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Abstract: Inflation and quintessence can both be described by a single scalar field. The cosmic time
evolution of this cosmon field realizes a crossover from the region of an ultraviolet fixed point in
the infinite past to an infrared fixed point in the infinite future. This amounts to a transition from
early inflation to late dynamical dark energy, with intermediate radiation and matter domination.
The scaling solution of the renormalization flow in quantum gravity connects the two fixed points. It
provides for the essential characteristics of the scalar potential needed for the crossover cosmology
and solves the cosmological constant problem dynamically. The quantum scale symmetry at the
infrared fixed point protects the tiny mass of the cosmon and suppresses the cosmon coupling to
atoms without the need of a non-linear screening mechanism, thereby explaining apparent issues of
fine tuning. For a given content of particles, the scaling solution of quantum gravity is a predictive
framework for the properties of inflation and dynamical dark energy.
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1. Introduction

Inflation [1–5] and dynamical dark energy or quintessence [6–8] can both be mediated
by the cosmic evolution of a scalar field that is neutral with respect to the gauge symmetries
of the standard model of particle physics. It is a natural idea to identify these fields [9–15].
In short, the inflaton becomes the cosmon of dynamical dark energy. In this note, we
investigate the question if such scenarios of “quintessential inflation” or “cosmon inflation”
can be understood in terms of some fundamental physics properties. We will focus on
predictions and constraints from quantum gravity. This will shed light on some issues of
fine tuning or naturalness that at first sight seem to be present within such scenarios. We
focus on general aspects and refer to refs. [16–23] for concrete models and their compatibility
with observation. We present our questions and answers in ten points.

2. Overall Picture

Both inflation and dynamical dark energy require a scalar potential V(ϕ) that is almost
flat for values of the scalar field ϕ in the two regions which are relevant during inflationary
cosmology and the present dark energy dominated cosmology. The rough form required
for V(ϕ) is depicted in Figure 1.

The almost constant value V− for large negative ϕ determines the Hubble parameter
during inflation as H2 = V−/(3M2), with M = 2.44× 1018 GeV the Planck mass. On the
other hand, some value V+ in the tail for large positive ϕ can be identified with the present
dark energy density of the Universe, V+ ≈ (2× 10−3 eV)4. The two flat tails are connected
by a crossover region with a more rapid variation of V(ϕ). After inflation the Universe has
to be heated, producing the particles present in the radiation dominated epoch and the
associated entropy. The heating depends on the coupling of ϕ to the fields for elementary
particles in the standard model and possibly beyond. We will not address this issue in the
present note and refer to refs. [18,23]. We focus on the question if there is a natural origin of
the two flat tails connected by a crossover region.
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Figure 1. General shape of the scalar potential V(ϕ) for quintessential inflation. Both the scalar field
ϕ and the potential V are in Planck units. The two curves correspond to models discussed later.

3. Single Scalar Field

The two regions for large negative and positive ϕ look rather different: the values of V+

and V− differ by many orders of magnitude. One possible explanation for this qualitative
difference could be that the inflaton and cosmon are actually two different fields. The
cosmic evolution may follow a valley (relative minimum) in the common potential for
the two fields and one may parametrize the location within the valley by ϕ. This could
formally connect a region of negative ϕ, which is dominated by the inflaton field ϕinf, to
the region for large ϕ dominated by the cosmon field ϕcos .

This two-field setting is not what we discuss in this note. We are rather interested
in “single field models” where ϕ has a common origin and meaning for the whole range
shown in Figure 1. Two questions become obvious: The first asks why a single field should
be responsible for the dark energy density both for the inflationary and the present epoch.
Our answer is an identification of ϕ with a fundamental scalar field related to quantum
scale symmetry. The second question asks for an explanation of the two apparently rather
different tails of the potential.

4. Naturalness and Fine Tuning

Let us denote V∞ = V(ϕ → ∞) and V−∞ = V(ϕ → −∞). For V∞ 6= 0 the model
contains a tiny non-zero dimensionless parameter V∞/V−∞. Without an explanation such a
tiny parameter may be considered as unnatural. The obvious way to avoid a small non-zero
parameter is given by V∞ = 0.

There may be several contributions to V∞. They have to be “fine tuned” such that
their sum vanishes for V∞ = 0, or results in a tiny value for non-zero V∞/V−∞. We
want to find a natural mechanism that explains V∞ = 0, and therefore forces individual
contributions to sum up to zero. Such a mechanism solves the so called “cosmological
constant problem” [24]. We propose that this mechanism is rooted in the fixed point
behavior of the renormalization flow. Typical flow generators or β-functions can have many
different contributions from the fluctuations of different fields. Nevertheless, at a fixed
point the flow generators vanish, such that all contributions add up precisely to zero. If the
dynamics of the scalar field drives it for ϕ→ ∞ towards a range of fields for which a fixed
point is realized, this fixed point will govern the behavior of the potential. In our case we
need that the fixed point value for V∞ vanishes. Fixed points occur in the flow of couplings
or functions with a renormalization scale k. The proposed mechanism requires that the
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flow with k can be mapped to a change of the scalar field value ϕ. We we will see below
how this is realized.

At a fixed point in the flow of all couplings a new powerful symmetry emerges—
quantum scale symmetry [25]. Quantum scale symmetry states that for an appropriate
choice of renormalized fields no parameter with dimension of mass or length is present
in the quantum effective action. The field equations derived by variation of the quantum
effective action are exact, including all effects of quantum fluctuations. Those are the
relevant field equations for cosmology. Quantum scale symmetry implies strong restrictions
on the form of the effective action and the cosmological evolution equations.

For dynamical dark energy the present mass of the cosmon is very small, typically
of the order of the present Hubble parameter H ≈ 10−33 eV. In the presence of quantum
fluctuations such a tiny mass may again appear as a fine-tuning problem. Quantum scale
symmetry at a fixed point solves this issue [25]. At the infrared fixed point, which is
reached for ϕ→ ∞, quantum scale symmetry is an exact global symmetry of the effective
action. It is, however, broken spontaneously by a non-zero value of a scalar field χ,
which is related to ϕ by a simple field transformation (see below). On the one side this
spontaneous symmetry breaking is responsible for the observed non-zero particle masses
which are proportional to χ. At the same time, the spontaneous breaking of the global
scale symmetry induces a Goldstone boson—the dilaton—which is precisely massless at
the fixed point. For large finite ϕ in the vicinity of the fixed point quantum scale symmetry
is only approximate, leading to an almost massless pseudo-Goldstone boson. The cosmon
is the pseudo-Goldstone boson of the spontaneously broken approximate scale symmetry,
which explains its tiny mass. The shape of the potential and the cosmon mass are directly
related, since the latter involves the second derivative ∂2V/∂ϕ2.

