parameters ε1a and ε2a leads to an initial epoch of slow roll inflation. We can choose
these two parameters suitably so that the resulting scalar and tensor power are consistent
with the CMB data on large scales. The hyperbolic tangent function in the first term
helps us achieve the epoch of ultra slow roll, which sets in at N1 when counted from an
initial e-fold Ni and the transition from slow roll to ultra slow roll inflation occurs over a
duration ∆N1. The parameter ε1b corresponds to the value of the first slow roll parameter
at the end of the regime of ultra slow roll. The exponential function in the last term leads
to a rise in the first slow parameter leading to an end of inflation. Inflation ends at the
e-fold N2 and the parameter ∆N2 regulates the duration between the end of ultra slow roll
and the termination of inflation. Apart from the values of these parameters, we need to
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provide the initial value of Hi which influences the overall amplitude of the potential and
hence the power spectra. We work with the following values of the parameters involved:
Hi = 8.5× 10−6 MPl , ε1a = 7.38× 10−5, ε2a = 9× 10−2, ε1b = 1.7× 10−10, N2 = 72 and
∆N2 = 5.5× 10−1. We vary N1 and ∆N1 over the ranges [41, 55] and [0.31, 0.32], respectively,
to illustrate their effects on the background quantities and hence on the observables.

In Figures 4 and 5, we have plotted the evolution of the first two slow roll parameters
and the resulting scalar and tensor power spectra. In fact, we have plotted these quantities
over the range of N1 and ∆N1 that we mentioned above. Note that the first two slow roll
parameters broadly behave in the same manner as they did in the case of the models M1 to
M6. For the values of the parameters we have worked with, the amplitude of the scalar
power spectrum at the pivot scale of k∗ = 0.05 Mpc−1 proves to be AS = 2.10× 10−9.
Also, we find that the scalar spectral index and the tensor-to-scalar ratio are given by
nS = 0.968 and r = 1.18× 10−3, which are consistent with the CMB data. It is the additional
parameters that are available in the parametrization of ε1(N) which permit us to arrive
at spectra that are consistent with the CMB observations. We should also point out that,
surprisingly, in complete contrast to the scalar power spectrum, the tensor power spectrum
is nearly scale invariant and does not contain any feature at all.
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Figure 4. The behavior of the first two slow roll parameters ε1 (on top) and ε2 (at the bottom) are
presented for the scenario wherein ε1(N) is given by Equation (33). We have plotted the slow roll
parameters over a range of N1 varied in steps of two e-folds (on the left) and ∆N1 (on the right).
While the effects of the variation in N1 are evident in the figure, the effects of the variation of ∆N1

are not so visible. Hence, we have included insets (on the right) to highlight the minor differences
that arise in the parameters. Clearly, the slow roll parameters in the reconstructed scenario behave
broadly in the same fashion as in the six, specific inflationary models we have considered.
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Figure 5. The scalar power spectra PS (k) (in solid lines) and the tensor power spectra PT (k) (in
dashed lines) that arise in the reconstructed scenario have been plotted for a range of N1 (on top)
and ∆N1 (at the bottom). It should be clear (from the figure on top) that, earlier the onset of ultra
slow roll, broader is the peak in the scalar power spectra. Also, for the effects due to the variation
in ∆N1 to be distinguishable, we have illustrated (in the figure at the bottom) the relative change in
the scalar power spectrum with respect to the spectrum corresponding to the maximum value of
∆N1 that we have considered (viz. ∆N1 = 0.320). We have also indicated the wave number where
the peak is located in the spectra (in dashed black). We find that, for a given value of N1 (in this
case, N1 = 41), a reduction in ∆N1 leads to an increase in the amplitude of power over the range
containing the rise and the peak in the spectrum.
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3. Formation of PBHs in the Radiation Dominated Epoch

In this section, we shall discuss the extent of PBHs that are formed due to the en-
hanced power in the scalar spectra on small scales. Specifically, we shall be interested in
calculating the function fPBH(M), which describes the fractional contribution of PBHs to the
dimensionless parameter Ωc that describes the density of cold matter today, as a function of
the mass M of the PBHs.

Recall that scales with wave numbers k & 10−2 Mpc−1 renter the Hubble radius dur-
ing the radiation dominated epoch. Once these scales are inside the Hubble radius, the
perturbations in the matter density at the corresponding scales collapse to form structures.
Let the density contrast in matter be characterized by the quantity δ. The matter power spec-
trum Pδ(k) during the radiation dominated epoch is related to the scalar power spectrum
PS(k) generated during inflation though the relation [79]

Pδ(k) =
16
81

(
k

aH

)4
PS(k). (34)

As we shall see, the fraction of PBHs formed when matter collapses after the modes reenter
the Hubble radius is determined by the quantity σ2(R), which represents the variance
in the spatial density fluctuations that has been smoothed over a length scale R. The
variance σ2(R) smoothed with the aid of the window function W(k R) is defined as [79]

σ2(R) =
∫ ∞

0

dk
k

Pδ(k)W2(k R). (35)

In our discussion below, we shall work with the following Gaussian form for the window
function: W(k R) = exp [−(k2 R2)/2].

As we mentioned, our aim will be to arrive at the number of PBHs formed as a function
of their mass. To do so, we need to relate the mass M of the PBHs to the smoothing scale R
that we have introduced through the window function. If MH represents the mass within
the Hubble radius H−1 at a given time, it seems reasonable to assume that a certain fraction
of the total mass goes on to form PBHs. Let the parameter γ reflect the efficiency of the
collapse of the density contrast to form PBHs. In such a case, when a scale with wave
number k reenters the Hubble radius, we can express the mass of the PBHs formed to be
M = γ MH. Since no other scale is present, it seems reasonable to set k = R−1 and use the
fact that k = a H when the perturbation with wave number k reenters the Hubble radius,
to obtain the relation between R and M. It can be easily shown that R and M are related
as follows:

R =
21/4

γ1/2

(
g∗,k
g∗,eq

)1/12 ( 1
keq

)(
M

Meq

)1/2
, (36)

where keq denotes the wave number that reenters the Hubble radius at the time of radiation-
matter equality, and the quantity Meq represents the mass within the Hubble radius at
equality. Moreover, the quantities g∗,k and g∗,eq denote the effective number of relativistic
degrees of freedom at the times of PBH formation and radiation-matter equality, respec-
tively. One finds that Meq = 5.83× 1047 kg and using this result, the above relation between
R and M can be expressed in terms of the solar mass M� as follows:

R = 4.72× 10−7
( γ

0.2

)−1/2
(

g∗,k
g∗,eq

)1/12 ( M
M�

)1/2
Mpc. (37)

Given an inflationary scalar power spectrum PS(k), we can make use of the relations (34),
(35) and (37) to compute the quantity σ2(M). In Figure 6, we have illustrated the variance
σ2(M) corresponding to the scalar power spectra that arise in the inflationary models M1
to M6. As can be expected, the variance exhibits peaks over smoothing scales corresponding
to the wave numbers containing the peaks in the scalar power spectra, i.e., at R ' k−1

(cf. Figure 3).
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Figure 6. The variance σ2(M) of the density fluctuations has been plotted as a function of the mass M
of the PBHs for the inflationary models M1 to M6.

