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Abstract: Quintessential inflation refers to scenarios in which a single scalar field is used to describe
inflation and late time acceleration. This review is dedicated to the framework of quintessential
inflation, with a focus on the building blocks of formalism. Consistent unification of inflation and
late time acceleration using a single scalar field asks for a shallow field potential initially followed
by steep behaviour thereafter and shallow again around the present epoch. The requirement of
non-interference of the scalar field with thermal history dictates the steep nature of potential in
the post-inflationary era, with a further restriction that late time physics be independent of initial
conditions. We describe, in detail, the scaling and asymptotic scaling solutions and the mechanism
of exit from the scaling regime to late time acceleration. The review includes a fresh look at scaling
solutions that are central to the theme of unification of inflation and late time acceleration. As
for the exit mechanism, special attention is paid to the coupling of massive neutrino matter to the
scalar field, which builds up dynamically and can give rise to late time acceleration. We present a
detailed analytical treatment of scalar field dynamics in the presence of coupling. We briefly discuss
the distinguishing feature of quintessential inflation, namely the blue spectrum of gravity waves
produced during the transition from inflation to the kinetic regime.

Keywords: inflation; dark energy; scaling solution; exit mechanism; reheating; neutrino coupling

1. Introduction

Accelerated expansion is generic to cosmological dynamics [1]. The Universe has
gone through inflation [2-7] (for a review, see [8-11]) at early epochs and is accelerating at
present [12,13]. Inflation addresses the logical inconsistencies of the hot big bang model
and provides us with a mechanism for primordial perturbations believed to have grown
via gravitational instability into the structure we see today in the Universe [7,14,15]. The
age puzzle in the hot big bang necessitates late time acceleration [16,17] due to dark
energy—cosmological constant, quintessence or large-scale modification of gravity. This
phenomenon has been confirmed by direct as well as indirect observations [18,19], which,
however, elude inflation. It is plausible to think that accelerated expansion is eternal, and
that it had gone into hiding at an early epoch (end of inflation), allowing the thermal history
to proceed as envisaged by the hot big bang, and it reappears today to account for the late
time acceleration—re-incarnation of inflation. The term “Quintessential Inflation” refers to
the paradigm of the unification of inflation and late time acceleration that does not disturb
the thermal history [20-72]). In simple cases, inflation is driven by a scalar field, which,
soon after the end of inflation, enters into an oscillatory phase and rapidly decays in particle
species, giving rise to reheating/preheating of the Universe [65,73-99]). Attempts have
been made to achieve the aforementioned goal by using a single scalar field as a source of
both the phases of accelerated expansion in the framework of modified theories of gravity,
particularly f(R) theories [61,100-104]. For instance, putting the Starobinsky proposal for
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inflation and late time acceleration together using f(R) could sulffice; see Ref. [105] on the
related theme. In these models, it is difficult to eliminate the strong dependence on initial
conditions. In this review, we shall focus on the scalar field models where one has better
control on this problem.

At the onset, it sounds fairly straightforward to carry out the described unification
in a single scalar field using a runaway type of potential that is shallow initially, suitable
for slow roll, followed by steep behaviour for the entire history of the Universe and
turning shallow again at late times to account for the observed acceleration. Though
the presence of early and late time phases of accelerated expansion is evident in the
proposal, nonetheless, remarks related to thermal history and the independence of late time
evolution from initial conditions are in order. Since the potential is of the runaway type, the
standard reheating mechanism is not operative in this framework. One needs to employ
an alternative framework such as gravitational particle production [76,79] (see also [30]),
instant preheating [62,65,84,90], curvaton preheating [85-87,89], Ricci reheating [106] (see
also [107,108]) and so on. Radiation density produced in these processes at the end of
inflation is smaller than the field energy density by several orders of magnitude. Due to
the steep nature of potential in the post-inflationary era, the scalar field enters the kinetic
regime soon after inflation ends (op ~ a~%) [109], such that radiation domination takes
place after a long kinetic regime and field energy density becomes sub-dominant. There
are two requirements for the field dynamics before it emerges from sub-dominance to
dominance at late times: (1) it must adhere to the nucleosynthesis constraint; and (2) its
emergence to late time acceleration must be unaffected by initial conditions. The latter puts
a restriction on the class of field potentials that can be employed for quintessential inflation.

A comment on the duration of the kinetic regime is in order. The long kinetic regime
might be problematic for nucleosynthesis due to relic gravity waves. Indeed, the energy
density in relic gravity waves produced at the end of inflation increases in comparison to
p¢ during the kinetic regime and might conflict with the nucleosynthesis constraint at the
commencement of the radiative regime. The nucleosynthesis constraint puts a lower bound
on the reheating temperature at the end of inflation and an upper bound on the duration of
the kinetic regime. One of the reheating alternatives is provided by gravitational particle
production, which is a universal process that occurs due to a non-adiabatic change in
space—time geometry when inflation ends; unlike other mechanisms, it does not require
additional field(s); however, the nucleosynthesis bound is challenged. It should be noted
that the presence of the kinetic epoch soon after the end of inflation induces a blue tilt
in the gravitational wave spectrum. This feature enhances the prospects of detection of
gravitational waves in the forthcoming observational missions. Further, a desirable feature
of quintessential inflation should also be mentioned here; namely, the field should track the
background in the post-inflationary era, and only at late times should it exit to acceleration.
Several exit mechanisms have been analysed in the literature. We shall, however, focus on
a particular one due to the coupling of the scalar field to massive neutrino matter. Last
but not least, one should ask whether the unification scheme is an academic exercise or
has a distinguished observational signature. The presence of the kinetic regime, a generic
feature of quintessential inflation, induces a novel feature in the spectrum of relic gravity
waves, namely the blue spectrum in the high-frequency regime. This is a generic model-
independent prediction of the paradigm irrespective of its concrete realisation, to be tested
in future observations (see Refs. [110,111] on the related theme).

This is a pedagogical review written specifically for young researchers. Efforts have
gone into highlighting the general requirements and the corresponding building blocks of
the paradigm, rather than discussing the technical details of concrete models of quintessen-
tial inflation. It goes without saying that the issues raised in the review are equally impor-
tant for model building related to late time acceleration. We sincerely hope that the review
will be helpful for beginners interested in related issues. The review should be read with
the footnotes, which include additional explanations and clarifications. The organisation of
the review is as follows. In Section 2, we describe broad features of the paradigm: a suitable



Galaxies 2022, 10, 51

3 0f 36

class of runaway potentials, alternative reheating models and exit mechanisms. In Section 3,
we discuss the cosmological dynamics of the scalar field relevant to quintessential infla-
tion. This includes field dynamics during the inflationary era, some model-independent
features of inflation, the nucleosynthesis constraint and scaling and tracker behaviour in
models of quintessential inflation. In Section 4, we describe a mechanism of exit from the
scaling regime to late time acceleration, which is realised by invoking coupling to massive
neutrino matter. In this section, the prospects for the detection of relic gravity waves are
also discussed. Finally, we summarise the review in Section 4. We use the metric signature
(—,+,+,+) and the notation for the reduced Planck mass, MIZIZ = 8nG.

2. Quintessential Inflation: Building Blocks

In this section, we broadly indicate the basic features of model building for quintessen-
tial inflation and list the building blocks of the model. Figure 1 shows the scalar field
potential, flat at both the early and late time epochs and steep in between, joining the
two ends. One immediate implication of the runaway type nature of the potential is the
requirement for an alternative reheating mechanism. There are a few alternatives to be
mentioned in the discussion to follow. It is important to note that in the context of warm
inflation [112,113], a separate reheating mechanism may not be required as radiation is
being produced during inflation itself due to the coupling of the inflaton field to the ra-
diation bath. The idea of “warm inflation” also works in the context of quintessential
inflation as well [99,114-117] We shall also mention specific field tracks that could join the
two phases of acceleration such that thermal history is left without interference and the late
time physics is insensitive to initial conditions.

V()

Inflation

Late
Time
Steep ,
Acceleration
region

¢

Figure 1. The figure displays a typical scalar field potential required to realise quintessential inflation:
potential shallow initially, followed by steep behaviour thereafter, and shallow again around the
present epoch.

2.1. Reheating through Gravitational Particle Production

Gravitational particle production takes place at the end of inflation due to a non-adiabatic
change in space-time geometry [76] (see also [79]). It is a universal process and does not
require the presence of additional field(s). The energy density of radiation produced in this



Galaxies 2022, 10, 51

4 of 36

process is given by o, ~ 0.01 x nggn 4 Where g;, ~ 100, the number of relativistic degrees
produced in the process; it involves Hepg, the natural scale available at the end of inflation. In
this case, typically, py/p, = 10710 [22], and the process is inefficient and might challenge the
nucleosynthesis constraint due to the overproduction of relic gravity waves. Other alternatives
include instant preheating, the curvaton reheating mechanism and Ricci reheating.

2.2. Instant Preheating

Instant preheating [84,90] operates with an assumption that the inflaton field ¢ in-
teracts with another scalar field )y (with coupling g) whose mass depends upon ¢ such
that as ¢, after inflation, runs down its potential, m, increases and decays into matter
fields' (x couples to matter fields with coupling h). By appropriately choosing couplings
(g, < 1), one can obtain instantaneous preheating at the end of inflation with the reheating
temperature that satisfies the bound implied by the nucleosynthesis constraint.

2.3. Curvaton Reheating

The Lagrangian is supplemented with an extra field o with a quadratic mass term of
m20?, such that my < Hy, ¢ and the ¢ field ceases to play any role during inflation [85-87,89].
After inflation ends, the Hubble parameter decreases m, ~ H and the ¢ field begins to
oscillate and decay into matter fields, giving rise to reheating with the desired temperature
at the end of inflation.