Finally, for dynamical dark energy the scalar field ϕ changes its value even in the
present epoch. Since we do not invoke any non-linear screening mechanism, this requires
that the coupling of ϕ to the atoms of ordinary matter must be sufficiently small. Otherwise
one could observe a time-variation of fundamental “constants” or an apparent violation of
the equivalence principle [26–34]. In the presence of quantum fluctuations the smallness of
the cosmon-atom coupling may again appear as a problem of fine tuning. We will see that
exact quantum scale symmetry results in vanishing cosmon-atom couplings. This gives a
natural explanation for small couplings [25] if the present value of ϕ is in the vicinity of a
fixed point with the associated quantum scale symmetry.

5. Variable Gravity

In a quantum field theory for the metric and a scalar field the scalar potential is not
the only relevant function of the scalar field. In addition, the coefficient of the curvature
scalar R in the quantum effective action, which is related to an effective Planck mass, will
depend on the value of a scalar field. One expects non-zero non-minimal couplings∼ ξχ2R,
where χ may be the Higgs field or, in our case, a singlet field related to ϕ. We will therefore
discuss the effective action for variable gravity [35],

Γ =
∫

χ

√
g
{
− 1

2
F(χ)R +

1
2

K(χ)∂µχ∂µχ + U(χ)

}
. (1)

with three χ-dependent functions F, K and U this is the most general form for a derivative
expansion in second order in the derivatives for the coupled system of the metric field
gµν and a scalar field χ. We require here diffeomorphism symmetry. In our notation
g = det(gµν) provides a factor i in

√
g.

Variable gravity is a rather modest version of modified gravity for which the effective
squared Planck mass F depends on χ [6]. It belongs to the general class of scalar-tensor
theories. The Bra ns–Dicke theory [36] would be obtained for F = χ2, K = K0 and U = 0
if the particle masses are constant. In contrast, for our setting it is important that also the
masses mp in the particle physics sector (not explicitly specified in Equation (1)) depend on
χ [6,26]. We will find for large χ a behavior F ∼ χ2, mp ∼ χ, such that the ratio particle-
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mass/effective Planck mass mp/
√

F is independent of χ. In this region all particle mass
ratios as well as the dimensionless couplings of the standard model are independent of
χ. This behavior will be dictated by quantum scale symmetry. From the point of view of
phenomenology the χ-dependence of the particle masses constitutes a crucial difference to
Bra ns–Dicke theory or extensions with a cosmological constant [37–39] which do not allow
a realistic matter dominated epoch for constant mp. Only the behavior mp ∼ χ allows the
cosmology of variable gravity to be compatible with observation.

By a Weyl scaling [40] gµν = (M2/F)g′µν, together with a rescaling of the scalar field
ϕ = 4M ln(χ/k), the effective action takes the form

Γ =
∫

χ

√
g
{
− M2

2
R′ +

1
2

Z(ϕ)∂µ ϕ∂µ ϕ + V(ϕ)

}
. (2)

The constant Planck mass M has been introduced here by the variable transformation
rather than being a fundamental parameter. Covariant derivatives, the curvature scalar R′

and
√

g′ are now formed from the metric g′µν in the Einstein frame. The relation between
the two frames is given by

V(ϕ) =
UM4

F2 , Z(ϕ) =
1

16

{
χ2K

F
+

3
2

( ∂ ln F
∂ ln χ

)2
}

. (3)

The exact field equations derived by variation of the quantum effective action are
strictly equivalent [26,41–50] for Equations (1) and (2)—the two frames are related by a
simple variable transformation in differential equations. This equivalence is called “field
relativity” [51]. We observe that the same transformations have to be performed in the
particle physics sector, accompanied by suitable field transformations for the fields for
fermions or other scalars in order to maintain a canonical form of their kinetic terms.
Typical particle masses scale mp → m′p =

√
M/F mp such that the ratios remain unaffected,

m′2p /M2 = m2
p/F2.

The phenomenology of cosmology is most easily discussed in the Einstein frame
for which the Planck mass and particle masses are constant. On the other hand, the
“quantum frame” (1) of variable gravity is more appropriate for understanding the role
of quantum fluctuations, the renormalization flow of coupling, the fixed points and the
associated quantum scale symmetry. The non-linear field transformation to the Einstein
frame obscures many simple properties. This makes it rather difficult to understand the
naturalness of dynamical dark energy and inflation in the Einstein frame. The discussion
of this note will be centered on the quantum frame and the quantum effective action (1) for
variable gravity.

6. Crossover Cosmology

We first assume a simple form of the effective action which will be motivated by
quantum gravity subsequently. For our rough ansatz the coefficients of the curvature scalar
F can be approximated by

F = 2w0k2 + ξχ2 , (4)

as depicted in Figure 2.
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Figure 2. Crossover functions. We plot u = U/k4 (horizontal lines) and w = F/(2k2) as functions
of χ2/M2. Parameters u0 and w0 are given by Equations (21) and (23) with ξ = 0.01. They depend
on the number of gauge bosons NV , fermions NF, and scalars NS. The upper curves use NV = 45,
NF = 48, NS = 326, as appropriate for SO(10) grand unification, and the lower curves are for
NV = NF = NS = 0.

For χ→ 0 the χ-dependence becomes negligible, while for large χ the non-minimal
scalar-gravity coupling ξ becomes dominant. A crossover between the two limits occurs
for χ2/k2 = 2w0/ξ. We consider a constant potential

U = u0k4. (5)

In Equations (4) and (5) we have factored out the (arbitrary) renormalization scale k
such that the constants w0, u0, ξ as well as K(χ) are all dimensionless.

The potential in the Einstein frame takes for this simple crossover scenario an expo-
nential form for large ϕ

V =
u0M4(

2w0 + ξ exp
( ϕ

2M
))2 =

u0M4

ξ2

[
1 +

2w0

ξ
exp

(
− ϕ

2M

)]−2
exp

(
− ϕ

M

)
. (6)

It vanishes for ϕ → ∞, V∞ = 0. The potential shown in Figure 1 is actually the
Weyl-scaled form of the simple crossover situation (4) and (5) shown in Figure 2. (The
upper curve is for NV = 45, NF = 48, NS = 326 as for a typical grand unified model with
SO(10)-symmetry, the lower one for NV = NF = NS = 0). The crossover between the flat
tails for ϕ→ ±∞ corresponds to the crossover in F. It seems much simpler to explain the
crossover (4) and (5) than the particular form in the Einstein frame. In particular, we note
that in the quantum frame the cosmological constant u0k4 does not vanish. There is no
need of exact cancellation of vacuum fluctuations—for u0 of the order one U has its natural
value if k is the only mass scale of the model.