To calculate the number of PBHs produced, we shall assume that the density contrast δ
is a Gaussian random variable described by the probability density

PM(δ) =
1√

2 π σ2(M)
exp

[
− δ2

2 σ2(M)

]
. (38)

The quantity σ2(M) in this expression is the variance of the density fluctuations smoothed
over the scale R that we introduced above, with R and M being related by Equation (37). Let
us further assume that perturbations with a density contrast beyond a certain threshold, say,
δc, go on to form PBHs. In such a case, the fraction, say, β(M), of the density fluctuations
that collapse to form PBHs is described by the integral (in this context, see the reviews [29–32])

β(M) =
∫ 1

δc

dδPM(δ) ' 1
2

{
1− erf

[
δc√

2 σ2(M)

]}
, (39)

where erf(z) denotes the error function. We should stress here that the quantity β(M) is
exponentially sensitive to the choice of the threshold value of the density contrast δc, as
much as it is to variance σ2(M). Importantly, the choice of δc is not unique and, actually, it
can depend on the amplitude of the perturbation at a given scale as well as on the epoch
of formation of the PBHs (for early discussions in this context, see Refs. [26,122]; for some
recent discussions, see Refs. [31,89,123–126]). In our results that we present below, we
shall work with δc = 0.45 (for further details in this regard, see Refs. [127–129], especially
Ref. [129]).

On using the arguments presented above and propagating the density of PBHs pro-
duced to the current epoch, we find that the quantity fPBH(M) can be written as

fPBH(M) = 21/4 γ3/2 β(M)

(
Ωm h2

Ωc h2

)(
g∗,k
g∗,eq

)−1/4 ( M
Meq

)−1/2
, (40)

where Ωm and Ωc are the dimensionless parameters describing the matter and cold matter
densities, with the Hubble parameter expressed as H0 = 100 h km sec−1 Mpc−1. In our
estimates of fPBH(M), we shall choose γ = 0.2, g∗,k = 106.75 and g∗,eq = 3.36. We shall
also set Ωm h2 = 0.14 and Ωc h2 = 0.12, which are the best fit values from the recent
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Planck data [130,131]. On substituting these values, we arrive at the following expression
for fPBH(M):

fPBH(M) =
( γ

0.2

)3/2
(

β(M)

1.46× 10−8

)(
g∗,k
g∗,eq

)−1/4 ( M
M�

)−1/2
. (41)

As we have discussed, given an inflationary scalar power spectrum PS(k), the relations (34),
(35) and (37) can be utilized to arrive at the variance σ2(M). Once we have obtained σ2(M),
we can evaluate the quantity β(M) using the expression (39). Finally, we can use the
relation (41) to arrive at fPBH(M). In Figures 7 and 8, we have plotted the quantity fPBH(M)
in the different inflationary models and the reconstructed scenario that we discussed in the
previous section. We have also included the constraints from the different observations in
the figure, which correspond to a monochromatic spectrum of PBHs (in this regard, see the
discussions in Refs. [33,132–134] and references therein). In the case of the reconstructed
scenario, we have plotted the quantity fPBH(M) for a range of values of N1 and ∆N1.
Recall that, while N1 denotes the e-fold at which the phase of ultra slow roll sets in, ∆N1
determines the duration of the transition from the initial slow roll phase to the ultra slow
roll epoch. We find that, among the six inflationary models we have considered, it is only
the inflationary models M2 and M6 that produce a significant number of PBHs. In the
reconstructed scenario with varied values of N1, the peaks in fPBH(M) roughly behave as
M−1/2, as can be expected from the relation (41) for a constant amplitude of β(M) that is
shifted only by the mass M. This is a direct consequence of delaying the onset of ultra slow
roll to later and later stages of inflation while retaining a fixed amplitude and shape of the
scalar power spectrum PS(k).
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Figure 7. The fraction of PBHs fPBH (M) that constitute the cold dark matter density in the current
universe has been plotted for the inflationary models of interest. We had mentioned that the quantity
fPBH (M) is very sensitive to the value of δc. We find that, for the choice of δc = 0.45, it is only the
inflationary models M2 and M6 that lead to substantial formation of PBHs. In the figure, we have
also included the constraints from the different observations, corresponding to a monochromatic
spectrum of PBHs.



Galaxies 2023, 11, 34 19 of 39

41

43

45

47

49

51

53

55

N
1

1011 1016 1021 1026 1031 1036 1041 1046
M/kg

10−15 10−10 10−5 100 105 1010 1015

M/M�

10−10

10−8

10−6

10−4

10−2

100

f P
B

H
(M

)

CMB

GGB

EGB

V

GC
WD

NS

HSC

K

O

E
I

SN

PA

R
X

S1

n/p

µ

XB

Eri

Ly-α

WB

DF

M

LSS

DH

GC

RS

G

GW2

IL

0.310

0.312

0.314

0.316

0.318

0.320

∆
N

1

1011 1016 1021 1026 1031 1036 1041 1046
M/kg

10−15 10−10 10−5 100 105 1010 1015

M/M�

10−10

10−8

10−6

10−4

10−2

100

f P
B

H
(M

)

CMB

GGB

EGB

V

GC
WD

NS

HSC

K

O

E
I

SN

PA

R
X

S1

n/p

µ

XB

Eri

Ly-α

WB

DF

M

LSS

DH

GC

RS

G

GW2

IL

Figure 8. The quantity fPBH (M) that arises in the reconstructed scenario has been plotted for different
values of N1 (on the left) and ∆N1 (on the right). As N1 is varied, we find that the peaks of fPBH (M)

behave as M−1/2 (indicated in dashed teal) for reasons explained in the text. The increase in ∆N1,
with a fixed value of N1 = 41, results in drastic reduction in the amplitude of fPBH (as shown in
the figure on the right). This can be attributed to the fact that an increase in ∆N1 leads to a gentler
transition from slow roll to ultra slow roll inflation, and hence to a smaller height of the peak in
the power spectrum. We have also included the constraints from the different observations, as in
the previous figure. Note that the quantity fPBH (M) depends exponentially on the amplitude of the
scalar power spectrum. Hence, despite the wide peaks in the scalar power spectra (cf. Figure 5), the
shape of fPBH (M) proves to be rather narrow. Due to this reason, we believe that the constraints for
the monochromatic power spectra (which we have indicated in the figure) also apply well to the
situations of our interest.