2.4. Ricci Reheating

The problem associated with gravitational reheating, i.e., overproduction of gravita-
tional waves, can be controlled by introducing another reheating mechanism called Ricci
reheating [106-108]. In this mechanism, a scalar field called a reheaton is non-minimally
coupled directly with the Ricci scalar. The Ricci scalar changes sign after the end of inflation,
when the kinetic energy takes over the potential in the steep region of the potential. As a
result, the effective mass of the reheaton changes sign and becomes tachyonic. Due the
tachyonic nature, the reheaton field grows as the field rolls down towards new effective
minima. The reheating is realised by the transfer of energy from this reheaton to standard
model particles. It is also possible to identify a reheaton with the Higgs field [108].

2.5. Independence of Late Time Dynamics from Initial Conditions

The requirement of steep potential in the post-inflationary era is dictated by the need
to achieve the commencement of radiation domination after which the scalar field remains
sub-dominant. However, a specific type of steep behaviour is asked for, which allows the
scalar field to follow the background—the scaling solution, which is an attractor of dynamical
systems. The nucleosynthesis constraint, further, puts a lower bound on the slope of these
potentials. Scaling behaviour, for instance, is exhibited by a steep exponential potential,
(V ~ Exp(—a¢/Mp;;a? > 3) [118-121]. However, the scaling solution is non-accelerating
as, in this case, wy = wy = (0,1/3) for cold dark matter and radiation, respectively. Hence,
in this case, one needs to invoke an additional feature in the potential that could trigger an
exit to late time acceleration. Once the model parameters are set to exit to acceleration at
the present epoch, changing the initial conditions within a reasonable range does not affect
the late time physics a la a tracker [122,123].

2.6. Exit Mechanisms

There are several ways to realise the exit from the scaling regime to accelerated
expansion. (1) One might simply add a cosmological constant to the scalar field La-
grangian or, if one is willing to go further, one might add to the scalar field potential a
term, V; ~ Exp(—A1¢/Mpy), A3 < 2[120,124,125], such that it becomes operative only at
late times, giving rise to slow roll. (2) One might add to the Lagrangian a Gauss—Bonnet
term coupled to the scalar field, &(¢)R%, (R2; = R® — 4R, R¥ + RW“ﬁRW‘"ﬁ ), which can
induce a minimum in the runaway potential and might give rise to late time acceleration
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by suitably choosing the coupling [126]. However, it might be difficult to make this term
invisible during inflation. (3a) It is rather straightforward to induce a minimum in the
scalar field potential by introducing the coupling of the scalar field to (cold) matter, which
is proportional to the trace of the matter energy momentum tensor and vanishes identically
during the radiation era [127]. In this case, the scalar field can settle in the minimum of the
effective potential, giving rise to de Sitter-like behaviour, of interest to late time cosmology.
However, this happens soon after matter domination is established, where it is undesirable
as the matter phase should be left intact. (3b) This problem can be circumvented by invok-
ing the coupling of the scalar field to massive neutrino matter, which builds up dynamically
only at late times as massive neutrinos turn non-relativistic. In this paper, we shall focus on
the dynamics of this process.

2.7. Suitable Class of Scalar Field Potentials

It is difficult to have a tractable analytical expression of a potential shallow initially as
required by inflation with a tracker-like behaviour in the post-inflationary era. We often
encounter the following classes of potentials in the literature. (a) Potentials that are steep
initially with a desired behaviour thereafter—for instance, inverse power law potentials.
The known way to have accelerated expansion in the initial phase in this case is provided
by “Brane Worlds” [22,31,62,128], where high-energy Brane corrections can give rise to
slow roll with a graceful exit to deceleration as the field runs down its potential and Brane
damping disappears. Unfortunately, this scenario gives rise to a large tensor to scalar ratio
of perturbations, which is ruled out by observation [129]. (b) A class of potentials that are
flat initially, followed by a steep behaviour. For instance, V ~ Exp(—A¢"/M},),n > 1[130].
Potentials with this characteristic can also be constructed using a non-canonical form of the
scalar field Lagrangian. In this case, one is required to invoke an exit mechanism to late
time acceleration. (c) If we do not adhere to tracker-like behaviour in the post-inflationary
era, it is possible to find a class of potentials that are shallow at early and late times and
steep in between, with a thawing realisation [63].

3. Cosmological Dynamics of Scalar Field in a Nut Shell

Scalar field dynamics has played an important role in modern cosmology, starting
with inflation, which led to a paradigm shift resulting in the integration of cosmology
with high-energy physics. In what follows, we present the basic elements of scalar field
dynamics with and without the presence of background matter. Our discussion revolves
around scaling solutions and slow roll attractors. Special attention is paid to asymptotic
scaling solutions, one of the important building blocks of quintessential inflation. However,
since the scaling solutions are non-accelerating in nature, one requires mechanisms of
exit to late time acceleration. We discuss in detail the exit caused by the coupling of the
scalar field to massive neutrino matter. The generic coupling is proportional to the trace
of the energy momentum tensor of massive neutrino matter, which vanishes as long as
neutrinos are relativistic. Coupling acquires a non-zero value at late stages of evolution
when neutrinos become non-relativistic. This is a unique physical process that occurred in
the Universe, and neutrino mass is the only available energy scale close to the mass scale
associated with dark energy (see, for review on dark energy, [131-138]; see also [139]). The
coupling of the scalar field to massive neutrino matter invokes an important feature in the
scalar field potential responsible for late time acceleration. We will include details in the
sub-section to follow.

3.1. Field Evolution in Absence of Background Matter: Slow Roll versus Fast Roll

Scalar dynamics has been used extensively in the development of models for both
inflation and late time acceleration. In this section, we shall focus on the dynamics of a
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non-minimally coupled scalar field. Let us consider the action of a minimally coupled scale
field ¢, which populates the FLRW universe [136,140-142]:

M2
Mg Llawgare—vie)|

sz/d‘ix\/fg

2
A?”Ru(gb)] = [dixy=g

The energy momentum tensor for the scalar field reads
Ty (9) = 0up0v + guv L(P) ()
such that the field energy density and pressure are given by
O _ 1 -2 l‘ _ 1 ¢2
To=—pp = 59"+ V(¢); T'i=pyp=5¢"~V(9) ®)

For the FLRW background dominated by the scalar field energy density, we have

N4
a 0 1
() == (s ) ?

H 3 _L9%/2 i 1

(1 + 3w¢) 5)

where the equation of state parameter for the field is defined as

wy = 12 = 7%9172 — Vo), (©)
Po 2*+V(9)
which interpolates between 1 and —1. The lower (upper) limit corresponds to the potential
(kinetic) energy-dominated situation. The field configuration with wy ~ —1 or — % < 1lis
referred to (quasi) de Sitter, for which H is approximately constant and a(t) ~ e'*?. In this
case, the field rolls slowly,

¢9?/2 3¢
“av

P2 < V() = e=3 <1 @)

where € is one of the slow roll parameters. The (quasi) de Sitter configuration is admitted
by the scalar field dynamics as a possible fixed point. Indeed, the scalar field equation that
follows from (1) in the FLRW background is

N , av

¢+3Hp+Vy=0; Vq,E% 8)
where the second term with the Hubble rate acts as a friction coefficient. Field Equation (8)
is equivalent to energy conservation,

0p + 3Hop(1+wy) =0 ©)

which formally integrates to
_ da
Pp = Pine 3 [ (1wy) G , (10)

with p;, as a integration constant. For a potential energy-dominated situation, ¢?/2 < V
(wgp ~ —1), and the field energy density is approximately constant, whereas in the opposite
case (¢/2 > V), dubbed the kinetic regime, pg ~ 1/a°. The kinetic regime is realised in
the case of a steep potential where the field rolls down its potential rapidly, making the

potential energy redundant and giving rise to pg ~a~°.
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As mentioned before, we are interested in realising the quasi de Sitter configuration.
To this effect, we notice that when the friction term in Equation (8) is large,

b

_ 1
52—374-)

3M3,

< 1= Slow roll regime: 3H¢ + V, ~0; H* ~ V(¢) (11)

where ¢ is small and adheres to the slow roll condition, namely ¢ < 1, which in turn
implies that the potential is nearly flat®

M3, (Vy\?
e‘z(v) (12)

In this case, even if we begin with a huge acceleration, ¢, it is taken care of by the
friction term. Thus, the slow roll dynamics confirms the existence of a (quasi) de Sitter fixed
point, also known as the slow roll solution. We should, however, check the consistency
of (11) with the field Equation (8). Taking the time derivative of slow roll Equation (11) and
using Equation (5), we have

_ b Vep (twy) 4V
b= 3H¢ ' 9H? 2 = g2 (13)
Keeping B negligible requires
M3, (Vy ?
V.
=Myt <1, (15)

which express the self-consistency of slow roll approximation with full scalar field dynamics.
Thus, we are hereby led to two necessary conditions for slow roll. The first condition tells
us that the slope of the potential small and potential is shallow (Mp;|V,,/ V| < 1), whereas
the second condition is a statement about the smallness of the curvature, which ensures
that slow roll can be sustained for the long duration (€/He = O(1, € ) needed to collect the
required number of e-foldings necessary to address the shortcomings of the hot big bang
model. The smallness of  is also dictated by the flatness of the perturbation spectrum. Thus,
the smallness of slow roll parameters ensures the required number of e-foldings and the
scale-independent spectrum of adiabatic density perturbations produced during inflation.