We observe that the scale k is no longer present in the Einstein frame [52]. The value
of this renormalization scale is arbitrary. The present dark energy density V(ϕ) is tiny
for a large value of ϕ/M without any small dimensionless parameter of the model. This
simple observation has been the basis of the first proposal of dynamical dark energy or
quintessence [6]. (For subsequent, more observation oriented work see refs. [7,8,28,53–59]).
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For the region ϕ/M � 2 ln(2w0/ξ) the potential takes a simple exponential form
V/M4 = exp(−(ϕ+ c)/M). If the epoch of inflation relevant for the observable fluctuation
spectrum occurs in this region of a “standard exponential potential”, the slow roll parame-
ters ε and η can be directly extracted from the “kinetial” or “wave function renormalization”
Z(ϕ), according to [16,17]

ε =
1

2Z(ϕ)
, η =

1
Z(ϕ)

(
1 +

M
2

∂ ln Z(ϕ)

∂ϕ

)
. (7)

Assuming that for this region of ϕ the coupling ξ varies only slowly one finds the
approximate form

Z(ϕ) ≈ 1
16

(
K
ξ
+ 6
)

. (8)

Small values of the slow roll parameters require large values of K/ξ [16], see also
refs. [60,61]. For this scenario an end of inflation requires a ϕ-dependence of K/ξ, which
may be realized by a suitable form of K(χ). Inflation ends once Z drops below one [16,17].

We will see below that χ→ 0 corresponds to an ultraviolet (UV)-fixed point. Quantum
scale symmetry at this fixed point is realized for K(χ → 0) = κ(k/χ)σ [62], with σ the
scalar anomalous dimension. For the infrared (IR)-fixed point for χ→ ∞ quantum scale
symmetry requires constant K∞. A particularly interesting possible IR-fixed point is the
conformal fixed point with K/ξ = −6. In order to be consistent with both fixed points we
make a first simple crossover ansatz,

K
16ξ

= κ

(
k
χ

)σ

+
1
α2 −

3
8

, (9)

resulting in

Z(ϕ) = κ exp
(
− σϕ

4M

)
+

1
α2(ϕ)

. (10)

For large ϕ the function α−2(ϕ) measures the distance form the conformal fixed point
and may be slowly varying, reaching zero for ϕ→ ∞. For large α the crossover in K occurs
for (χ/k)σ ≈ κ.

Due to the possibility of a common multiplicative rescaling of χ and k only the
combinations K/ξ, u0/ξ2, w0/ξ matter. In the approximation of constant α our ansatz
involves therefore the dimensionless parameters κ, σ, α, w̃ = 2w0/ξ and v = u0/w0. A shift
in ϕ multiplies κ, w̃ and v by a common factor, that we may use to set w̃ = 1 in Equation (6)
and to replace u0/ξ2 → ū, κ → κ̄. With this normalization of ϕ our ansatz has four free
dimensionless parameters κ̄ = κξ/(2w0), σ, α and ū = u0/(4w2

0).
In the limit of the exponentially decaying potential the inflationary epoch lasts as long

as Z > 1 or exp(−σϕ/4M) > 1/κ̄. If we assume simultaneously exp(−σϕ/4M) � 1 in
order to have ϕ in the exponential tail of the potential (6), we have to require κ̄ � 1. In this
case the crossover triggering the end of inflation is the one in K(χ). We observe that at the
end of inflation one has

Vf

M4 = ūκ̄−
4
σ = (2w0)

4
σ−2(κξ)−

4
σ u0 . (11)

This can be a very small quantity for large enough κ̄, reflecting in Equation (6) the
exponential suppression factor for ϕ� M. A large value of κ̄ can explain, and is needed
for, the observed small amplitude of the primordial fluctuations [17,18]. An alternative
scenario would use the crossover in F(χ), as reflected in the corresponding crossover of
the potential V(ϕ), in order to trigger the end of inflation. Compatibility with a small
amplitude of the primordial fluctuations would require in this case a very small value
u0/w2

0. We will argue below that quantum gravity does not seem to allow a tiny u0/w2
0,

and focus therefore on the crossover in K for ending inflation.
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The properties of the spectrum of primordial density fluctuations are directly related
to the slow roll parameters. The spectral index n of scalar fluctuations and the tensor to
scalar ratio r are therefore determined by Z(ϕ), with ϕ given by the value of the scalar field
at a time corresponding to N e-foldings before the end of inflation, at which the observable
fluctuations are frozen,

1− n = 6ε− 2η =
1

Z(ϕ)

(
1−M

∂ ln Z(ϕ)

∂ϕ

)
, r = 16ε =

8
Z(ϕ)

. (12)

The number of e-foldings before the end of inflations obeys, with ϕ f the value of ϕ at
the end of inflation,

N(ϕ) =
1
M

∫ ϕ f

ϕ
dϕ′Z(ϕ′) . (13)

Neglecting the term α−2 in Equation (10) (see below) one finds the relation between N and
ϕ or Z(ϕ),

N(ϕ) =
4
σ

(
Z(ϕ)− 1

)
, (14)

implying

1− n =
4 + σ

σN + 4
r =

32
σN + 4

. (15)

The bound r < 0.036 [63] implies σN > 885, while 1− n ≈ 0.035 [64] requires σ near
four. For a typical range 50 < N < 70 one observes a clash between the two requirements
and concludes that the simple ansatz (10) is not compatible with observation.

It is possible to devise other crossover-shapes of the kinetial K(χ) or Z(ϕ) that are
compatible with present observation. Examples for very similar models can be found in
refs. [17,18,23]. A discussion of the various possibilities for realistic inflation is not the point
of this paper. We only indicate here that small r requires a large value of Z(ϕp f ), where
ϕp f indicates the value of ϕ relevant for the horizon crossing or freezing of the observable
fluctuations,

Z−1(ϕp f ) =
r
8
.

1
240

. (16)

On the other hand, the relation

M
∂

∂ϕ
Z−1(ϕp f ) =

∂ ln Z
∂N

= 1− n− r
8
≈ 1

30
, (17)

indicates that Z decreases at least by a factor two for a change in ϕ of the rough order
∆ϕ/M ≈ 1/8. A realistic fluctuation spectrum seems to require a rather rapid crossover
for Z(ϕ). We could formally account for this by including in Equation (10) a suitable
dependence of κ and σ on ϕ. For a qualitative discussion we may continue with the
approximation of constant κ and σ.