4. Generation of Secondary GWs in the Radiation Dominated Epoch

In Section 2, we had discussed the evolution of the scalar and tensor perturbations
during inflation. We had seen that, at the linear order in the perturbations (or, equivalently,
at the quadratic order in the action), the scalar and tensor perturbations evolve indepen-
dently (cf. Equations (13) and (14)), a result that is often referred to as the decomposition
theorem. But, when the perturbations at the second order are taken into account, one
finds that the second order scalar perturbations can source the tensor perturbations (for
the original discussions in this context, see Refs. [61–64]). Such a phenomenon becomes
important particularly in the scenarios involving ultra slow roll inflation that we have
considered. The enhanced scalar power on small scales can source the tensor perturbations
to such an extent that the strength of the induced, secondary GWs can be significantly
larger than the amplitude of the primary GWs generated during inflation. In this section,
our aim will be calculate the dimensionless spectral energy density of the secondary GWs,
say, ΩGW , induced by the scalar perturbations in the inflationary models and reconstructed
scenario of interest. Specifically, we shall focus on the situation wherein the secondary
GWs are generated when the scales of interest have reentered the Hubble radius during
the radiation dominated era. As we shall see, interestingly, in many situations, the spectral
energy density of the secondary GWs generated in such a manner can be comparable to the
sensitivity curves of some of the ongoing as well as forthcoming GW observatories (in this
regard, see, for instance, Refs. [70,135,136] and references therein).

We shall first sketch the essential arguments for calculating the quantity ΩGW( f ),
where f is the frequency associated with the wave number k that can be determined by the
relation

f =
k

2 π
= 1.55× 10−15

(
k

1 Mpc−1

)
Hz. (42)
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For simplicity, we shall assume that the anisotropic stresses are absent during the era
of radiation domination. In such a case, the scalar perturbations at the first order can
be described by the Bardeen potential, say, Φ. Recall that, earlier, we had represented
the first order tensor perturbations as γij (cf. Equation (12)). In order to distinguish the
first and the second order tensor perturbations, we shall denote the second order tensor
perturbations as hij

2. On taking into account the first order scalar and the second order
tensor perturbations, the FLRW line-element can be written as

ds2 = a2(η)

{
−(1 + 2 Φ)dη2 +

[
(1− 2 Φ) δij +

1
2

hij

]
dxidxj

}
. (43)

Let hk denote the Fourier modes associated with the second order tensor perturba-
tions. In terms of the mode functions hk, the tensor perturbations hij can be decomposed
as follows:

hij(η, x) =
∫ d3k

(2 π)3/2

[
e+ij (k) h+k (η) + e×ij (k) h×k (η)

]
ei k·x, (44)

where quantities e+ij (k) and e×ij (k) denote the polarization tensors. As in the case of the first
order tensor perturbations γij, the second order tensor perturbations hij too are transverse
and traceless, i.e., they satisfy the conditions δij ki eλ

jl = δij eλ
ij = 0. The transverse nature

of the tensor perturbations implies that the polarization tensors have non-zero compo-
nents only in the plane perpendicular to the direction of propagation k̂. The polarization
tensors e+ij (k) and e×ij (k) can be expressed in terms of the set of orthonormal unit vectors

(e(k), ē(k), k̂) in the following manner (for a discussion on this point, see, for example, the
review [137]):

e+ij (k) =
1√
2

[
ei(k) ej(k)− ēi(k) ēj(k)

]
, (45a)

e×ij (k) =
1√
2

[
ei(k) ēj(k) + ēi(k) ej(k)

]
. (45b)

The orthonormal nature of the vectors e(k) and ē(k) lead to the normalization condi-
tion: δil δjm eλ

ij(k) eλ′
lm(k) = δλλ′ , where λ and λ′ can represent either of the two states of

polarization + or ×.
Let us now turn our attention to the equation of motion governing the modes func-

tions hk. The equation of motion can be arrived at using the second order Einstein equations
describing the tensor perturbations hij and the Bardeen equation describing the scalar per-
turbation Φ at the first order (for the initial discussions, see Refs. [61,62]; for some of
the recent discussions, see Refs. [66,138–140]). It can be shown that, during the radiation
dominated epoch, the equation governing hk can be written as

hλ
k
′′
+

2
η

hλ
k
′
+ k2 hλ

k = Sλ
k , (46)

where the quantity Sλ
k denotes the source due to the scalar perturbations. The source

term Sλ
k is given by

Sλ
k(η) = 4

∫ d3 p
(2 π)3/2 eλ(k, p)

{
2 Φp(η)Φk−p(η)

+
[
Φp(η) + η Φ′p(η)

] [
Φk−p(η) + η Φ′k−p(η)

]}
, (47)

where Φk represents the Fourier modes associated with the Bardeen potential and, for
convenience, we have defined the quantity eλ(k, p) = eλ

ij(k) pi pj. As is well known, during
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the epoch of radiation domination, we can express the Fourier modes Φk of the Bardeen
potential in terms of the Fourier modesRk of the curvature perturbations generated during
inflation through the relation

Φk(η) =
2
3
T (k η)Rk, (48)

where T (k η) is the transfer function given by

T (k η) =
9

(k η)2

 sin
(

k η/
√

3
)

k η/
√

3
− cos

(
k η/
√

3
). (49)

If we make use of the Green’s function corresponding to the tensor modes during radiation
domination, we find that we can express the inhomogeneous contribution to hλ

k as [66]

hλ
k(η) =

4
9 k3 η

∫ d3 p
(2 π)3/2 eλ(k, p)RkRk−p

×
[
Ic

(
p
k

,
|k− p|

k

)
cos(k η) + Is

(
p
k

,
|k− p|

k

)
sin(k η)

]
, (50)

where the quantities Ic(v, u) and Is(v, u) are described by the integrals

Ic(v, u) = −4
∫ ∞

0
dτ τ sin τ

{
2 T (v τ) T (u τ)

+ [T (v τ) + v τ Tvτ(v τ)] [T (u τ) + u τ Tuτ(u τ)]

}
, (51a)

Is(v, u) = 4
∫ ∞

0
dτ τ cos τ

{
2 T (v τ) T (u τ)

+ [T (v τ) + v τ Tvτ(v τ)] [T (u τ) + u τ Tuτ(u τ)]

}
, (51b)

with Tz = dT /dz. Upon utilizing the transfer function (49), these integrals can be calculated
analytically to obtain that (see, for example, Refs. [65,66])