3.2. Inflation: Model-Independent Features

As mentioned before, we focus on generic features of the paradigm rather than the
concrete models. In what follows, we present the model-independent estimates of inflation
to be used later. We recall that the tensor-to-scalar ratio, r, is defined as the ratio of
amplitudes of the tensor and scalar perturbations,

r=— (16)

which is expressed through € in the case of a canonical scalar field as r = 16e. Observa-
tions [143] put a bound on the tensor-to-scalar ratio of perturbations, namely r < 0.032 [144],
which translates into a restriction on the slope of the potential, A; = —Mplg < 0.06,
which is a tighter bound on the slope than the one imposed by the slow roll condition. The
scalar power spectrum,

1 1 H? 2 1H?2
S vy n T )
TEeEMp iy T Pl
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is bound due to CMB observations and adhering to recent findings [143,144], we have
Hing =~ 5.8 x 1075 71/2Mp; = 1.4 x 10™r1/2 GeV, o, equivalently, V./* = 0.01 x r'/2Mp,.
At the end of inflation, € = 1, which implies that $eng = Veln/ j, and we have the Hubble
parameter at the end of inflation:

1 1/2
H..q = Ve, 18
end \/E Mp| end ( )

Since inflation is a quasi de Sitter phase of expansion, it is expected that H does not
change much from commencement to the end of inflation. The argument is supported
by the observational upper bound on the tensor-to-scalar ratio r < 0.032, such that the
field excursion during inflation is not significant. This is supported by numerical calcu-
lation for generalised exponential potential, which shows that not only H;, s&H,,4 but
Hiuf, Hena&Hyiy are within the same order of magnitude [56].

Using Equation (18), we have the estimation for Vepq:

3
Vend ~ 2Hin¢Mpy = pp.end = 5 Vend ~ 3Hip M, (19)

In the kinetic epoch followed by inflation, the energy densities of the field and radiation
evolve as follows:

Pp = Pgend (ae;d )6 (20)
Pr = Prend (“e;d )4 (21)

Thus, the ratio of the scale factors at the end of inflation to the commencement of the ra-
diation epoch or that of the respective temperatures are obtained by using py(a,) = pr(a,),
which gives

ay N Tend _ [p¢,end:|l/2

= (22)
Aend Ty Orend

The length of the kinetic regime depends upon the ratio of field energy density to
the radiation energy density at the end of inflation. An efficient reheating process implies
a smaller value of this ratio, corresponding to a shorter kinetic regime. Owing to the
steep nature of the scalar field potential in the post-inflationary era, the field runs down
its potential rapidly after inflation ends and, in a short time, enters the kinetics. In fact,
it is found numerically that, for the potential (69), Hinf , Heng and Hyy, are within the
same order of magnitude [56]. We shall use Hy,f ™~ Heng =~ Hyipn in our estimations for
model-independent predictions.

3.3. Evolution in Presence of Background Matter: Scaling Solution

Scalar field dynamics in the presence of background matter (cold matter/radiation)
exhibits distinguished features. Under specific conditions, the scalar field might mimic the
background matter 4 la the scaling solution, which plays an important role in model building for
dark energy and quintessential inflation. In order to check for the scaling behaviour of py, let
us consider evolution equations in the presence of background matter [120,136,141,145,146].

1
H? = m(ﬁb +04) (23)
.. _ 1 02
H= —m((l +wg)pp + ¢ ) (24)

P +3Hpy(1 +wp) =0 (25)
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where p, and w;, designate the energy density and equation of state parameter for back-
ground matter, respectively. As for the scalar field equation, background dependence is
reflected there through the Hubble parameter. It follows from the continuity equation for
background matter that pg ~a~3(1+@), The scaling solution is defined requiring that the
scalar field evolves exactly as the background matter:

Scaling solution : wy = wy; pg~a 1) (26)

The scaling solution is a specific dynamical arrangement that preserves the ratio of
kinetic to potential energy of the field,

142
w¢E&szwb:¢z(l—wh):2V(l+wb) (27)
Po 29*+V(9)

We recall from earlier discussion that the interplay between the friction term and the
gradient of potential reflects the nature of the solution of the field equation; the scaling
solution should impose certain restrictions on their ratio. Indeed, differentiating (27) left
right and using the field Equation (8), we have

(3H¢ + Vi)p(1 — wy) = —(1 + wy) Vpdp = —3(1 — wy,) HP* = 2V (28)

Equations (27) and (28) yield two important properties of scaling solutions, namely [146]

_ ‘li . 1+ wy
T2V 1—wy 29)
V. 3
Let us also note that, for the scaling solution,
H 3
;T 5(1+wb) 31)
. 3
G = 2w, (32)

These equations readily yield the behaviour of the scalar field in the scaling regime [125,146],

1

H(t) = 3(1+wp)t

; poctTl = ¢(t) xIn(t) (33)

Thus far, we have not needed any information on the field potential that would
support the scaling behaviour. It is interesting to compute the () for the scaling solution
that would tell us about the fraction of total energy that py constitutes and also the nature
of the potential. Using Equations (29) and (30), we find

2
P 1 XY? )(v) 3(1+wy) B Vo
Qp = = — ) =R A = —Mpt (34
Y 3M2,H? 3M12)1<1—wb Vi 472 : ny oG9

where A; is the slope of the potential. Since py scales as the energy density of background
matter in the scaling regime, (), = Const, which in turn implies that the slope of the
potential should be constant and, consequently, the exponential potential is singled out,

V(p) = Voe 0/ Mr ;A =u (35)

However, an important piece of information is yet missing in our analysis. For
instance, if the slope is small, namely a2 < 2, the slow roll condition applies and we have
wy < —1/3 — ¢?/2 < V/2 and no scaling solution in this case. This brings us to the
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question of the existence and stability of the scaling solutions we are interested in, which
is addressed by dynamical analysis using the autonomous form of evolution equations.
Using the following notations [120]*,
‘ Vv
Y= L; y= L, (36)
VéMp H V3MpH

one can cast evolution equations, with exponential potential, in the autonomous form,

¥ =flxy) ¥ =s(xy) (37)
along with the Friedman constraint equation,

[ 2, .2
3M1231H2+x +y =1 (38)
where prime denotes the derivative with respect to N = In(a); f and g are functions of
x and y whose functional forms are not required here. The fixed point of the dynamical
system is the one for which x’, )y’ = 0, whose stability is checked looking at the sign of the
eigenvalues of the perturbed matrix. Using this analysis, one finds [120,125,145]

3(1 + wb)

% A2 =42>3 (39)

Scaling solution : Wy = wp; Qg =
which is an attractor of the dynamical system and this completes the story. In the scaling
regime, py constitutes a constant fraction of the total energy density. The fraction is smaller
for the larger value of the slope of the potential. In fact, the lower bound on the slope is
fixed by the nucleosynthesis constraint. Exponential potential with slope larger than /3
is termed steep; otherwise, it is shallow, which also serves as a yardstick for an arbitrary
potential. Let us note that a field-dominated solution () = 1) is also an attractor for
a2 < 3, which we are not interested in here. The demarcation is clear: for a2 > 3, the
system settles into a scaling regime; otherwise, it is a field-dominated solution, which is
accelerating if a? < 2.

To summarise, the scaling solution follows the background matter being sub-dominant.
During the radiation era, field energy density scales as radiation energy density (p,), namely
pp ~a~*, which adjusts itself to p,, (energy density of cold matter) after matter domination
is established and follows it forever. The scaling regime is characterised by a fixed kinetic
to potential energy ratio—for instance, ¢? /2 = V in the radiation era, whereas ¢$? /2 = 2V
for matter domination. Last but not least, since scaling solutions are non-accelerating,
one requires an additional feature in the potential that would allow an exit to late time
acceleration. In this framework, I' = 1 and wy = w;, for most of the history of the Universe,
and, only at late times, transition to acceleration would take place 4 la a perfect tracker. In the
forthcoming discussion, we shall mention the exit mechanisms discussed in the literature.

3.4. Nucleosynthesis Constraint on Extra Species

One of the major successes of the hot big bang includes the synthesis of light elements,
Deuterium (>H), Trittum (*H) and Helium (*He), in the early Universe. When the temperature
in the Universe was around 1 TeV, all the standard model degrees of freedom were in equilib-
rium. All of them were relativistic and contributed to the radiation energy density [147,148],

7'[2 4
pr = @g*(T)T (40)
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where g, (T) denotes the effective number of relativistic degrees of freedom in the Universe
at temperature T. Relativistic species including both the bosons and the fermions contribute
to g * (T) s
T\*, 7 T\ *
g(T)= ) g (T’) +3 Y. gF<Tl> , (41)
Bosons Fermions

where T is the photon gas temperature and gp and gr denote bosonic and fermionic degrees
of freedom with mass m; < T (m; is the mass of a particular species). The effective degrees
of freedom are defined relative to the photon gas. When the temperature dropped to
around 1 MeV, the relativistic species included v, ¢, eT and three generations of neutrinos
v such that g, = 10.75. Weak processes such as p + ¢~ <+ n + v, then froze out, leaving
behind a definite ratio of n/p densities. Freezing temperature can be estimated comparing
the reaction rate I';;;; = G% T2 with the Hubble parameter H(T) [149],

f
275 81/2 2 gl/z e
Gi2 = T2 T, =|—22 ~1 MeV 42
P Ve S T <\/§GI%MP1> 4

where Gr is the Fermi constant and T designates the freezing temperature. It should be
noted that the 1/ p density ratio is temperature-sensitive, as n/p ~ Exp(—Q/ Tf), where Q
denotes the neutron and proton mass difference. Since Ty is less than the binding energy
of Deuterium, its synthesis should naively begin. However, there are more than a billion
photons per proton (7 = ng/n, ~ 6 x 10719, ng designated baryon number density) in
the Universe, such that the number of photons whose energy exceeds T is large and
Deuterium does not form due to photo-dissociation. This process is delayed and occurs
at a lower temperature, Tppy =~ 0.1 eV, which then initiates the chain reaction for Helium
formation. Helium abundance in the Universe has been measured accurately; it is sensitive
to Ty, and for obvious reasons, it also depends upon 7. We should emphasise that  is an
important input here, required for a successful nucleosynthesis. It is further important to
note that bringing in any extra relativistic degree of freedom such as a scalar field would
affect the numerical value of Ty and consequently the Helium abundance. The latter should,
therefore, impose a constraint on any relativistic degree of freedom in the Universe over
and above the standard model of particle physics—the nucleosynthesis constraint—which, in
particular, applies to often used quintessence as well as relic gravity waves. Indeed, for
temperatures under consideration,