For the large values of ϕ/M relevant for the post-inflationary cosmology one has
Z ≈ α−2. The field σ̃ = ϕ/α has a standard normalization of its kinetic term, with
approximate potential

V = ũM4 exp
(
−ασ̃

M

)
. (18)

This is a standard potential for many models of quintessence [6]. Cosmological scaling
solutions obtain for large enough α. In this case the term ∼ α−2 in Z plays only a small role
during the inflationary epoch. Essentially, the parameters κ, σ and ũ = u0/ξ2 determine
the dynamics of inflation, while α governs the behavior of dynamical dark energy. We will
discuss the properties of dynamical dark energy in the points (8)–(10).
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7. Scaling Solution in (Dilaton) Quantum Gravity

We come now to a central point of this note, namely that scaling solutions in quantum
gravity predict the qualitative form (4) and (5) for the χ-dependence of F and U. In contrast,
the crossover behavior of K in Equation (9) is not yet established. More precisely, ξ can
be a slowly varying function of χ with a constant positive value ξ∞ for χ → ∞, while a
slowly varying u = U/k4 is found to take constant values u0 and u∞ for χ→ 0 and χ→ ∞,
interpolating smoothly between them.

If quantum gravity is a renormalizable quantum field theory, the functional flow equa-
tions [65–67] have to admit a scaling solution [25,52,68–71] for which the dimensionless
combinations U/k4, F/k2 and K become fixed functions of the dimensionless ratio χ2/k2.
This scaling solution permits to follow the flow to arbitrarily large k, corresponding to
arbitrarily short length scales. At the ultraviolet fixed point for k→ ∞ nothing changes any-
more, permitting to extrapolate the model to arbitrarily high momenta or short distances
and to render thereby quantum gravity complete. This is a typical scenario of asymptotic
safety [67,72–79], while asymptotic freedom [80–82] may also be possible [83] in the pres-
ence of higher order curvature terms. (We omit a discussion of the higher order curvature
terms in this note because they play only a negligible role for the crossover cosmologies in
the range relevant for observations).

For the scaling solutions the dimensionless functions depend only on the dimen-
sionless ratio ρ̃ = χ2/k2. This is the basic reason why the renormalization flow with k
is mapped directly to the χ-dependence of the relevant couplings in the effective action,
which translates in turn to cosmology by the dynamics of the evolution of χ. The ultraviolet
limit k → ∞ at fixed χ can also be realized at fixed k by χ → 0, while the infrared limit
k→ 0 at fixed χ corresponds to χ→ ∞ at fixed k. The crossover behavior of the functions
F and K interpolates between the UV-fixed point properties for χ → 0 and the IR-fixed
point properties for χ→ ∞.

For general renormalizable theories, including asymptotically safe of free quantum
gravity, the renormalization flow departs from the ultraviolet fixed point and associated
scaling solution as k is lowered. This happens due to the presence of “relevant parameters”
of the flow. These relevant parameters turn into the free couplings of a model. A more radi-
cal perspective assumes “fundamental scale invariance” [84], for which the scaling solution
holds for all k. This corresponds to some type of finite theory. A theory with fundamental
scale invariance is very predictive since there are no more the free couplings associated to
the relevant parameters. From a qualitative point of view the more general renormalization
flow with relevant parameters is very similar to fundamental scale invariance if the scale
k f of departure from a scaling solution is much smaller than the masses of all massive
particles. This is realized for k f ≈ 10−3 eV, except perhaps for neutrinos. We will focus
here on the more predictive scheme of fundamental scale invariance.

For fundamental scale invariance the form of the functions u(ρ̃) = U/k4, w(ρ̃) =
F/(2k2) and K(ρ̃), with ρ̃ = χ2/k2, are entirely determined by the scaling solution. The
“parameters” u0, w0, ξ, κ and α of our crossover ansatz become predictable. Scaling solutions
are very restricted since they have to solve a complex system of non-linear differential
equations for the whole range of ρ̃. Finding them, establishing the crossover behavior and
determining the effective parameters is a highly non-trivial computation. If successful, this
will relate inflation and quintessence by the properties of fluctuations in quantum gravity.

The first steps in this direction are rather encouraging [25,52,68,69]. All candidate
scaling solutions show the qualitative behavior (4) and (5). In particular, the scaling solution
for the constants u0 = u(ρ̃ = 0) and u∞ = u(ρ̃ → ∞) is understood rather easily. The
flow equations for these couplings correspond to the ones for a type of cosmological
constant, which may differ for the two limits. For the gauge invariant setting of the flow
equations [85] one finds for both limits [69,86]

k∂kU =
k4

24π2

(
5

1− v
+

1
1− v/4

+
3
4
(Nu − 4)

)
, Nu = NS + 2NV − 2NF . (19)
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Here NS, NV and NF are the numbers of effectively massless scalars, vector bosons and
Weyl fermions, respectively. The parts independent of Nu are the contribution of the metric
fluctuations, with v = u/w. One has v = v0 = u0/w0 for the limit ρ̃→ 0 and v = v∞ = 0
for the limit ρ̃→ ∞.

The scaling solution corresponds to fixed points of the flow equation

k∂ku = k∂k

(
U
k4

)
= −4u + 4cU , (20)

for which the r.h.s. vanishes. The fixed points are given by

u∗ = cU =
1

192π2

(
5

1− v
+

1
1− v/4

+
3
4
(Nu − 4)

)
. (21)

The limit ρ̃ → ∞ corresponds to a renormalization scale k much smaller than the
effective Planck mass χ. In this limit one deals with an effective low energy limit, as given
by the standard model of particles plus an (almost) massless scalar field. For ρ̃→ ∞ only
the photon (NV = 1) and the cosmon (NS = 1) contribute besides the metric, resulting in

u∞ =
7

256π2 . (22)

For χ→ 0 quantum scale symmetry is not spontaneously broken and all particles are
massless. A computation of u0 needs knowledge about the particles that play a role for
momenta above the Planck mass. These may be the particles of the standard model, some
grand unified model or even further extensions. One expects that u0 differs from u∞, while
being of a similar order of magnitude. The flow of u(ρ̃) for intermediate ρ̃ is more complex,
but it is not surprising that computations in models with a simplified particle content find
a smooth interpolation between the two limits [68,69].

The flow equations for w(ρ̃) are more involved, even though the gauge invariant
flow equation yields a comparatively simple structure [87] due to the decoupling between
physical and gauge modes [88]. The limit ρ̃→ ∞ is comparatively simple, since this covers
an effective infrared theory for the metric, photons and the scalar χ. One obtains indeed a
scaling solution with F ∼ ξ∞χ2 [25,52,68,87]. This is not surprising since ξ corresponds to
the dominant renormalizable coupling for χ→ ∞. In contrast to u∞ the value of ξ∞ cannot
be extracted from the asymptotic behavior alone—in this limit scaling solutions exist for
arbitrary values of ξ∞. Restrictions on ξ∞ from the existence of scaling solutions arise since
not all values allow for a continuation of the solution from the asymptotic region ρ̃→ ∞ to
ρ̃→ 0. This issue needs an understanding of the flow beyond the asymptotic region.