Ic(v, u) = − 27 π

4 v3 u3 Θ
(

v + u−
√

3
)
(v2 + u2 − 3)2, (52a)

Is(v, u) = − 27
4 v3 u3 (v2 + u2 − 3)

[
4 v u + (v2 + u2 − 3) log

∣∣∣∣3− (v− u)2

3− (v + u)2

∣∣∣∣], (52b)

where Θ(z) denotes the theta function. It is useful to note that Ic,s(v, u) = Ic,s(u, v).
The power spectrum of the secondary GWs, say, Ph(k, η), generated due to the second

order scalar perturbations can be defined through the relation

〈hλ
k(η) hλ′

k′ (η)〉 =
2 π2

k3 Ph(k, η) δ(3)(k + k′) δλλ′ . (53)

It should be evident that, because the quantity hλ
k involves products of the Fourier modes

Rk andRk−p of the curvature perturbations generated during inflation (see Equation (50)),
the power spectrum Ph(k) of the secondary GWs will involve products of four such
variables. If we assume that the Fourier modes of the curvature perturbations are Gaussian
random variables, we can express the four-point function involving Rk in terms of the
two-point functions, i.e., in terms of the the inflationary scalar power spectrum PS(k)
(cf. Equation (18a)). Equivalently, it can be said that, since the expectation value in the
definition (53) of the secondary tensor power spectrum has to be evaluated in the Bunch-
Davies vacuum, the four-point function of the curvature perturbations can be expressed in
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terms of the two-point functions using Wick’s theorem. Upon doing so, we can arrive at
the following expression for the secondary tensor power spectrum:

Ph(k, η) =
4

81 k2 η2

∫ ∞

0
dv

∫ 1+v

|1−v|
du
[

4 v2 − (1 + v2 − u2)2

4 u v

]2

PS(k v)PS(k u)

× [Ic(u, v) cos(k η) + Is(u, v) sin(k η)]2. (54)

The trigonometric functions in this expression arise because of the form of the transfer
function T (k η) (cf. Equation (49)). They reflect the fact that the Bardeen potentials Φk
oscillate when the corresponding scales are inside the Hubble radius during the radiation
dominated epoch. On averaging the secondary tensor power Ph(k, η) over small time
scales, we can replace the trigonometric functions in the above expression by their average
over a time period. In such a case, only the overall time dependence remains, leading
to [65,66]

Ph(k, η) =
2

81 k2 η2

∫ ∞

0
dv

∫ 1+v

|1−v|
du
[

4 v2 − (1 + v2 − u2)2

4 u v

]2

PS(k v)PS(k u)

×
[
I2

c (u, v) + I2
s (u, v)

]
, (55)

where the line over Ph(k, η) implies that we have averaged over small time scales. The
energy density of GWs associated with a Fourier mode corresponding to the wave number k
(i.e., the spectral energy density of GWs) at a time η is given by [137]

ρGW(k, η) =
M2

Pl

8

(
k
a

)2
Ph(k, η). (56)

We can define the corresponding dimensionless density parameter ΩGW(k, η) in terms of
the critical density ρcr(η) as [66]

ΩGW(k, η) =
ρGW(k, η)

ρcr(η)
=

1
24

(
k
H

)2
Ph(k, η) =

k2 η2

24
Ph(k, η), (57)

where, in the final expression, we have made use of the fact that H = 1/η in radiation
domination era. Note that, since Ph(k, η) ∝ η−2, the dimensionless spectral energy density
ΩGW(k, η) is actually independent of time.

The dimensionless spectral density of GWs above has been calculated during the late
stages of the epoch of radiation domination, when all the scales of interest are inside the
Hubble radius. In such a domain, the energy density of GWs decreases in the same fashion
as the energy density of radiation (i.e., as a−4). Utilizing this behavior, we can express the
dimensionless spectral energy density of GWs today, i.e., ΩGW(k), in terms of the ΩGW(k, η)
above in the following manner

h2 ΩGW(k) =

(
g∗,k
g∗,0

)−1/3
Ωr h2 ΩGW(k, η)

' 1.38× 10−5
( g∗,k

106.75

)−1/3
(

Ωr h2

4.16× 10−5

)
ΩGW(k, η). (58)

In this expression, Ωr and g∗,0 denote the dimensionless energy density of radiation and
the number of relativistic degrees of freedom today. In Figures 9 and 10, we have plotted
the quantity ΩGW as a function of the frequency f in the six inflationary models and the
reconstructed scenario we have considered. We have also included the sensitivity curves
of the different ongoing as well as forthcoming GW observatories in the figures (in this
context, see, for example, Refs. [70,135,136,141,142]). It is clear that all the models and the
reconstructed scenario lead to GW spectral densities that are comparable to the sensitivity
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curves of the different observatories. This gives us hope that the imprints of non-trivial
dynamics during the late stages of inflation can either be detected or, at the least, strongly
constrained with the aid of GW observations set to emerge over the coming decade or two.
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Figure 9. The dimensionless spectral density of secondary gravitational waves today, viz. ΩGW ( f ),
arising in the inflationary models M1 to M6 has been plotted as function of the frequency f . On
the top part of the figure, we have also included the sensitivity curves of the various ongoing and
forthcoming GW observatories. It is clear that, in all the models we have considered, the strengths
of the secondary GWs are comparable to the sensitivity curves of one or more of the observatories
suggesting that it should be possible to detect such signals in the future.
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Figure 10. The dimensionless spectral density of secondary GWs ΩGW ( f ) that arise in the recon-
structed scenario has been plotted for a range of N1 (on the left) and ∆N1 (on right). Clearly, smaller
the N1, longer is the epoch of ultra slow roll and wider is the peak in ΩGW ( f ). In contrast, the
variation in ∆N1 (at least over the range we have considered) does not alter the shape of ΩGW ( f )
appreciably. We should mention that these spectra of different shapes are consistent with the current
bounds on on h2 ΩGW due to BBN. Even for the spectrum with widest of peaks, upon integration
over all frequencies, the dimensionless density of GWs turns out to be about 1.40× 10−8. This value
is substantially lower than the corresponding BBN bound of around 10−6 (in this context, see, for
instance, Refs. [143,144]).
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5. Non-Gaussianities on Small Scales

As we have seen, the onset of ultra slow roll leads to strong departures from slow
roll inflation with the second slow roll parameter ε2 (as well as the higher order slow roll
parameters) attaining rather large values. It is the strong departure from slow roll that
results in sharp features in the scalar power spectrum, such as the peak with significantly
enhanced power that we have discussed earlier. We should clarify that, we have chosen
the parameters of the inflationary potentials and the reconstructed scenario so that the
ultra slow roll phase sets in during the latter stages of inflation (after the wave numbers
corresponding to the CMB scales have left the Hubble radius) and the peak occurs at
small scales.