Qe =2+ =(442Ny) (43)

where the first term is due to a photon, and the first term in the brackets is attributed to an
electron and positron; N;, = 3 in the standard model. Any extra radiation present in the
Universe can be parametrised through N, [150]

27

ZAN, T* (44)

Aoy = =
Pr =301

where AN, is anything over and above the standard model value of N, (N, = 3), which
should be constrained from the observed primordial abundances and other data. Let us
now assume an extra relativistic degree of freedom in the Universe dubbed “X” with energy
density px, which should not exceed Ap, as a necessary requirement for not disturbing the
Helium abundance [150],
B} < AN, )
Py /1mev 8
where p, = (72/15)T* is the energy density for photon gas”. Let us note that Helium
abundance depends upon two parameters, Ty and 7, which can be used to constrain AN, .
The constraint can be improved considerably by considering, in addition, the Deuterium
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abundance and CMB data [151]. However, in this case, we should estimate the ratio (45)
below the ee™ annihilation temperature, T,+,-. After electron positron annihilation,

T, = (4/11)*3T such that
4/3
Xy <7(A) AN, (46)
Py, 8\11

An observational constraint on AN, should put a restriction on the extra degree of
freedom that is not part of the standard model. Remember that, in scalar field models with
tracking behaviour, pg o« a* during the radiation era, and the fraction of total energy that
pg comprises is determined by the slope of the steep exponential potential responsible for
scaling behaviour. Using combined data gives N, < 3.2 at a 95% confidence level, which
implies a bound on the slope of the potential [150],

4/3
X ~ _4 774 >
(p > ~lr, =5 Sg(qq) x02=azi0 (47)
v/ T,

It may be noted that in the case of thawing models, ()y < 1 and the BBN constraint
is trivially satisfied. Similarly, for relic gravity waves, pgy should satisfy the following

bound: 43
pew < 74 AN, (48)
Py 1. 8\ 11

which can be translated into a bound on Qg o,

7(4\*?
Qcwo = 5 (11> Q,0AN, ~ 5.6 x 107 °AN, (49)
where we used the fact that pgw ~ p, ~a~* and also used the observed value of the
fractional energy density of radiation at the present epoch, (0, o ~ 2.47 x 107> Using the
combined abundances of Helium and Deuterium with the CMB data (AN, < 0.2), we

finally have
Qewo S1.12x107° (50)

which puts an upper bound on the kinetic regime or the lower bound on the reheating
temperature in models of quintessential inflation; see Section 5 for details.

3.5. Dynamics with General Class of Potentials and Emergence of Scaling Behaviour in the
Asymptotic Regime

As discussed in the preceding sub-section, scaling solutions are specific to exponential
potential, which are either suited to field-dominated situations or scaling behaviour but
not to both simultaneously. Thus, we might use a potential suitable for inflation that
subsequently changes to an exponential form soon after inflation ends, or think of a non-
exponential type of potential capable of addressing the inflationary requirements at an early
time and dynamically mimicking the exponential behaviour in the post-inflationary era.

Exponential potential has a distinguishing feature: its slope, As = —Mp;Vp/V, is
constant. In this case, we have two dynamical variables, x and y, and correspondingly
two autonomous equations. For a potential that is not an exponential, the slope becomes a
variable quantity and one needs an additional dynamical equation for A; [136,152-154]:

X =flxyAs); Y = g(xy,As) (51)

AL = —V6A2(I —1)x (52)
VooV

r= % (53)

¢
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where I is an important field construct that controls the dynamics of the system with
a general type of potential. For the exponential function, I' = 1, corresponding to a
constant slope of the potential, making Equation (52) redundant. In this case, py scales
as background energy density p;, giving rise to a scaling solution that is an attractor of
dynamics. Without loss of generality, we may consider a class of potentials in which field ¢
rolls down the potential from smaller to larger values (¢ — o) such that x > 0.

In the case of potentials with I' > 1, for instance,

n

M
V=V (PPI; Fr=1+1/n(n>1), (54)

n

the slope decreases with evolution—see Equation (52)—eventually giving rise to slow
roll and forcing the field to evolve to quasi de Sitter (o ~ const., wy >~ —1), which is an
attractor [153]. While the field is rolling down the steep part of the potential (A; is large),
pg closely follows the background [122],

2r 2
w¢:2r_1:wh+ﬁ(l—wb) (55)

It should be noted that for generic values of 1, wy ~ wy and I' >~ 1°. However, in this case,
(T > 1), and the slope (As = n/¢ ) decreases with evolution such that the field enters the
slow roll regime at late stages,

2

w¢:—1+%—>—1, As — 0 (56)

and can account for late time acceleration. A scalar field solution that mimics the back-
ground in the post-inflationary era and only at late stages overtakes it to account for the
observed late time acceleration has been termed a tracker; see Figure 2a. Obviously, the class
of potentials with I' > 1 are of interest and have been widely investigated in the literature.
On the other hand, if I' < 1, the slope of the potential increases with evolution such that

the field runs down its potential faster and faster, making the potential energy redundant,
and naturally ends up in the kinetic regime with py ~ a~°. In this case, it follows from (53)

that the slope increases,
1

As
and in the process of evolution, as A; becomes large and I' — 1. In this case, the system
would eventually join the scaling track in the asymptotic regime. We shall demonstrate
this in an example. On the other hand, during evolution, A; — 0 if we begin from I' > 1
(T # Constant), and in this case, I increases towards infinity. In a sense, “I'” defines the
type of steepness of the potential: the slope tells us about the steepness of the potential, whereas
I' expresses whether, with evolution, the steepness is unchanged (I = 1), increases (I < 1) or
decreases (I > 1). Potentials with T' < 1 (T > 1) are sometimes referred to in the literature
as steeper (shallower) than the exponential potential for brevity. It is interesting to think of
slope A;(¢) as defined over the smooth set of functions {V(¢}. Since

/x(r ~1)dN (57)

dAs_72 . o o
i MRT-1)=0-T=1, (58)

slope, As, is the extremum for an exponential function. The second derivative,

d%As 1

> v}

(VR VoV + Vo V) = 2V3, VoV ) (59)

computed for exponential potentials, also vanishes. Thus, I' = 1 is the saddle point in the
functional space, which explains the mentioned features of the dynamics.
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It is desirable that, for most of the history of the Universe, the field follows the
background (scaling behaviour), and only at late stages does it exit the scaling regime,
taking over the background to become the dominant component, and might mimic dark
energy. In what follows, we discuss how to incorporate this feature into the dynamics.

= Background energy density
field enrgy density

. present epoch

Pp

Loglp/pcr]
loglp/pcr]

Py

<

log(a)

Log(a)
(a) tracker (b) Thawing

Figure 2. (a) shows evolution of field energy density ps and background matter density (radia-
tion/cold matter) versus In(a) for a potential shallower than the exponential potential (I' > 1)—for
instance, inverse power law potentials, V~¢~",n > 0 withI' = 14 1/n. After recovery from
the freezing regime, the field on the steep part of the potential evolves with an equation of state
parameter close to that of the background. In this case, the slope of the potential gradually decreases
and the scalar field slowly moves towards the background and overtakes it and joins the slow roll
with a diminishing value of the slope 4 Ia a tracker. (b) shows schematic representation of thawing
quintessence, where the field is frozen on a flat potential due to Hubble damping. When p, ap-
proaches the background energy density at late times, the field resumes slow roll and accounts for
late time acceleration.

Making a Perfect Tracker from Scaling Solutions: I' = 1and I' < 1

In view of the above, one needs a steep exponential type of behaviour in the post-
inflationary era with a mechanism of late time exit to acceleration 4 Ia a tracker not sensitive
to initial conditions. In the framework of quintessential inflation, one could design a
potential that changes to shallow exponential, is suitable for inflation at early epochs and
reduces to a steep exponential function in the post-inflationary era. It is easier to accomplish
this task using non-canonical scalar field action [130,155],

2
§= [dey/=g| SR R()aupty —V(p) (60)
a? — 2 1
2(p) = ( - ) g ] (61)
V = Mpe ¢/ Mp (62)

where, a, & and f are constants to be chosen by the requirement of model building. Let us
use the following transformation

o= f(¢) (63)
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of
2 _
ke = 3¢ (64)
to change the action to canonical form:
M? 1
S = /d4xw/g[ ZPZR — 0o —V(f (o)) (65)

The effect of canonicalisation is pushed into the potential, which we need to to work out
in the small and large field limits to demonstrate the viability of the underlying construction to
early and late time dynamics. To this effect, we need to express the canonical field ¢ through
field ¢ for & < 1and a > &. In the small field limit, where we expect inflation, we have’

2
¢ < —2MpInB/a = k() ~ "‘; (66)
o(§) ~ %p = V ¢80/ Mp (67)

which can give rise to inflation for & < 1. In the large field approximation,
¢ > —2MpInB/a — K2 (¢p) ~ 1=V e/ Mp, (68)

with a desired scaling behaviour in the post-inflationary era. It is therefore not surprising
that the Lagrangian (62) can successfully describe inflation at early times and with scaling
behaviour in the post-inflationary era.

In the canonical formulation, an interesting possibility is provided by a class of non-
exponential types of potentials that are flat initially, followed by steep behaviour that is
exponential, as in the asymptotic regime, I' — 1 for large values of the field. To this effect,
it is interesting to examine a class of generalised exponential potentials [130],

V() = Voe " /Mpi; 5> 1 (69)

which can support slow roll (A; = a¢" 1) at early times when ¢ is small, followed by a
steep behaviour after inflation ends. In this case, slope (As(¢)) is a dynamical variable
whose evolution is dictated by T,

g =1-"- (Afppl) (70)

which approaches one from below for large values of ¢/ Mp;. Before the asymptotic region
is reached, I' < 1 and (69) exhibits the properties of a function steeper than the exponential
potential, pushing the field into the kinetic regime. However, for large values of the field,
(69) dynamically mimics the behaviour of an exponential potential (I' — 1,¢ — o), allow-
ing the field to finally catch up with the background. Does the field continue in the kinetic
regime whenI" < 1? In what follows, we describe a phenomenon that occurs when the field
¢ runs down a steep potential in the presence of background matter density. Thereafter, we
shall be able to narrate the complete story of field dynamics in a steep potential.