For ρ̃→ 0 one can neglect ξ in the leading behavior for w(ρ̃). A computation similar
to the one for u0 yields a fixed point [87] at

w0 =
25

128π2(1− v0)
+

1
192π2

(
Nw +

43
6

)
, Nw = 4NV − NF − NS . (23)

Taken together with the asymptotic behavior for large ρ̃ this establishes the qualitative
crossover character of Equation (4). This qualitative behavior has indeed been found for all
candidate scaling solutions in dilaton quantum gravity [52,68]. We consider the qualitative
behavior (4) and (5) as a rather robust property of quantum gravity.

The characteristic size of u0 and w0 according to the scaling solution has an important
consequence for inflationary cosmology. For the potential V(ϕ) shown in Figure 1 an
epoch of “early inflation” occurs for values of ϕ in the region of the flat tail of the potential
for ϕ → −∞. During this early inflation the tensor to scalar ratio r is predicted to be
very small. The amplitude of the tensor fluctuations is given by the potential V(ϕ)/M4,
which approaches for ϕ → ∞ the value u0/(4w2

0). Stable gravity requires w0 > 0, and
inflation needs u0 > 0, such that v0 = u0/w0 is positive. Despite the uncertainty for Nu,
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which refers to the particle content in the ultraviolet, the size of u0 cannot be orders of
magnitude smaller than 10−3. On the other hand, values of w0 exceeding one do not seem
to be plausible. (For the models shown in Figure 1 one has u0/(4w2

0) of the order one).
Any value V(ϕ)/M4 > 10−4 at the time of horizon crossing of the tensor fluctuations is
much too large to be compatible with the observed bounds on their amplitude. The scaling
solution requires that the primordial fluctuations should be frozen at a later time when ϕ
has already reached the exponential tail of V(ϕ) for large ϕ→ ∞. As discussed before, this
needs large Z(ϕ) and a crossover in the kinetial in order to end inflation.

Much less is known about the scaling solution for K(ρ̃). The behavior K ∼ ρ̃−σ/2 for
ρ̃→ 0, which is suggested by quantum scale symmetry, has not yet been investigated by
explicit solutions of flow equations. For ρ̃→ ∞ one needs a setup which makes the fixed
point at K∞ = −6ξ∞ manifest. This fixed point is expected due to the enhanced conformal
symmetry.

8. Quantum Scale Symmetry

In the UV-limit k → ∞ and IR-limit k → 0 one expects fixed points for a theory
with fundamental scale invariance [84]. At these fixed points quantum scale symmetry
becomes exact [25]. The existence of a UV-fixed point is required for a renormalizable
theory of quantum gravity. Our crossover ansatz for U, F and K has to reflect this fixed
point structure. At a fixed point the quantum effective action does not exhibit any mass
scale. This includes the renormalization scale k. Thus Γ has to become independent of k for
χ→ 0 and χ→ ∞. The resulting global symmetry is quantum scale symmetry.

The absence of any mass scale has to hold for a suitable choice of fields. This choice
may differ for the UV- and IR-fixed points. For the IR-fixed point we use for the effective
action (1) the metric field gµν and the scalar χ. The potential U = u0k4 vanishes for k→ 0,
and F = ξχ2 becomes independent of k if ξ reaches a constant value ξ∞. In addition, the
kinetic term does not involve k if K(χ→ ∞) = K∞ reaches a constant. Our ansatz shows
directly the invariance of Γ under the global scale transformation χ→ αχ, gµν → α−2gµν.

Quantum scale symmetry would be compatible with a potential U = λχ4 with con-
stant λ. Such a term would lead to a cosmological constant λM4 in the Einstein frame [6].
We find, however, that this term is not compatible with the scaling solution for quantum
gravity. The absence of the term λχ4 constitutes an important example how the requirement
of a scaling solution of the system of non-linear differential flow equations restricts the
possible couplings of a model. The scaling solution predicts a fixed point value λ = 0. This
prediction coincides with the general quantum gravity bound [89] for the increase of U(χ)
for χ→ ∞. For F ∼ χ2 the potential is allowed to increase at most ∼ χ2. Combined with
the requirement of quantum scale symmetry this allows only U(k→ 0) = 0, as realized for
U = u∞k4.

The bound for the maximal increase of U would still allow for a leading behavior
U ∼ k2χ2—a model that has often been studied in the past [17,18,35]. Scaling solutions
of quantum gravity do not seem to exist for an asymptotic behavior U ∼ k2χ2. We have
therefore not included this term in our ansatz. For late cosmology the behavior U = u∞k4

or U = µ̃∞k2χ2 both lead to a very similar phenomenology [17]. In both cases the potential
in the Einstein frame (3) vanishes for χ→ ∞, either ∼ χ−4 or ∼ χ−2.

The overall conclusion is rather striking. Quantum gravity solves the cosmological
constant problem dynamically if cosmology is of a “runaway type” where χ increases to
infinity in the infinite future. This is the case for our setting. Fundamental scale invariance
provides for an even stronger statement. The scaling solution of quantum gravity requires
that the potential U(χ) becomes flat for χ→ ∞.

In a situation with several scalar fields, for example including the Higgs doublet, these
statements apply to the relative minimum of the effective potential with respect to the
additional scalar fields. In the multifield space the potential U has a flat valley for χ→ ∞.
Furthermore, the quantum gravity bound for the maximal increase of the potential for large
values of scalar fields suggests that U also becomes flat for asymptotically large values of
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the Higgs scalar. (This flattening of the effective potential is somewhat analogous to the
approach of the effective potential to convexity for spontaneous symmetry breaking [90]).

The realization of quantum scale symmetry at the UV-fixed point differs from the
IR-fixed point. For our ansatz the limit k→ ∞ contains the scale k in the effective action (1)
since F ∼ k2, U ∼ k4. The action is not invariant under the same transformation of fields as
for the IR-fixed point. We may, however use a new “scaling frame” [17,91] with metric

g′µν =
k2

χ2 gµν . (24)

Performing the corresponding Weyl scaling the effective action (1) with F = 2w(χ)k2,
U = u(χ)k4 becomes

Γ =
∫

x

√
g′
{
− wχ2R′ + uχ4 +

1
2

(
χ2K
k2 − 12w− 12

∂w
∂ ln χ

)
∂µχ∂µχ

}
. (25)

This action becomes independent of k if w and u are constant and K is proportional
to k2/χ2. This is precisely the case for our crossover ansatz (10) for χ → 0 if σ = 2. The
global scale transformation χ→ αχ, g′µν → α−2g′µν transforms now g′µν, while gµν remains
invariant.