In fact, there has been a constant effort in the literature to investigate if certain features
in the inflationary scalar power spectrum provide a better fit to the CMB data than the
more standard, nearly scale invariant spectrum (see the recent efforts [78,145,146] and
references therein). Often, these features are generated due to moderate departures from
slow roll inflation. However, we should point out that strong departures such as those
occur in ultra slow roll inflation have been considered to suppress the power on the
largest scales (comparable to the Hubble radius today) so as to improve the fit to the lowest
multipoles in the CMB data [78,110,111]. In slow roll inflation involving the canonical scalar
field, typically, the non-Gaussianities generated are rather small with the dimensionless
parameter fNL (defined below in Equation (67)) that reflects the amplitude of the scalar
bispectrum being of the order of the first slow roll parameter ε1 [71–73,77,78]. But, when
departures from slow roll occur, it is known that the amplitude of the scalar bispectrum and
the associated non-Gaussianity parameter can be considerably larger [73,77,78]. Moreover,
while the scalar bispectrum has an equilateral shape in slow roll inflation, the shape can
be considerably different when deviations from slow roll occur. These suggest that the
epoch of ultra slow roll inflation that we have considered to enhance power on small scales
can also be expected to generate significant levels of non-Gaussianities with characteristic
shapes [78].

In this section, we shall compute the scalar bispectrum and the associated non-
Gaussianity parameter for two of the inflationary models that we have discussed earlier.
However, before we go on to present these results, we shall first describe the third order
action that governs the curvature perturbations and the numerical method we shall adopt
to compute the scalar bispectrum.

5.1. The Complete Third Order Action Governing the Scalar Bispectrum

Let us begin by recalling a few necessary points regarding the scalar bispectrum. Just
as the power spectrum characterizes the two-point function of the perturbations in Fourier
space, the bispectrum describes corresponding three-point function. The scalar bispectrum,
say, BS(k1, k2, k3), is defined in terms of the operator R̂k (that we had introduced earlier in
Equation (15a)) as follows [14,15]:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2 π)3 BS(k1, k2, k3) δ(3)(k1 + k2 + k3), (59)

where ηe is a time close to the end of inflation and the expectation value on the left hand
side is to be evaluated in the perturbative vacuum [71,72,75]. Note that the delta function
that appears in the above definition implies that the three wave vectors (k1, k2, k3) form
the edges of a triangle. Hence, it is only two of the vectors that are truly independent and,
it is for this reason the quantity BS(k1, k2, k3) is referred to as the bi-spectrum. Hereafter,
for convenience, we shall set

BS(k1, k2, k3) = (2 π)−9/2 G(k1, k2, k3) (60)

and refer to G(k1, k2, k3) as the scalar bispectrum.
Conventionally, in quantum field theory, the correlation functions beyond the two-

point functions that describe the fields are often calculated using perturbative methods.
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As is well known, the three-point function associated with a field can be expected to be
non-zero if the action governing the field of interest contains a cubic order term. The same
approach can be utilized to calculate the scalar bispectrum generated during inflation (for
the original discussions in this context, see Refs. [71–73]). Evidently, in order to do so, one
first requires the action describing the curvature perturbation at the third order. With such
an action at hand, one can use the standard methods of perturbative quantum field theory
to arrive at the scalar bispectrum.

Recall that, in Section 2, we had arrived at the action and the equations of motion
governing the background as well as the scalar and tensor perturbations using the ADM
formalism. Starting from the original action (2) that governs the system of the gravitational
and scalar fields and the line-element (12), the third order action describing the curvature
perturbation can arrived at in the same manner [71–73,76]. In fact, a set of temporal and
spatial boundary terms arise in the process, when the action is repeatedly integrated by
parts to simplify its form. One can easily establish that, due to the triangularity condition
on the wave vectors (k1, k2, k3), the spatial boundary terms do not contribute to the scalar
bispectrum under any condition. However, some of the temporal boundary terms can
contribute to the scalar bispectrum even in the simple case of slow roll inflation [102]. It
can be shown that, at the third order, the action governing the curvature perturbationR
can be expressed as (see, for instance, Refs. [71,72,76,102])

S3[R] = M2
Pl

∫
dη
∫

d3x
[

a2 ε2
1RR′2 + a2 ε2

1R (∂R)2 − 2 a ε1R′ (∂R) (∂χ)

+
a2

2
ε1 ε′2R2R′ + ε1

2
(∂R) (∂χ) ∂2χ +

ε1

4
∂2R (∂χ)2 + 2F (R) δL2

δR

]
, (61)

where ε1 and ε2 are the slow roll parameters we have repeatedly encountered, while
∂2χ = a ε1R′. Moreover, the quantity F (R) is given by

F (R) =
ε2

4
R2 +

1
a H
RR′ + 1

4 a2 H2

{
−(∂R) (∂R) + ∂−2[∂i ∂j (∂iR ∂jR)]

}
+

1
2 a2 H

{
(∂R) (∂χ)− ∂−2[∂i ∂j (∂iR ∂jχ)]

}
(62)

and L2 denotes the Lagrangian density associated with the action (13a) that governs the
curvature perturbation at the second order. Further, the temporal boundary terms are given
by [102]

SB
3 [R] = M2

Pl

∫
dη
∫

d3x
d

dη

{
−9 a3HR3 +

a
H

(1− ε1)R (∂R)2 − 1
4 a H3 (∂R)2 ∂2R

− a ε1

H
RR′2 − a ε2

2
R2 ∂2χ +

1
2 a H2 R

(
∂i∂jR ∂i∂jχ− ∂2R ∂2χ

)
− 1

2 aH
R
[
∂i∂jχ ∂i∂jχ− (∂2χ)2

]}
. (63)

In most of the situations of interest, including the scenarios that we are considering here,
one finds that it is only the term involving ε2 (in the above expression) that contributes
to the scalar bispectrum. Usually, the contribution due to this term is taken into account
through a field redefinition (for a discussion in this context, see, for instance, Refs. [71,102]).
Instead, apart from the calculating the contributions to the bispectrum due to the bulk terms
in the action (61), we shall explicitly evaluate contribution due to the term containing ε2 in
Equation (63).
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5.2. Numerical Computation of the Scalar Bispectrum and the Associated Non-Gaussianity Parameter

Upon taking into account the contributions due to the bulk and the boundary terms
we discussed above, it can be shown that the scalar bispectrum, evaluated at a time ηe close
to the end of inflation, can be written as (in this context, see, for instance, Refs. [49,76–78])