3.6. Slow Roll in Presence of Background Matter: Freezing Regime

The formalism of slow roll parameters can be applied to quintessence, keeping in mind
that the Hubble rate is not solely defined by the scalar field energy density: background
matter density also contributes to it.

It should be noted that, unlike in the case of inflation, slow roll parameters might be
useful here only for a broad perspective. An interesting feature of field dynamics is noticed
for a field rolling down a steep potential when its energy density is negligible compared
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to the background energy density. In this case, the field freezes on its potential and waits
there for a conducive situation to resume motion. Indeed, in the case of slow roll®

.5 .5 V2
6234’7/2:@/’7:17‘1’, (71)
P 2V 6 VH2

P2 <V =
where we used the slow roll value of ¢. In what follows, we are interested in the case when
pp < pp such that H? ~ p, /3M3,

B ()=o)

APy
€= > (Pb) (73)

Since we are dealing with a steep potential, ey > 1, but interestingly, ¢ < 1 as
pp > V(¢)—Hubble damping. Thus, unlike the case of inflation, slow roll becomes operative
here due to Hubble damping. However, this is not useful for dark energy as py < pp, in
this case, but it is certainly useful for the understanding of scalar field evolution in a steep
potential”. As a result of Hubble damping, the field is frozen on its potential and waits there
till the ratio py /oy acquires a specific numerical value (o; ~ a—3(+wp), py = Const) given
by Equation (73) when slow roll is violated (¢ = 1). Field evolution then commences but,
hereafter, the field dynamics crucially depends upon the type of steepness of the potential.
We shall come back to this point in the sub-section on post-inflationary evolution.

3.6.1. Recovery from Freezing Regime

For the sake of illustration, let us focus on a steep exponential potential. After recover-
ing from the freezing regime, which happens due to slow roll violation, the scalar field joins
the scaling track. However, when this happens, it crucially depends upon the numerical
value of the slope of the potential. Indeed, slow roll (72) is violated when

e:1:»<p4’>:22; A2=a? >3, (74)
Pb «

which tells us that the larger is the numerical value of &, the smaller is the ratio py/pp,
when the field resumes evolution. Actually, when slow roll ends, the scalar field begins
running down the steep potential, its kinetic energy gradually increases to the scaling
value!” and it joins the scaling regime, it has no other option as the scaling solution is an
attractor in this case. Hence, as the field recovers from freezing and resumes evolution, it
always finds itself on the entry to the scaling regime, irrespective of the numerical value of
the ratio py/pp- As a result, even if the field energy density constitutes a negligible fraction
of the total energy, the scalar field joins the scaling track. In fact, this phenomenon has a
simple physical meaning: a particle can move in a medium despite large friction if the force
acting on it (gradient of the force field potential) is large. This remark about the interplay
between the slope of the potential and the ratio of the field to background matter energy
densities is especially important in relation to asymptotic scaling solutions, which we will
shortly discuss.

3.6.2. Slowly Rolling Quintessence

Though slow roll parameters do not play a similar role for quintessence, they are still
helpful for a general perspective. The slow roll conditions should be used with caution here
because, unlike inflation, the Hubble parameter receives a contribution from background
matter in this case. Quintessence models can be classified as thawing models [156,157] (see
also [158,159]) and tracker models [122,160]. In the first category, the scalar field is initially
frozen on a shallow potential due to the Hubble damping. The field recovers from the freez-
ing regime (wy = —1) at late stages and rolls slowly along a shallow potential, increasing
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the equation of state parameter to a level consistent with observation; see Figure 2b. As
for the trackers, after recovery from the freezing regime, the field (approximately) follows
the background and only at late times does it quit to join the slow roll due to the shallow
nature of the potential around the present epoch; see Figure 2a. For thawing models,
1/2 < B < 3/2 and the friction term is not operative here, whereas the friction term is
large, B < 1, in the case of trackers [156]. We shall assume that § does not change much
during slow roll in the thawing case. In terms of B, scalar field Equation (8) can be cast as
(see [161] for details)

o Vo

P T pH

We then ask for the consistency of § being O(1) (thawing models) or B ~ 0 (trackers)
with the field Equation (8). Indeed, differentiating Equation (75) with respect to time,

we have
PV s (Ltw) VopVy L AFwy) Vi

148 = 20+p Tourpem TP 2 9(1+ B)H2

(75)

(76)

where we have ignored the term /8H and used —H/H? ~ 3(1 + wj,) /2. In the thawing
case, 3 is assumed to be approximately constant, and since the second term on the right-
hand side of (76) is time-dependent, it is necessary for the equality to hold that

|17|<<1:>ﬁ:§(1+wb) (77)

where we used the fact that § = O(1). We find that our assumption that f is constant is
consistent with the field equation. On the other hand, |B| < 1 for trackers and we find the
consistency condition

n= %(1 + wy) (78)

which gives an order of magnitude estimate for the mass of quintessence, namely m =~
Hy~10"33 eV.

3.6.3. The Asymptotic Scaling Solution

We argued that the class of potentials with I' < 1 mimic scaling behaviour in the
asymptotic regime. The generalised exponential potential (69), shallow initially (¢/ Mp; < 1)
with asymptotic features of an exponential potential in the post-inflationary region, is
a suitable candidate for quintessential inflation. As I' — 1 for large values of ¢/ Mpy,
we expect a scaling regime in the asymptotic region. We need to set an autonomous
system with a suitable choice of variables; the choice for X&Y is obvious, and the third
variable should explicitly include information about the asymptotic nature of the scaling
solution [146],

_ Ve
X= gy Y=oh (79)
. 1

Let us cast the equation of motion in autonomous form in the case of potential (69)
using variables defined in (80) and (79),

dx

N —2X(34Y + XY) (81)
ay 5 (n—1)A"
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A-1 1
3 4212 _
XY? AT (X (wy 1)+_wb4_1)[an(1<A)”} (82)
n+l/q _
dA _ 2XYA"T (1-A) (83)
dN an(l— A)"
Let us also express other quantities of interest through autonomous variables:
(n—1)A"
= 4
an(l— A" ®4)
X-1
YT X )
2 2 p2n-2 1
w(/) = g(X + l)XY A" 0(2}’12(1 — A)Zﬂ*Z (86)

SinceI' = 1 for A = 0 (¢ — o), the system should mimic the properties of exponential
potential; thereby, we expect scaling behaviour in the asymptotic regime. Indeed, we find
the critical point,

1+wy, 3 ) .

X_l—wb'Y_E(wb_l)' A=0 (87)
as expected. It was demonstrated in reference [146] that the asymptotic scaling solution (87)
is an attractor. It should be noted that in the case of n = 1, the third Equation (83)
decouples from the other two equations, which can be solved without reference to (83),
which encodes the information about the asymptotic condition, and we recover a standard
result corresponding to exponential potential. It is important to note that unlike the case
of exponential potential, here, we cannot infer the time dependence of physical quantities
in the scaling regime by the critical values in (87) as the fixed point is reached in the limit,
t — 00;¢ — 0. Substituting the critical point in the expressions for I', wy & )y, we have

Asymptotic scaling solution: T'—1; wy — wy: Qp — 0 (88)

In this case, passage to the fixed point can be studied numerically. To analytically
understand the field dynamics, we need an ansatz in the asymptotic regime whose con-
sistency with the field equation should be checked. We have the following ansatz in the
asymptotic regime (f — o0) [162] (see [163] for comparison)

a(m)n :foln<ttl> + filn {m(ttl)] +.. (89)

Substituting (89) in the field Equation (8) and keeping in mind the asymptotic be-
haviour, we find

2
fo=2 fi= PO Y1t a2 ©0)

(n=1). 2 M, (1 — wp)
2

which allows us to compute important parameters in the asymptotic regime showing
passage to the critical point (87),

(n—1p2In|In({)]
n? ln(%)

B 3(1+wb) ) 2/n " 2(1-n)/n
Q(p_4n2<“> In 5 =0, t—o00 (n>1) (92)

wy = wy + (wh — 1) — wy, t — 00 (91)

which obviously reduce to the standard results for n = 1. We have, therefore, demonstrated
that the scalar field system in the case of the generalised exponential potential (69) with
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I' < 1 eventually comes to the scaling track in the asymptotic regime. We also analytically
demonstrate the passage to the critical point. We had argued that a scalar field with an
arbitrary steep potential with I' < 1 should ultimately join the scaling track. In view of
quintessential inflation, it is desirable that I' ~ 1 for quite some time while ¢ is rolling on the
steep part of the potential'! and py follows the background energy density before exiting
to acceleration to mimic tracker-like behaviour. Depending upon the underlying field
potential, an approximate scaling regime might be invisible if the overshoot of background
energy density is so deep that the field freezes on its shallow part and, after recovery from
Hubble damping, it enters the slow roll mimicking dark energy—thawing realisation; see
Figure 3. Obviously, no exit mechanism is required in this model but late time physics is
sensitive to initial conditions. Let us once again reiterate that, in the case of the generalised
exponential potential (69), with an exit mechanism, we have the desired situation to realise
a perfect tracker.

Using the above given technical information on scalar field dynamics, we would be
in a position to describe the scalar field dynamics in the presence of background in the
post-inflationary era. This would give us the appropriate perspective of the unification
of inflation with late time acceleration without interfering with the thermal history of the
Universe, and good accuracy can be achieved.

Inp
Py
p‘/
-6 -4
Pm
_3 Ina
INFLATIOV\J KINATION‘ RADIATION MATTER | DE

Figure 3. Qualitative behaviour of p for the potential used in Ref. [63] (V ~ exp[l — tanh(¢)] — 1),
which is shallow initially and at late stages and steep in between. In this case, overshoot is deep
enough that the field freezes at the shallow part of the potential. After recovering from Hubble
damping, it rolls slowly and adheres to late time acceleration (figure is adapted from Ref. [63]).