The invariance under a scaling of χ with fixed gµν is also visible in the limit χ→ 0 of
our ansatz in terms of gµν

Γ =
∫

x

√
g
{
− w0k2R +

8ξκk2

χ2 ∂µχ∂µχ + u0k4
}

. (26)

This UV-limit is very simple. It is Einstein-gravity with a different value of the Planck
mass ∼ k, a cosmological constant ∼ k4 and a free massless scalar field σ̃ = 4

√
ξκk ln(χ/k)

with a canonical kinetic term. The obvious solution of the field equations for variable
gravity in the limit χ→ 0 or σ̃→ −∞ is de-Sitter space, with constant Hubble parameter
H2 = u0k2/(6w0). This solution is unstable towards increasing small non-zero values of χ.
The inflationary epoch is directly linked to this unstable de-Sitter solution.

Quantum scale symmetry at the UV-fixed point gives a strong argument in favor of
a divergence of K in the limit χ → 0. The degree of the divergence may be questioned,
however. For K increasing with a different power K ∼ (k/χ)σ, we can define a renormalized
scalar χR according to ln(χR/k) = (χ/k)1−2σ. Employing a Weyl scaling which replaces
χ→ χR in Equation (24) leads to a scale invariant effective action similar to Equation (25),
with χ replaced by χR. Now the fields χR → αχR, g′µν → α−2g′µν undergo the canonical
transformations, translating again to constant gµν. For σ 6= 2 the transformation of χ
becomes, however, a non-linear transformation. This could suggest that σ = 2 may be
singled out for the scaling solution. For a clarification of this issue the gravity induced
scalar anomalous dimension should be computed for the limit χ → 0. These arguments
concern the asymptotic behavior for χ → 0, while an effective χ-dependence of σ for
non-zero χ remains possible.

9. Cosmological Scaling Solution

After the end of inflation the Universe enters a “kination” epoch for which the kinetic
energy of the scalar field dominates. Realistic cosmology requires entropy production
by heating the universe, producing the particles whose energy density dominates in the
radiation dominated epoch. During this epoch the energy density of the scalar field may
either be negligible, with dynamical dark energy playing a role only later. As an attractive
alternative the evolution of the universe enters a cosmic scaling solution [6,56,58] which is
a “cosmic attractor” if the parameter α in the kinetial Z(ϕ) is sufficiently large. We discuss
this cosmic scaling solution in the Einstein frame with a canonical kinetic term for the scalar
field σ̃ and exponential potential (18).
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In the limit of constant α the cosmic scaling solution [6,28] is characterized by a
constant fraction of “early dark energy” (EDE) [92,93],

Ωe =
n
α2 , (27)

where n = 4 (3) for the radiation (matter) dominated epoch. If the IR-fixed point is the
conformal fixed point, the function α(σ̃) has finally to diverge for σ̃ → ∞. Nevertheless,
the dependence on σ̃ may be smooth enough such that Equation (27) remains a good
approximation. Typically, the recent cosmology is already sufficiently close to the fixed
point such that α is large for the recent cosmological epochs. This explains why the EDE-
fraction is small. Observation require Ωe to be typically below the percent level [94].

For the (approximate) cosmic scaling solution the homogeneous energy density ρh
of the scalar field decreases at the same rate as the dominant radiation or matter density,
ρh = 3Ωe M2H2. Similarly, the time evolution of the potential obeys

V
M4 = exp

(
−ασ̃

M

)
=

U
F2 =

uk4

ξ2χ4 =
3H2(1− wh)Ωe

2M2 =
12− 2n

n
(Mt)−2 , (28)

with equation of state parameter wh = 1/3 for n = 4, wh = 0 for n = 3. The large present
value of χ provides for a natural explanation why the present dynamical dark energy
density is tiny in Planck units. This is due to the huge age of the universe M/H ≈ 1060,
and not to some small intrinsic parameter of the model.

We can employ the frame-invariant quantity (28) in order to relate different metric
frames. For this purpose we also may use the frame invariant Hubble parameter [46,95]

Ĥ = H+
∂η F
2F

= a
(

H +
∂tF
2F

)
, (29)

with η conformal time, H = ∂η ln a = aH, and a the cosmic scale factor. In the Einstein
frame one has ∂tF = 0, while the quantum frame used in Equation (1) implies for large χ
and constant ξ the relation ∂tF/(2F) = ∂tχ/χ. For the quantum frame one finds [17,35] for
the radiation dominated epoch a static universe, H = 0. In this case the dynamics leading
to Ĥ 6= 0 is entirely due to the increase of the scalar field. For the matter dominated epoch
both the scalar field and the scale factor increase, the latter with a rate different from the
Einstein frame, a ∼ t1/3.

10. Cosmon Coupling to Matter

Quantum scale symmetry at the IR-fixed point provides for a natural explanation why
the coupling of the cosmon to atoms is very weak. No non-linear screening mechanism is nec-
essary in our setting. The strong observational bounds on the time variation of fundamental
constants or an apparent violation of the equivalence principle are obeyed naturally.

Let us denote by gi the dimensionless couplings of the standard model of particle
physics. We include in this set the frame-invariant dimensionless mass ratios h2

0/F and
Λ2

QCD/F, with h0 the expectation value of the Higgs doublet (Fermi scale) and ΛQCD the
confinement scale of QCD. In the quantum scale invariant standard model [6,96–99] all
gi are independent of the renormalization scale k and therefore of χ. For late cosmology
the quantum frame is a scaling frame with F ∼ χ2. In this frame one has h0 ∼ χ and
ΛQCD ∼ χ, such that all particle masses are proportional to χ. The effective Planck mass
∼ χ increases during the cosmological evolution, and so do all particle masses. Mass ratios
and dimensionless gauge couplings or Yukawa couplings remain constant, however, in
agreement with the observational bounds. Translating to the Einstein frame with F = M2

the constant dimensionless couplings imply now that all particle masses are proportional
to M. For exact quantum scale symmetry there is no coupling of the cosmon ϕ to atoms in
the Einstein frame. This implies [25] the absence of a “fifth force” due to cosmon exchange,
and the absence of a time variation of fundamental couplings despite the time evolution of
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ϕ. This situation is consistent with the role of ϕ as a Goldstone boson that can have at most
derivative couplings.

The IR- fixed point is reached only asymptotically in the infinite future. For a general
scaling solution the couplings gi(ρ̃) depend on the dimensionless ratio ρ̃ = χ2/k2. In the
Einstein frame this translates to a ϕ-dependence of the couplings gi which is, in principle,
detectable by an apparent violation of the equivalence principle due to a cosmon mediated
fifth force, or by time varying fundamental couplings due to the cosmic evolution of ϕ. We
will see that for the atoms of baryonic matter this is a very small effect. The overall picture
is simple. If at the fixed point for ρ̃→ ∞ the dependence of gi on ρ̃ vanishes, any variation
ρ̃∂ρ̃gi will be small for large finite ρ̃. For present cosmology ρ̃ ≈ 1060 is huge.