G(k1, k2, k3) = M2
Pl

6

∑
C=1

[
fk1(ηe) fk2(ηe) fk3(ηe) GC (k1, k2, k3) + complex conjugate

]
+ G7(k1, k2, k3), (64)

where fk are the mode functions associated with the curvature perturbation
(cf. Equation (15a)). The quantities GC (k1, k2, k3) that appear in the above expression
represent six integrals that involve the scale factor, the slow roll parameters, the mode
functions fk and their time derivatives f ′k. They correspond to the six bulk terms appearing
in the cubic order action (61) and are described by the following expressions:

G1(k1, k2, k3) = 2 i
∫ ηe

ηi

dη a2 ε2
1

(
f ∗k1

f ′∗k2
f ′∗k3

+ two permutations
)

, (65a)

G2(k1, k2, k3) = −2 i (k1 · k2 + two permutations)
∫ ηe

ηi

dη a2 ε2
1 f ∗k1

f ∗k2
f ∗k3

, (65b)

G3(k1, k2, k3) = −2 i
∫ ηe

ηi

dη a2 ε2
1

(
k1 · k2

k2
2

f ∗k1
f ′∗k2

f ′∗k3
+ five permutations

)
, (65c)

G4(k1, k2, k3) = i
∫ ηe

ηi

dη a2 ε1 ε′2

(
f ∗k1

f ∗k2
f ′∗k3

+ two permutations
)

, (65d)

G5(k1, k2, k3) =
i
2

∫ ηe

ηi

dη a2 ε3
1

(
k1 · k2

k2
2

f ∗k1
f ′∗k2

f ′∗k3
+ five permutations

)
, (65e)

G6(k1, k2, k3) =
i
2

∫ ηe

ηi

dη a2 ε3
1

(
k2

1 (k2 · k3)

k2
2 k2

3
f ∗k1

f ′∗k2
f ′∗k3

+ two permutations
)

. (65f)

These integrals are to be calculated from an early time (ηi) when the scales of interest are
well inside the Hubble radius, until a time towards the end of inflation (ηe). We should
also clarify that the last term in the action (61) involving F (R) (δL2/δR) actually vanishes
when we assume that the curvature perturbation satisfies the linear equation of motion
(cf. Equation (14a)). The contribution G7(k1, k2, k3) is due to the term containing ε2 in the
boundary terms (63), and it can be expressed as

G7(k1, k2, k3) = −i M2
Pl
( fk1(ηe) fk2(ηe) fk3(ηe))

×
[

a2ε1ε2 f ∗k1
(η) f ∗k2

(η) f ′∗k3
(η) + two permutations

]ηe

ηi

+ complex conjugate. (66)

When one imposes the initial conditions when the scales are well inside the Hubble radius,
the contribution due to ηi in the above expression for G7(k1, k2, k3) vanishes with the
introduction of a regulator, and it is only the term evaluated towards end of inflation (i.e.,
at ηe) that contributes. Usually, instead of the scalar bispectrum, it is the dimensionless
non-Gaussianity parameter fNL(k1, k2, k3) that is often quoted and constrained. The non-
Gaussianity parameter corresponding to the scalar bispectrum G(k1, k2, k3) is defined as
(see, for instance, Refs. [76,77])

fNL(k1, k2, k3) = −10
3

1

(2 π)4 k3
1 k3

2 k3
3 G(k1, k2, k3)

×
[

k3
1 PS(k2)PS(k3) + two permutations

]−1

, (67)
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where PS(k) denotes the scalar power spectrum (cf. Equation (20a)).
When departures from slow roll inflation occur, as in the case of the power spectrum,

in general, it proves to be difficult to evaluate the scalar bispectrum analytically. Hence,
one has to construct methods to compute the scalar bispectrum numerically [49,74,77,78].
As we pointed out, the quantities GC(k1, k2, k3) are described by integrals which involve
the background quantities as well as the mode functions fk and their time derivatives f ′k
(cf. Equation (65)). We have already discussed the numerical evaluation of the background
quantities and the scalar mode functions fk. It is now a matter of utilizing them and
carrying out the integrals describing the quantities GC(k1, k2, k3). In analytical calculations,
to evaluate these integrals, one assumes that ηi → −∞ and ηe → 0−. But, evidently, it is
not possible to achieve these extreme limits in numerical computations. Actually, it does
not seem to be necessary either. We had seen earlier that, to evaluate the scalar power
spectrum, it is often adequate to evolve the mode functions fk from k ' 102

√
z′′/z until

k ' 10−5
√

z′′/z. The reason being that, in most situations, the mode functions only oscillate
in the sub-Hubble regime and their amplitudes quickly freeze once they leave the Hubble
radius. Interestingly, one finds that, since the amplitudes of the mode functions freeze,
the super-Hubble contributions to the bispectrum prove to be negligible [77]. However,
in contrast to the power spectrum wherein we needed to focus on a single wave number,
the bispectrum depends on three wave numbers. Therefore, we need to carry out the
integrals from an early time when the smallest of the three wave numbers (in the range
of our interest) satisfies the condition k ' 102

√
z′′/z until a late time when the largest

of them satisfies the condition k ' 10−5
√

z′′/z. Also, in order to choose the correct
perturbative vacuum, one has to regulate the integrals GC(k1, k2, k3) by imposing a cut-off
in the sub-Hubble regime [72]. Often, in the integrals, one introduces a cut-off function
that is democratic in wave number and is of the form exp

[
−κ (k1 + k2 + k3)/(3

√
z′′/z)

]
,

where κ is a suitably chosen, positive definite and small quantity (for a discussion in this
regard, see Refs. [74,77,78]). Numerically, such a cut-off proves to be convenient as it aids
in the efficient computation of the integrals. In scenarios involving ultra slow roll inflation,
we had pointed out that, due to the non-trivial evolution of the scalar mode functions fk
at late times, it is safer to evaluate the power spectra at the end of inflation. For the same
reason, we also evaluate the scalar bispectrum close to the end of inflation in the models
and scenarios of our interest here3. Lastly, we should mention that the non-trivial boundary
term G7(k1, k2, k3) is easier to compute as it does not involve any integral and depends
only the background parameters, the mode function fk and its time derivative f ′k, evaluated
at the end of inflation.