4. Post-Inflationary Dynamics: The Exit Mechanism via Coupling with Massive Neutrino

In the preceding sub-sections, we described scalar field dynamics with and without the
presence of background energy density p,. We argued that the runaway potential generic
to the underlying framework should be steep in the post-inflationary era. The energy
density of radiation produced at the end of inflation p¢"? in this framework is typically
several orders of magnitude lower than p¢*, and the radiative regime takes a long time
to begin. After inflation ends, the field rolls down the steep potential rapidly, making the
potential energy redundant. As a result, the field evolves in the kinetic regime (py ~a°)
and eventually undershoots the background such that py < p,. When this happens, the
field enters the slow roll due to Hubble damping and freezes (py = const) on its potential
(see Equation (72) and waits there till the background energy density (o, ~a=", m =4, 3
for radiation and matter, respectively) becomes comparable to A2p,/2; slow roll is then
violated and the evolution of the field resumes. Hereafter, the field dynamics crucially
depends upon the nature of the steepness of the potential, which is dictated by I'. For
exponential potential I' = 1, the scalar field would follow the background as the scaling
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solution is an attractor in this case; see Figure 4a. If I' < 1, the slope of the potential
increases, giving rise to the increase in kinetic energy; the field energy density would
then move away from the background and evolve in the kinetic regime, ending up in the
freezing regime when py < p}, and so on and so forth. However, the slope always increases
during evolution, and when it reaches large values, I then approaches its scaling value,
I' = 1; see Equation (57). As a result, the system eventually joins the scaling track; see
Figure 4b. In the case of generalised exponential potential (69), we demonstrated that the
scaling solution is an attractor in the asymptotic regime. In this case, A5 ~ (In(t))(1=1/7),
Oy — 0and wy — wy, for t — oo. Obviously, in this case, there is no issue related to
nucleosynthesis. It should be noted that the nucleosynthesis constraint imposes a lower
bound on & for exponential potentials corresponding to a small fraction of field energy
density, which is automatically true for asymptotic scaling solutions as (3 — 0 in this case.

Background energy density T Background energy density

------- [

. present epoch

field energy density = field energy density

@  present epoch

Log[p/per]
Log[p/per]

Log(a) Log(a)

() (b)

Background energy density Background energy density

field energy density field energy density

@  present epoch @  present epoch

Loglp/pcr]
Loglp/per]

Log(a) Log(a)

(c) (d)

Figure 4. Figure shows the qualitative behaviour of py along with the energy density of background
matter (cold matter/radiation) versus Ina for a steep potential. As py overshoots the background
energy density (0p < pp, pp designates background matter energy density), the field freezes on
its potential due to Hubble damping. After the recovery from freezing, field evolution crucially
depends upon the nature of the steepness of the potential. (a) In case of the exponential potential
(I' = 1), the field catches up with the background and tracks it forever. (b) exhibits the general feature
of scalar field dynamics for a field potential steeper than the exponential potential (I' < 1): after
recovery from freezing, py evolves in steps (down and right) and eventually catches up with the
background [130]—asymptotic scaling solution. (c,d) show exit from scaling and asymptotic scaling
regimes to late time acceleration at the present epoch 4 la a perfect tracker. Exit is triggered due a late
time feature in the runaway potential that makes it shallow at late stages of evolution.
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If I > 1 (inverse power law potentials), the slope of the potential A; decreases when
the field rolls along the steep part of the potential with a large value of A;; it evolves with
an equation state wgy, which is close to the equation of state of background matter for
generic values of n—approximate scaling behaviour. However, As decreases with evolution,
causing the field energy density to gradually move towards the background and eventually
overtake it at late times; the field then enters a slow roll with a diminishing slope (wy — —1)
that accounts for late time acceleration; see Figure 2a. Setting the model parameters
appropriately, one makes the framework consistent with observation. The change in initial
conditions related to scalar field dynamics, within a broad range, changes the time for
field entry into the (approximate) scaling regime, leaving the late time physics unchanged.
A remark about “generic” initial conditions is in order. One can choose extraordinary
field initial conditions, giving rise to a deep overshoot, allowing the field to recover from
Hubble damping only at late times in the region of slow roll, such that the observational
consistency is guaranteed. Late time physics, in this case, would become sensitive to initial
conditions, necessitating a readjustment of the model parameters to ensure observational
consistency—thawing realisation.

In the case of the generalised exponential potential, an interesting dynamical feature is
observed, where py initially evolves in steps (down and forward) and eventually catches up
with the background in the asymptotic region as I' — 1. Let us once again reiterate that the
scaling, or at least asymptotic scaling behaviour in the post-inflationary era, is required for
viable cosmological dynamics. Secondly, since the scaling solution is an attractor, which is
non-accelerating, one needs a late time feature in the potential to mimic slow roll, allowing
the exit to late time acceleration, dubbed a perfect tracker; see Figure 4c,d.

In what follows, we shall analyze an exit mechanism based upon scalar field coupling
to massive neutrino matter, which modifies the scalar field potential. The coupling is
effective only at late stages of evolution, where the effective potential has a minimum,
allowing the field to settle there at a late times, and an exit to a quasi de Sitter phase
is realised.

The late time exit for steep runaway potential can be realised by non-minimal coupling
of the quintessence field to matter, which modifies the runaway potential such that the
effective potential has a minimum (see Refs. [124,164,165] for other kinds of exit mecha-
nism). The conformal coupling of field to matter under consideration is proportional to
the trace of energy momentum tensor of matter and vanishes identically during radiation.
Coupling becomes operative after matter domination is established, giving rise to an effec-
tive potential that has a minimum, which is the right feature at the wrong time. In general,
minimum in the potential where the field can settle down leads to de Sitter-like behaviour
and is unwanted in this case, as it can spoil the matter phase; it is more than desirable to
leave the matter phase intact. The problem finds its solution in the coupling to massive
neutrino matter, which acquires a non-vanishing value only at late times when massive
neutrinos become non-relativistic [130,155,166,167].

Let us consider the action that describes coupling between massive neutrino matter
and the scalar field [127,168],

2
S= /d‘*x\/fg lNiPlR — %a}@aw V()| +Su+ S+ S, <A2(<p)gw,%) , (93)

where Sy, , Sy and S, are actions for cold matter, radiation and neutrino matter, respectively.
guv and gy = A2 (¢) guv designate the Einstein and Jordan metrics. It is important to note
here that the metric for the neutrino action is different from the rest (including matter and
gravity part). One should, therefore, be careful while deriving the relevant quantities from
this action. In this section, we shall explicitly derive the continuity equation using (93) for
neutrino matter and the scalar field in the Einstein frame. Let us note that, in the Jordan
frame, neutrino matter is minimally coupled and its energy momentum tensor obeys the
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standard conservation law. In the Jordan frame, the energy momentum tensor for neutrino
matter is given by

p 0 0 O
N -2 48 0
Tyw=———= 0 94
SRV T (R .
0
or equivalently
T", = diag(—&, p, p, ), (95)
which satisfies the standard continuity equation,
VT =0 (96)
p+3H(@E+7p)=0. (97)

Since the Einstein and Jordan metrics are related via the conformal factor A?(¢), we
have the following relations:

Suv = Aizgw

gyv _ AZgyv

V-8 = ATNG (98)
a = Al

dt = A7ldt.

Let us note that the energy momentum tensor in the Einstein frame with metric g, is
related to its counterpart in the Jordan frame,

-2 68 -2 Sy 24
= = — = ATy . 99
V=8 ATE oG " &)
We can compare the individual components of stress—energy tensors of the two frames
by the following manipulation:

Ty

TH , = g" Ty = A2GM AT, = ATV, = =A%, p=A%p. (100)
The Hubble parameters for the two frames are related as

1da A7 la 1 [.dA™Y da A -
H — [ pn +A—A+AH, (101)

= — = = a
a dt a A-1g

where time deviation is taken with respect to ¢, as we want to express all physical quantities
in the Einstein frame without reference to the Jordan frame. We also have the following
important relations:

. dp 41/ - A 5.
pzd—f;:A 1$(A 4pv> = —4AT 2, + AT, (102)

Using Equations (101) and (102), the continuity Equation (97) is transformed to the
Einstein frame:

. A
pv +3H(pv + pv) = — (v = 3py)

or equivalently
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pv+3Hp,(1+wy) = %cj)pv(l —3wy) (103)

In a similar way, we derive the Klein-Gordon equation for the scalar field,

) . A A
§+3Hp+Vy = ——2(=pu +3p)) = - —Lpu(1-3w)), (104)

which, after multiplying on both sides by ¢, can be cast in the following suggestive form:

_ Ap .
Op + 3Hpp (14 wp) = — =L, (1 - 3w,). (105)

It is evident from Equations (103) and (105) that the conservation law does not hold
for the neutrinos and scalar field individually but the total energy density, oy + oy, adheres
to standard conservation as it should be.

Let us emphasise that neutrinos, due to their tiny masses (1, = O(1072) eV), remain
relativistic for most of the cosmic history with w, = % and their coupling to the scalar field
vanishes. Only at the late times, when they turn non-relativistic, do they start behaving
as cold matter and the effect of the coupling comes into play, which has very interesting
implications for late time dynamics. For a runaway type potential of the form (69), we
argue that coupling modifies the potential such that the effective potential has a minimum
around the present epoch. In the case of n = 1, we shall demonstrate analytically that the
field settles in the minimum, giving rise to a quasi de Sitter-like behaviour that is exactly
followed by massive neutrino matter. Numerical investigations confirm that the same
conclusions hold for n > 1.