The general renormalization flow for gauge—or Yukawa couplings depending on ρ̃
and k takes the form

k∂kgi = 2ρ̃∂ρ̃gi + βi(gj) . (30)

For k2 � χ2 the metric fluctuations have decoupled and do no longer contribute to βi.
The flow generators βi become the standard functional renormalization β-functions for a
model of particle physics without gravity, as obtained by the variation with an infrared
cutoff k at fixed ρ = ρ̃k2. For small couplings they coincide with the usual β-functions,
as determined in perturbation theory. Furthermore, the scaling solution is given by a
vanishing of the l.h.s. of Equation (30). The couplings depend only on ρ̃ according to

ρ̃∂ρ̃gi = −
1
2

βi(gj) . (31)

Only the particles with mass m2
p . k2 contribute to the functional renormalization flow.

All heavier particles decouple effectively and do no longer contribute to βi. For k larger
than the mass me of the electron one finds the perturbative running of the fine structure
constant. There is therefore a range of ρ̃ for which we expect indeed ρ̃-dependent couplings
and the corresponding time variation. This range is given by ρ̃ . ρ̃dc, with a “decoupling
value” ρdc determined by

m2
e (χ)

k2 =
χ2

k2

(
me

M

)2

≈ 4× 10−44ρ̃dc = 1 . (32)

The running of the fine structure constant stops, however, for ρ̃ & 1045 since no
more charged particles have mass smaller than k. For the cosmic scaling solution (28) this
corresponds to the epoch when the (critical) energy density ρE in the Einstein frame was
larger than ∼ m4

e ,

ρE = 3M2H2 >
3u

Ωeξ2 m4
e . (33)

We conclude that for temperatures larger than a “decoupling temperature” Tdc, which
is roughly in the MeV-range and depends on ũ = u/ξ2 and Ωe, the ρ̃-dependence of
couplings may indeed lead to a small time-variation of the fine structure constant and other
fundamental couplings. This could play a role for the abundance of primordial elements
produced during nucleosynthesis [100–102].

For the subsequent evolution of the Universe (T � Tdc) the ρ̃-dependence of couplings
plays no longer a role. Indeed, for ρ̃/ρ̃dc � 1 the ρ̃-dependence of gauge or Yukawa
couplings stops rapidly due to the decoupling of the charged particles. In a minimal
setting only the neutrinos, photons and cosmon fluctuations matter in this range. They
do not contribute to the corresponding β-functions. This generalizes to the flow of the
ratios ΛQCD(χ)/χ or h0(χ)/χ in the scaling frame. They become independent of ρ̃ for
ρ̃/ρ̃dc � 1. In consequence, in the Einstein frame the confinement scale and Fermi scale
are independent of ϕ. In summary, for the range of ϕ relevant for the present cosmological
epoch all renormalizable couplings of the standard model become independent of ϕ. Thus
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ϕ does not couple to atoms. One expects for the present epoch neither a time variation of
the renormalizable couplings, nor a fifth force.

The situation may differ, however, for dark matter if its constituent is a standard
model singlet as, for example, a very light scalar field. The renormalization flow in
this dark matter sector may induce a non-vanishing dark matter-cosmon coupling for
more recent cosmology [28,59]. Neutrino masses arise from non-renormalizable couplings
in the standard model. They involve the inverse of mass scales from beyond standard
model physics. Without understanding the beyond standard model particle physics a
ϕ-dependence of neutrino masses or dark matter properties remains an open issue. We will
turn to this next.

11. Growing Neutrino Quintessence

Any realistic dynamical dark energy based on a cosmic scaling solution requires an exit
from this solution. Similar to the end of inflation this should be related to some crossover
in the coupling functions. The exit from the scaling solution has to occur in a rather recent
cosmological epoch for values of ρ̃ close to the present value ρ̃0 ≈ 1060. As we have seen
before there is no longer any ρ̃-dependence of the renormalizable couplings of the standard
model in this range of very large ρ̃. Thus a possible crossover has to be associated to the
flow of couplings in the beyond standard model sector. Possible “portals” are neutrino
masses or the dark matter sector. If a cosmic scaling solution plays a role for the radiation
and matter dominated epoch the overall picture involves two crossovers in the flow of
couplings. The first occurs for small ρ̃ and is associated to the end of inflation. The second
occurs for large ρ̃ in the beyond standard model sector, and is associated to the exit from
the cosmic scaling solution and the onset of dark energy domination.

An alternative with possibly only a single crossover are “thawing quintessence” cos-
mologies [6,103,104] for which the post-inflationary dynamics drives ϕ to such large values
that the potential and kinetic energy density of the cosmon field become negligible during
the radiation and matter dominated epochs. The cosmic scaling solution is never reached
in this case. Only in the present cosmological epoch the cosmon potential gives a dominant
contribution to the energy density of the Universe. This thawing scenario requires for the
present range of values of the canonical cosmon field σ̃ a very flat potential. Equivalently,
Z(ϕ) should be large again for present values of ϕ [103,105]. We see at present no convinc-
ing argument why the scaling solution for K(χ) should lead to large values of K both for
χ→ 0 and χ→ ∞, and small values or even negative values in some intermediate region.
If the flow in quantum gravity can exclude such a behavior of K(χ), the second crossover
seems required for a realistic dark energy cosmology.

A particular interesting candidate is a cosmon coupling to neutrinos as discussed
in models of “growing neutrino quintessence” [106,107]. Majorana masses of neutrinos
involve the inverse of a large mass scale Ms. The electroweak gauge symmetry allows only
neutrino masses mν ∼ h2

0/Ms. The small ration h0/Ms explains why neutrino masses are
much smaller than the masses of charged leptons and quarks which are ∼ h0 [108–112].
The scale Ms is a characteristic scale of the beyond standard model sector, often related to
symmetry breaking of B-L (baryon-lepton number) symmetry.

If Ms depends on ϕ in the Einstein frame, the neutrino masses depend on ϕ. The
resulting cosmon coupling to neutrinos leads to an attractive fifth force between neutrinos
in addition to gravity. If Ms(ϕ) decreases with increasing ϕ the neutrino masses grow.
This can stop effectively the increase of ϕ as soon as neutrinos become non-relativistic,
producing on exit from the cosmic scaling solution. Once the increase of ϕ is stopped,
the potential V(ϕ) acts very similar to a cosmological constant, with equation of state
parameter for quintessence close to −1. Suitable “growing neutrino quintessence” models
based on this simple mechanism seem to be compatible with observation. They lead to an
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interesting relation between the present dark energy density ρ
(0)
h and a suitably averaged

present neutrino mass m(0)
ν [106],

(
ρ
(0)
h
) 1

4 = 1.27
(

γ̃(t0)mν(t0)

eV

)
· 10−3 eV . (34)

Here, γ̃ is a dimensionless quantity characterizing the growth rate of the neutrino
masses. The observed present dark energy density is obtained by γ̃(t0)mν(t0) = 6.15 eV,
compatible with γ̃(t0) of the rough order one for mν(t0) in the sub-eV-range. In other
words, the exit from the scaling solution triggered by neutrinos becoming non-relativistic
occurs more or less at the right moment for the observed limits on neutrino masses.