In Figure 11, we have illustrated suitable dimensionless combinations of the wave num-
bers (k1, k2, k3) and the bispectrum G(k1, k2, k3) in the equilateral (i.e., when
k1 = k2 = k3 = k) and the squeezed limits (i.e., when k1 → 0, k2 ' k3 ' k) for the
inflationary models M2 (which has a narrow peak in the scalar power spectrum and M3
(which has a rather broad peak). Remarkably, the shape of the bispectra in these limits
closely resemble the shape of the corresponding power spectra. However, note that, on
small scales, around the peak, the amplitude of the bispectra are considerably higher in the
equilateral limit than in the squeezed limit. Also, it is interesting to note that the dip and
the peak in the bispectra occur at the same wave numbers as observed in the power spectra.
Such a sharp dip actually implies the vanishing of the mode function fk for a specific wave
number. As a result, it can be expected that any higher order correlation function involving
the wave number also identically vanishes (for a detailed discussion regarding the dip, see
Refs. [58,119,147–149]). We should add that the bispectra also contain additional features
that are unique to the nature of the terms in the cubic order action and the corresponding
integrals involved in the computation.
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Figure 11. The behavior of the bispectrum G(k1, k2, k3) in the equilateral and squeezed limits have
been plotted (on the left and right, respectively) for the two inflationary models M2 and M3 (in blue
and green). We have chosen these models since they exhibit a sharp or a broad peak in their power
spectra. Upon comparison with Figure 3, it is evident that the bispectra closely mimic the shapes
of the corresponding power spectra. Note that, at small scales, the amplitudes of the bispectra are
considerably higher in the equilateral limit than in the squeezed limit.

In Figure 12, we have presented the density plots of the scalar non-Gaussianity pa-
rameter fNL(k2, k2, k3) for the two inflationary models M2 and M3. We have illustrated
the density of the non-Gaussianity parameter around two wave numbers chosen in two
distinct regimes—k∗ (i.e., the pivot scale) over large scales and kpeak (i.e., the wave number
corresponding to the peak in the scalar power spectra) over small scales. We find that,
for M2, kpeak = 3.5× 1013 Mpc−1 and, for M3, kpeak = 1.8× 1013 Mpc−1. Clearly, fNL is
equilateral in shape around k∗ with values of orderO(10−2) as expected from perturbations
evolving over a slow roll regime. But, the shape of fNL turns out to be local around kpeak and
the amplitude becomes model dependent, with values close to 0.56 for M2 and 0.05 in case
of M3. An analytical understanding of the amplitude and shape of the scalar bispectrum
in models permitting a brief epoch of ultra slow roll inflation is still elusive and requires
attention [150]. Moreover, the behavior of bispectrum in the reconstructed scenario and the
effect of the parameters such as N1 and ∆N1 on the associated fNL is an interesting topic of
exploration. We are currently investigating these issues.
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Figure 12. The behavior of the scalar non-Gaussianity parameter fNL (k1, k2, k3) has been presented
as a density plot for the inflationary models M2 (in the top row) and M3 (in the bottom row). In
arriving at these figures, we have chosen the value of k3 to be k∗ (i.e., the pivot scale, on the left) or
kpeak (viz. the location of the peak in the scalar power spectrum, on the right). It should be clear from
the density plots that the non-Gaussianity parameter is equilateral in shape near k∗ (i.e., over the
CMB scales, indicating the slow roll evolution of the background during the early stages of inflation),
whereas it is highly local in shape around kpeak (i.e., on small scales, reflecting the ultra slow roll
behavior of the background during the later stages of inflation).

6. Outlook

In this review, we have considered ultra slow roll inflation driven by a single, canonical
scalar field which leads to enhanced scalar power on small scales. We have examined the
corresponding effects on the extent of formation of PBHs and the production of secondary
GWs during the radiation dominated epoch. We have also computed the shape and the
strengths of non-Gaussianities generated on small scales in such situations. We should
mention that the numerical codes used to arrive at the results presented in this review
are available at the following URL: https://gitlab.com/ragavendrahv/pbs-pbh-sgw.git
6 February 2023. The package computes the scalar and tensor power spectra as well as
the scalar bispectrum for a given canonical, single field model of inflation. Further, it can
compute the corresponding fPBH(M) and ΩGW( f ) arising from such spectra, as discussed
in this review.4

There are many related scenarios and effects that we could not include in this review.
While a few of these effects have been investigated already, some of them require further
study. In this concluding section, we shall describe them briefly.

• Effects of non-Gaussianities on the formation of PBHs: In our discussion, we have
restricted our attention to the effects of the increased scalar power (due to the epoch
of ultra slow roll) on the number of PBHs produced. Since the amplitude of the
bispectrum generated due to ultra slow roll is significantly higher than the slow roll
values, the non-Gaussianities can be expected to boost the extent of PBHs formed (for
earlier discussions on this point, see, for instance, Refs. [51,87,151,152]). There has
been recent efforts to account for a skewness in the probability distribution describing
the density contrast (cf. Equation (38)), arising due to increased strengths of the scalar
bispectrum on small scales, and calculate the corresponding effects on the number
of PBHs produced [90–92]. We should point out that alternative methods have also

https://gitlab.com/ragavendrahv/pbs-pbh-sgw.git
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been proposed to account for the scalar non-Gaussianity in such calculations (see
Refs. [153,154]; for a brief summary of the different methods, see Refs. [93]).

• Effects of non-Gaussianities on secondary GWs: It has been argued that large am-
plitudes of fNL , as arising in ultra slow roll models, can considerably influence the
strengths of secondary GWs that are generated during the radiation dominated
epoch [67,95,99]. However, rather than calculate the bispectrum arising in specific
inflationary models, these attempts often assume certain well motivated amplitudes
and shapes of fNL to calculate the corresponding contributions to ΩGW . There have
also been efforts to compute such non-Gaussian contributions to ΩGW , while account-
ing for complete scale dependence of fNL , arising from the bispectrum in specific
models of ultra slow roll (in this regard, see Ref. [100]). These computations suggest
that the non-Gaussian contributions to ΩGW are highly model dependent and can, in
principle, alter the shape and amplitude of ΩGW around the peak of the spectra.

• Loop corrections to the primordial power spectrum: There is a gathering interest
in the literature towards computing the contributions due to the loops to the scalar
and tensor power spectra generated during inflation (for related early efforts, see,
for example Refs. [155–158]). These contributions capture the effects of the higher
order correlations on the power spectra and can lead to characteristic signatures on
the predicted observables. There have been attempts to investigate such effects on
observables such as ΩGW and the 21-cm signals from neutral hydrogen of the Dark
Ages [159–161]. There have also been efforts to theoretically restrict models of ultra
slow roll inflation based on the amplitude of the corrections due to the loops and the
associated consequences for the validity of perturbative treatment of the correlations
(in this regard, see Refs. [162–165]).