Let us first begin from general considerations. Owing to the non-relativistic nature
of neutrinos around the present epoch, we can approximate by w, = 0. It is further
convenient for analytical estimation that we choose g, = A~!p,, which is conserved in the
Einstein frame,

pv +3Hp, =0, (106)

and the field evolution equation in the approximation under consideration acquires the
following form:
¢+3HP = —Vy — Aypy, (107)

It is indicative from Equation (107) that we can write an effective potential, up to an
additive constant, as

Vet = V() + A(¢)by - (108)
Let us now use a specific form of the conformal factor,

Ag) = ¢ Vi (109)

Although the original potential is runaway type with the chosen form of A(¢), the
effective potential does possess a minimum; see Figure 5. It should be noted here that
Equations (106) and (107) are exact for coupling to ordinary cold dark matter (w = 0),
whereas the equations hold only at late times when w, ~ 0 in the case of coupling to
massive neutrino matter. To capture the behaviour of massive neutrino matter, which is
relativistic at early times and non-relativistic near the present (late time), we assume the
following ansatz:

(110)

In(1 -

Zdur
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where z is the red shift and z4,; and zegual are two parameters to be fixed using fitting with
observation.

Potential

— V()

_— - ~ ear®

—  Verr(P)

v

b /Mp,

Figure 5. Schematic diagram showing the effective potential (green line); the original runaway type of

potential is depicted by blue line. Coupling of field ¢ to massive neutrino matter manifests itself in the
effective potential (108) through A(¢)py [A(¢) = Exp(ayd/Mpy)], shown by dashed lines. The graph
shows that for smaller values of -, the minimum of effective potential hits larger values of the field.

The above applies to any runaway type of potential. However, in order to proceed
further with analytical estimates, we shall consider the exponential potential (35) or (69)
with n = 1. In this case, we have the expression for the effective potential:

_at ¢
Vet = Voe " Mot + g M (111)

Minimising the potential with regard to ¢, we find

Mpy 1
Vo '\ «+1) iy \ T+
(pmin = 108 ( v (A) ) - Veff,min =W (,va> ’ (112)

Ov

where the potential (111) is defined up to an additive constant and the above relation is
true for large values of 7y required by observation (to be discussed below). The parameter
I' for the effective potential is shown in Figure 6. The question thus arises of whether the
minimum given by (112) corresponds to the present dark energy density of the Universe.
We will demonstrate that it does. It is instructive to rewrite Equations (103) and (104) for
the conformal coupling (109),

Ky

pv+3Hpy,(1+wy) = —Plgbpv(l — 3wy) (113)

¢+3Hp+Vy = *;%pv(l —3wy), (114)
Pl

Using the effective potential picture, which is approximate in the case of coupling to
massive neutrino matter, we have put forward a general perspective to convince the reader
that the coupling under consideration triggers transit to late time acceleration. In what
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follows, we present the exact analytical results based upon dynamical analysis. Indeed, in
this case, the autonomous system admits an attractor solution which corresponds to [167]

 =3+a%(1+47)
. 3HMp
¢ = 20T (116)

It is interesting to check for the late time behaviour of neutrino matter density. One
might naively think that with the field approaching de Sitter, ¢ — 0 and w, ~ 0 near the
present epoch, neutrino matter should decouple from the scalar field and p, ~a~3; see
Equation (113). On the contrary, p, follows the scalar field and behaves as dark energy,
which is counter-intuitive. This behaviour can be understood recalling Equation (103), and
the fact that p, ~ 0 around the present epoch. Indeed,

. A ¢ _
pv+3HpV(1— A 3H> =0. (117)

Taking into account that A /A = a7y/Mpj, we write the continuity equation in a
suggestive form,

. _ayd
+3H(1+wf) =0; wff=— (118)
pv ( v ) v 3HMp,

The behaviour of wgff determines the late time evolution of neutrino matter density.
Indeed, plugging ¢ from Equation (116) into Equation (118), we get

i
L | SR (119)
3HMp 1+’)/

108

w08 | TTTTmes v=20
e L e y=50

104 :

L 1000 '

100 : !
H i
M I
. 1
" 1

10 . It
' i\
H IR

1 S A

0.0 0.2 0.4 0.6 0.8 1.0
&
Mpl

Figure 6. Figure shows the plot of T for effective potential given by (111). I increases rapidly during
slow roll, which happens here around the minimum, which shifts towards larger values of ¢ for
smaller values of 7. The plot is for « = 10 and the potential is normalised by Vj.

In fact, numerical results confirm that the same features are shared by the model
based upon the generalised exponential potential (69); see Figures 7 and 8, and Ref. [115]
for details. In terms of the effective potential picture, it is clear that the minimum is
time-dependent via p,, but the system essentially settles around its attractor and matches
observational values of the dark energy paradigm at the present epoch by appropriately

"o

choosing “v”.
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Figure 7. Evolution of wS versus the red shift in case of the generalised exponential potential (69)

for n = 3 and ay = 1000, compatible with observation [115]; solid blue line corresponds to wﬁff = -1

Figure shows that wef oscillates and eventually settles close to minus one.
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Figure 8. Plot of energy densities versus the red shift on the log scale for generalised exponential
potential (69). Evolution is shown from the end of inflation. Field is shown to track the background
with exit to de Sitter at late times followed by the massive neutrino matter density. Figure corresponds
to numerical values of parameters: ¥ = 800, A =108 ,n =6 Zeg = 2.55 &z, = 3.

A comment on the coupling of the scalar field to dark matter is in order. In this case,
the exit to acceleration might happen soon after mater domination is established. The
only free parameter 7 should then be tuned to delay the minimum to the late stage, which
is accomplished by taking a 7 < 1 (see Figures 5 and 6) but this defies acceleration as
wgy — 0,7 — 0 and the system is back to scaling track. We have demonstrated that this
issue is successfully addressed by invoking coupling to massive neutrino matter.
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Let us summarise our main findings in this sub-section. Scalar field coupling to
massive neutrino matter, due to tiny neutrino masses, builds up dynamically only at late
stages, giving rise to an exit from the scaling regime to a de Sitter-like configuration around
the present epoch. In the case of exponential potential, we support our conclusions with
analytical estimates. Indeed, in this case, as v becomes larger and larger, ¢ becomes smaller
and smaller (¢ — 0) such that ay¢ ~ HyMp; ~ p};/ 2 and the RHS of Equation (113) is non-
vanishing as de Sitter is approached. As a result, neutrino matter is never decoupled from
the scalar field while de Sitter is approached. The latter forces the neutrino matter to follow
the scalar field at late times. Numerical results confirm the same behaviour for n > 1; see
Figure 8.

5. The Distinguished Features of Quintessential Inflation: Relic Gravity Waves

The gravity waves (GW) are described by the transverse traceless component of the
metric perturbation over the background space time, e.g., especially flat FLRW space time,
ds? = —dt* + a(t)z(hij. + (5ij)dxidxf . The perturbation satisfies the transverse traceless
condition /! = 0,9;// = 0. The Fourier decomposition for the perturbation for a mode with
wave number k can be written as

dk
Bt x) =} / W?Z(k)hﬁ(ki)ek'x, (120)

n=+,x

where the polarisation tensor qo?j(k) is symmetric and satisfies the transverse traceless
condition. The Fourier component of the tensor mode satisfies the wave equation [169]

!/

n' (1) + 2%;1;’ (1) + Kh =0, (121)
where the ' denotes the derivative with respect to conformal time, dt = % The energy
spectrum for the GWs with wave number k is given by

1 dpcw
Qcw(k, ) = — . 122
The GW energy density is given by
Mg 1 d%k K
— _70 _ 7Pl e n|2
pcw = —T9 1 | Gny a22;|hk\ . (123)
The GW energy spectrum for the present time can be written as
Qcwn = [ \p (k) T2 (k) (124)
GW,0 — 12 a% Hé T ’

where Pr(k) = % —iaf is the primordial tensor power spectrum, defined at the horizon
k=aH
crossing, and T2 (k) is the transfer function that describes the time evolution of each mode

after the end of inflation. The transfer function today is given by [170-172].

T?(k) = - e (125)

where the subscript “0” represents the value at the present time and hc for horizon crossing.
Here, it should be mentioned that in the super-horizon limit k < aH, hj stays constant and
varies as hj, « % in the sub-horizon limit, k > aH. Different modes of GW enter the horizon
at different epochs, and to evaluate the spectrum today, we need to calculate the Hubble
parameter precisely:
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—4/3 —4 -3
HQHM%@HQ,O(&)(%) (2) con(2)
8*0 g*so ap ap

where g.(s) denotes the effective number of relativistic degrees of freedom at temperature
T contributing to entropy. It should be mentioned that the major contribution of the scalar
field to Hubble comes in two phases, namely the kinetic regime, which follows inflation,
and the dark energy era around the present epoch. Let us put it in the following form:

Q¢(ﬂ) = Q(p]( +Qno, (127)

where the latter is identified with the present value of dark energy. The kinetic part can be
evaluated as

—6 2 2 -6 2 —6
Q(PK = Po.K — O¢,end ( a > _ 3I_Iencl]\/IPl ( a ) — Hend < a ) . (128)
"7 BH3M3,  3HoM3, \ dend 3H3M3, \ fend HZ \dend

Making use of the relation k = ay.Hp. and Equation (126), the scale factor ay,, in
different regimes, can be expressed as

HZ 3
ApeMD = %Qmo (129)
H2Ho . 1/2 . —-2/3
therp = ( £ 0) (ggo) VO (130)
* *S

The scale factor for those modes entering during the kinetic epoch can be found by
using the fact that, during a kinetic epoch, up to the radiation commencement, the energy
density is pot & pg a~% (or equivalently H « a~3)and k, = H,a,

H ( Aend )
__ IncKD Hhc o H, — AhcKD end Ahe,KD k
rtir

k = athDHhc = = r
, 3
a H, ar Hong (lleu?d )
2 1/2
a a k
= 7 = he KD _ <kr> . (131)
Bhe KD ar

Substituting the values of the scale factors (129)—(131) to the transfer function (125),
we obtain

2 o
o) 1, Hi agHg
Qcwo = ¢z mo Jvf% 2 for (ko <k < keq) (132)
1 H2 —4/3
ORD - — .0 mf<g*> (g*,s> for (keq <k <k 133
GW,0 6772 0 Mlz’l 240 g1 50 or ( eq r) (133)
k
Q(Glg\lj,g) = Qé;li/vD,z) (k) for (kend <k< kr) (134)
T

where ko, keq, kend, kr represent values of k at present, matter-radiation equality, end

of inflation and commencement of the radiation era, respectively. The corresponding

frequencies can easily be evaluated using the relation f = %

_ aoHop -19
fo = B2~3x107Hy (135)
H
foq = ”“;Teqwm*”Hz (136)

iz z (137)

f _ aendHend _ TO 43 l/31_18
end 2m Tend \ 118+s
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In the last step, we have given a lower bound on the frequency at the end of inflation
in a model-independent way by considering instantaneous energy transfer at reheating.
The gravitational wave spectrum is shown in Figure 9.
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Figure 9. The GW spectrum versus the frequency in Hz for the paradigm of quintessential inflation.

The blue tilt in the spectrum is visible on the high-frequency side due to the presence of a long
kinetic epoch. Instant preheating is assumed as the reheating mechanism with coupling constant
g (consistent with nucleosynthesis constraint); see Section 2.2 and Ref. [173].

Nucleosynthesis Constraint on Reheating Temperature

As discussed in Section 3.4, the presence of any relativistic degree of freedom in
the Universe, over and above the standard model of particle physics, is subject to the
nucleosynthesis constraint. In particular, we have a bound on relic gravity waves given
by (50). Since the major contribution to the GW spectrum comes from the blue-tilted
spectrum due to the kinetic regime (kepng < k < k), we have [149,174]

Qcwo = QR = QY < 112 x 1076 (138)
Substituting the value of Q(Gla,)g) from Equation (134), and using the fact that, for the
highest frequency at the kinetic epoch, a = ay, = deng, We get

-4
1 H? g g 3/ a \?
max _ - ) inf &% ( *8 ) (7’> 139
GW.0 6712 10 M12’1 8+0 \ 8xs0 Aend (199

Putting the values Q9 = 9.24 x 1075, ¢, (Aenq) = $+s(end) = 106.75, g0 = 3.36,

Qx50 = 3.91; Hipg = 1.4 % 101472 GeV and using the upper bound on the tensor to scalar
ratio of perturbations, r = 0.05, we obtain the upper bound on the GW spectrum,

2 2
max 3.8 x 10716 (”r) —3.8x10716 (Te“d> (140)
¢ Aend T
ma) < 112x107° = <]§mi> <55x10% (141)
T

where we have used the relation a, /d.ng = Teng/ Tr- This bound enables us to constrain
the duration of the kinetic regime: from the end of inflation to the commencement of the
radiation era. The higher is the radiation energy density produced at the end of inflation,
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the shorter would be the kinetic regime and the easier it would be to comply with the BBN
bound. Let us consider a natural mechanism dubbed gravitational particle production and
check for its consistency with nucleosynthesis. In gravitational reheating (see Section 2.1),
the energy density produced after the end of inflation is given by

Orend = 1072gpHapq ~ 1.15 x 10~ My, (142)

where, in the last step, we used g, = 100. From Equation (19), we have pgeng ~ 1 X
10~8Mp,72. Thus, Equation (22) yields

2
(‘”) - {p""er‘d] ~1.8 %100, (143)
Aend Pend

Finally, using Equation (140), we arrive at the following estimate
O ~ 6x 107, (144)

which challenges the nucleosynthesis constraint (50). This is attributed to the inefficiency
(smaller value of p, ¢ng and correspondingly larger value of (0p/0r)ena) of the reheating
process based upon gravitational particle production [173]. In fact, other reheating mecha-
nisms can give rise to larger values of 0, ¢nq, circumventing the problem due to relic gravity
waves. For example, in an instant preheating scenario, we have (0y/0r)end = (2m)3 /¢,
with g being a coupling constant in the scenario. Constraining g, one can easily comply
with the nucleosynthesis bound; see Ref. [173] for details.

6. Summary

This review is a pedagogical exposition of scalar field dynamics in the FLRW back-
ground applied to quintessential inflation. In this framework, two specific roles are assigned
to a scalar field, namely a consistent description of inflation and late time acceleration,
with the understanding that the field is invisible starting from the commencement of the
radiative regime till the beginning of late time acceleration. The other important demand
from scalar field dynamics is related to the insensitivity of late time physics concerning the
initial (field) conditions. These requirements broadly characterise the class of scalar field
potentials suited to the framework under consideration: potentials that are flat initially,
followed by steep behaviour in the post-inflationary era, and again flat around the present
epoch. Without loss of generality, one assumes that the runaway potential is such that the
field rolls away from the origin towards plus infinity. After inflation ends, the field energy
density py is larger by several orders of magnitude than the energy density of radiation as-
sumed to be produced due to some alternative mechanism. Consequently, the field evolves
in the kinetic regime for a long time before the commencement of radiation domination.
Following this, py overshoots the background matter (radiation) density such that py < p;.
The field then freezes on its potential due to Hubble damping and waits till the radiation
density red-shifts to the level where p, /pg becomes comparable to A2/2 (A; is the slope of
steep potential). Hereafter, the field dynamics are sensitive to the type of steepness of the
potential, which is quantified by the parameter I'. If I' = 1 (exponential potential), the field
exactly follows the background as the scaling solution is an attractor in this case. In the case
of I' > 1—for instance, inverse power law potentials (V ~¢~",I' = 1 4 1/n)—the slope
decreases such that the field nearly follows the background while evolving along the steep
part of the potential and at late times enters the slow roll regime. This class of potentials
is suitable for tracker behaviour. Slope, on the other hand, increases with evolution if
I' < 1 and, in this case, I' eventually approaches its scaling value in the asymptotic region.
We demonstrated that the generalised exponential potential that falls in this class gives
rise to a scaling solution in the asymptotic regime, which is an attractor. This class of
potentials, shallow initially, is suitable for inflation and, in the post-inflationary era, retains
the characteristics of a steep exponential potential. We further demonstrated that a perfect
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tracker can be designed from the classes of potentials with I' < 1 by invoking a late time
feature in the potentials that could facilitate exit to acceleration. In the case of I' = 1, we also
need to invoke an early time feature in the potential, which, in particular, can be achieved
using a non-canonical kinetic term in the scalar field Lagrangian.

As for the exit to late time acceleration, we mentioned different ways to realise it
and presented detailed investigations of a mechanism based upon the coupling of the
field to massive neutrino matter. In this framework, the distinguished physical process
in the late Universe, namely the transformation of massive neutrinos from relativistic to
non-relativistic, can trigger the desired exit.

The focus in this review was on the building blocks of quintessential inflation rather
than the concrete models. We emphasised the model-independent and generic features of
the paradigm. For instance, a long kinetic regime after the end of inflation and before the
commencement of a radiative regime is an essential component of the framework, which
distinguishes it from the standard inflationary scenario. The latter induces a novel feature
in the spectrum of relic gravity waves, namely a blue-tilted spectrum in the high-frequency
regime. To this effect, we have included a brief discussion on relic gravity waves and
presented the model-independent estimates to highlight the distinguishing features of
the paradigm.

Last but not least, our discussion, especially on scalar field dynamics in the post-
inflationary era, is pedagogical, and we hope that the review will be helpful for young
researchers interested in topics related to quintessential inflation and dark energy.
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Notes

1

In this framework, field ¢ is coupled to another scalar field y, which in turn couples to matter fields: £;,; = —(1/2)g?¢p* x> —
hx¥¥. In this case, x does not bear mass; its effective mass depends upon ¢, m, = g¢. After inflation, as ¢ runs down its
potential rapidly, m, changes in a non-adiabatic fashion, giving rise to the production of x particles, which might instantaneously
decay into matter fields. Assuming that the energy of the produced particles is instantaneously thermalised (denoted by p;), one
finds at the end of inflation that (0 /0r)end = (27)3/¢%.

Expansion has character of acceleration (i#/a > 0 for wy < —1/3); see Equation (5).

The acceleration term, ¢ in (8), can no longer be be dropped in the case of a steep potential.

It might look more natural to use the variable X&Y as we know their values for the scaling solution. However, in this case, one
requires one more variable, A, which is directly linked to the field ¢. However, the equation for this variable decouples from the
system and we can analyse equations for XandY without bothering about the third equation for the variable A. These variables
are useful in the analysis of asymptotic scaling solutions that occur in the case of steep potentials of variable slope, where we
have a system of three coupled equations for X, Y and A.

Given that AN, is constrained using primordial abundances and other data, bound (45) is referred to as a “nucleosynthesis”
constraint or “BBN” bound.
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Notice that wy = wy, for n — oo, which is not surprising as the power law corresponds to exponential in this limit.

7 We skip details here and refer the reader to [130] for the same.

8 It should be noted that, in the present situation, —H/H? = (1 + wj)/2 is not related to the slow roll parameter due to the
presence of background matter. In the case of slowly rolling quintessence, the friction term need not to be large and  may not
be negligible. For tracker models, |3| < 1; however, for thawing quintessence, 8 = O(1), and § is nearly constant, §/8H < 1.
Unlike the thawing case, the consistency of slow roll gives rise to 7 = 3(1 + w;,) /2 = 3/2 in the case of the trackers.

? Let us note that this feature is central to thawing models where the field is frozen on a shallow potential such that the field begins
slow roll after it recovers from Hubble damping and accounts for late time acceleration. Initial conditions are set specially or
tuned, allowing it to happen around the present epoch, and model parameters are chosen to comply with observation

10 (;52 /2 =2V, V for radiation and matter domination, respectively.
B One should be careful here with regard to I', which is one for exponential potential, irrespective of its being steep or shallow.
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