We are presently investigating different issues in these directions.
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Appendix A. Determining the Locations of the Point of Inflection

In our discussion in Section 2.2, we had mentioned the locations of the point of
inflection (viz. the value of φ0) in the inflationary models M1 to M6. We should clarify that
some of these are actually near inflection points, where the first and the second derivatives
of the potential Vφ and Vφφ almost vanish. In Figure A1, we have illustrated the method
by which we have identified the points of inflection. In the figure, we have plotted the
behavior of the inflationary potential V as well as the quantities Vφ/V and Vφφ/V in the
six models of interest. Note that, since the first two derivatives of the potentials almost
vanish at these (near) inflection points, the potentials have a plateau around the point. As
the field enters the flat region of the potentials, it considerably slows down resulting in an
epoch of ultra slow roll inflation in these models.
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Figure A1. We have illustrated the manner in which we have numerically determined the points of
inflection in the inflationary models of interest. We have plotted the quantities Vφ/V and Vφφ/V as
well as a suitably rescaled potential V in the models M1 to M6 (from the top left to the bottom right
corner). In the figures, we have included bands of 2% and 5% around zero. The location of the point
of inflection is determined by the condition that both Vφ/V and Vφφ/V lie within 5% of zero. While,
in some of the models, these quantities lie even within 2% of zero, we find that, in the model M2, the
quantities deviate by as much as 7%.
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In Figure A2, we have plotted the potentials that correspond to the scenario described
by the first slow parameter ε1(N) in Equation (33). As described in Section 2.5, from the
form of ε1(N), we have computed φ(N) and V(N) using Equations (31) and (32), and have
plotted the potential V(φ) parametrically. We have illustrated the numerically calculated
potentials for the range of N1 and ∆N1 discussed earlier.

Further, in Figure A3, we have presented the behavior of quantity ε1(N) in the recon-
structed scenario (cf. Equation (33)) for a specific set of parameters that have been chosen
to mimic the behavior of the first slow roll parameter in the model M2. This is to illustrate
the manner in which our reconstruction captures the essential features of a typical model
that permits a phase of ultra slow roll, while at the same time providing better handle on
the associated dynamics. We achieve the onset and duration of the phase of ultra slow
roll at e-folds similar to that of M2, and also terminate inflation around the same time as
in M2. Moreover, in the reconstructed scenario, we are able to work with a lower value of
ε1 during the initial stage of slow roll, which ensures a viable tensor-to-scalar ratio over the
CMB scales, unlike the case of M2 (cf. Table 1). In the figure, we have also illustrated the
behavior of the potential (as well as its first and second derivatives) associated with the
reconstructed scenario, in the same manner as we had presented for the models M1–M6 in
Figure A1. We have plotted them parametrically against the field, and have focused on the
behavior around the point of inflection. We notice that the point of inflection occurs quite
rapidly, unlike the models M1–M6 which show a smoother behavior. The vanishing of the
derivatives are rather sharp and highly coincident, in contrast to the model M2 which only
contains a near-inflection point.
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Figure A2. The shape of the potential obtained from reconstruction is presented for a range of values
of N1 (on the left) and ∆N1 (on the right). Understandably, the change in N1 moves the location of
the point of inflection (marked with dashed lines of respective colors). The variation in ∆N1 leads
to imperceptibly small change in the shape of the potential around the point of inflection. This can
be better observed in the relative difference between a given V(φ) and the one corresponding to the
maximum value of ∆N1, as plotted in the inset.
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Figure A3. We have presented the behavior of the first slow roll parameter ε1(N) as described by
Equation (33) (on the left) and the corresponding potential arrived at numerically, along with its
first and second derivatives (on the right), for a representative set of parameters. The values of the
parameters have been chosen to arrive at these behavior are N1 = 58, N2 = 75, ∆N1 = 0.31 and
∆N2 = 0.55. The other related parameters are set to the values mentioned in the main text. We have
chosen these parameters to illustrate the manner in which the reconstructed ε1 closely mimics the
behavior arising in a specific model described by a potential, say, M2 (plotted on the left). It is clear
that the reconstructed ε1(N) contains all the relevant features of an inflationary model that permits
a brief epoch of ultra slow roll. Further, we should note that the value of ε1 in the reconstructed
scenario over the initial phase of slow roll is much smaller than the value in M2. This leads to a
tensor to scalar ratio which is within the observational bound, unlike M2 (cf. Table 1). Note that,
in the case of the reconstructed scenario, there exists a point where the first two derivatives of the
potential vanish (as illustrated in the figure on the right), implying a point of inflection. This plot has
to be compared with the second plot of Figure A1 that illustrates the behavior of the corresponding
quantities in model M2, which only contains a near-inflection point.

Notes
1 In fact, if the duration of the ultra slow roll phase is, say, ∆NUSR , then the range of wave numbers that are affected can be

quantified as ln (k2/k1) ' ∆NUSR , where k1 is the wave number that exits the Hubble radius at the onset of the ultra slow roll
phase. This range corresponds to the region around the peak of the scalar power spectrum. Besides, there is another range of
wave numbers that are affected by the phase of ultra slow roll. These correspond to wave numbers which leave the Hubble
radius a few e-folds prior to the onset of the ultra slow roll phase (for earlier discussions in this regard, see Refs. [116–118]; for a
more recent discussion, see Ref. [78]). Over these range of wave numbers, there arises a sharp dip and a rise in the power spectra
leading to the peak. The wave number at the dip, say, kdip, can be estimated to be kdip '

√
3 k1 exp (−3 ∆NUSR /2) and the range

between the dip and the approach to the peak corresponds to kdip . k . k1 (in this regard, see Ref. [119]).
2 The second order tensor perturbations hij should not be confused with the quantity hij which had denoted the spatial components

of the metric in the ADM form of the line-element (1).
3 A clarification is in order at this stage of the discussion. Note that computing the scalar and tensor power spectra only require the

evaluation of the corresponding Fourier mode functions fk and gk at the end of inflation (cf. Equation (20)). These can be calculated
numerically without difficulty. However, as we have seen, the calculation of the scalar bispectrum also involves carrying out
integrals over quantities that describe the background, the mode functions fk and their time derivatives (cf. Equation (65)). As
we mentioned, in slow roll inflation, the super-Hubble contributions to the integrals can be shown to be negligible [77]. But,
when there arise departures from slow roll, particularly at late times as in the ultra slow roll scenarios of our interest here, it
becomes important to calculate the integrals until after the epoch of ultra slow roll and as close to the end of inflation as possible.
In some models, computing the integrals right until the end of inflation (for a wide range of scales) becomes numerically taxing
and it can also induce some numerical inaccuracies at large wave numbers. In such situations, we calculate the integrals until as
close to the end of inflation as numerically feasible. We should hasten to add that, in these cases, we have checked that the late
time contributions to the scalar bispectra are indeed insignificant. It is for this reason we have said that we evaluate the power
and bi-spectra close to the end of inflation rather than at the end of inflation.
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4 Users making use of the code in part or whole can cite this manuscript in their publications.
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