Not much is known at present about the possibility of a suitable crossover in the space
of beyond standard model couplings. We will therefore not dwell further on this interesting
topic in the present note and refer to refs. [106,107,113–115].

In conclusion, we have explored in this note the possible impact of quantum gravity
on our understanding of inflation and dark energy. A central point is the scaling solution
for the functional flow equations in the presence of metric fluctuations. Its existence is
required if gravity can be described by a complete and consistent quantum field theory for
the metric and a scalar field. The short distance limit of this scaling solution defines an ul-
traviolet fixed point which permits the extrapolation of quantum gravity to arbitrarily short
distances. The scaling solution has to obey a complex system of non-linear differential flow
or renormalization group equations. Its existence and properties place many restrictions on
the models used to describe inflation and quintessence. In particular, fundamental scale
invariance is a very predictive scheme for a given content of fields or particles.

The scaling solution fixes the qualitative properties of the effective potential for the
scalar field that plays the role of the inflaton in early cosmology and the cosmon for late
cosmology. Its non-polynomial properties are unfamiliar in perturbation theory. The
scaling solution requires an almost constant effective potential U(χ) for the cosmon, or
more generally along the “cosmon valley” defined by a relative minimum with respect to
additional scalar fields. The scaling solution also fixes the qualitative behavior of the field
dependence of the coefficient F(χ) of the curvature scalar. It goes to a constant for χ→ 0,
and increases ∼ χ2 for χ→ ∞.

The still rather limited results on the functional flow in quantum gravity have been
found to entail important consequences for quintessential inflation. The most striking
feature is a crossover in the effective potential V(ϕ) in the Einstein frame, as shown in
Figure 1. This comes in pair with an exponential decrease of V(ϕ) to zero for ϕ→ ∞. The
latter solves the cosmological constant problem asymptotically for runaway cosmologies
for which ϕ increases without bounds towards the infinite future.

The simple behavior of the scaling solution and the associated quantum scale symme-
try solve the issues of “naturalness” and “fine tuning” for the cosmological constant, the
tiny mass of the cosmon and the suppressed cosmon-atom couplings. Small quantities are
related to symmetries or dynamics. A possible critical discussion of naturalness should
argue why the qualitative behavior of the curves shown in Figure 2 is problematic. The
Weyl transformation to the Einstein frame obscures the simplicity by introducing an addi-
tional large mass M in the field transformation, which is not a parameter of the quantum
field theory.

The high predictivity of fundamental scale invariance puts it in danger to fail. A next
important step will be an understanding of the scaling solution for the kinetial K(χ). If
a given model fails to find the increase of K(χ) to large values for χ → 0, it would not
be compatible with the slow roll behavior during inflation. (Possible ways to circumvent
this statement are a very small value of u that seems not realized by scaling solutions,
or Starobinski inflation [1] based on a very large coefficient of the term quadratic in the
curvature scale R2). If it fails to describe the decrease of K(χ) to small values as χ increases,
it will not allow an end of inflation. And if K(χ) does not come close to the conformal fixed
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point for χ→ ∞, there will be too much early dark energy for a cosmic scaling solution to
be compatible with observation.

An approach that can fail at many places is also interesting: it can be tested. Finding
the required qualitative properties can give some confidence that the approach goes into
the right direction. In this case a quantitative study for given particle physics models
may predict the observable properties of inflation and dynamical dark energy. In turn,
observations of the primordial fluctuation spectrum may place restrictions on the micro-
scopic models that allow to render quantum gravity complete. It is well conceivable that
the rapid crossover in the kinetial required for a realistic primordial fluctuation spectrum
hints towards a crossover in a sector beyond a single cosmon coupled to gravity. This
crossover could concern pregeometry [62], or be linked to the spontaneous breaking of a
grand unified symmetry.

The overall picture of cosmology resulting from the scaling solution of quantum
gravity is strikingly simple. The infinite past is “great emptiness” [116], a state with
unbroken exact scale symmetry and vanishing expectation values of the metric and scalar
fields. The inhomogeneous fluctuations dominate. This state is unstable with respect
to a slow increase of the expectation value of the metric gµν and scalar field χ. Once
the expectation values dominate, the Universe becomes homogeneous, as described by
inflationary cosmology. In the infinite future quantum scale symmetry becomes again
exact due to an infrared fixed point. This symmetry is broken spontaneously by a nonzero
value of χ, rendering most particles massive while producing a massless Goldstone boson.
The renormalization flow between the UV- and IR-fixed points is characterized by two
crossovers, which translate to crossovers in the dependence of coupling functions on χ. The
first crossover ends inflation. The second crossover triggers the transition to the present
dark energy dominated Universe.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [CrossRef]
2. Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356.

[CrossRef]
3. Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535.
4. Linde, A. Chaotic inflation. Phys. Lett. B 1983, 129, 177–181. [CrossRef]
5. Shafi, Q.; Wetterich, C. Cosmology from higher-dimensional gravity. Phys. Lett. B 1983, 129, 387–391. [CrossRef]
6. Wetterich, C. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 1988, 302, 668–696. [CrossRef]
7. Peebles, P.J.E.; Ratra, B. Cosmology with a Time Variable Cosmological Constant. Astrophys. J. Lett. 1988, 325, L17. [CrossRef]
8. Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406–3427.

[CrossRef]
9. Spokoiny, B. Deflationary Universe scenario. Phys. Lett. B 1993, 315, 40–45. [CrossRef]
10. Peebles, P.J.E.; Vilenkin, A. Quintessential inflation. Phys. Rev. D 1999, 59, 063505. [CrossRef]
11. Peloso, M.; Rosati, F. On the construction of quintessential inflation models. J. High Energy Phys. 1999, 1999, 026. [CrossRef]
12. Dimopoulos, K.; Valle, J. Modeling quintessential inflation. Astropart. Phys. 2002, 18, 287–306. [CrossRef]
13. Giovannini, M. Low-scale quintessential inflation. Phys. Rev. D 2003, 67, 123512. [CrossRef]
14. Brax, P.; Martin, J. Coupling quintessence to inflation in supergravity. Phys. Rev. D 2005, 71, 063530. [CrossRef]
15. Guendelman, E.; Herrera, R.; Labrana, P.; Nissimov, E.; Pacheva, S. Emergent Cosmology, Inflation and Dark Energy. Gen. Rel.

Grav. 2015, 47, 10. [CrossRef]
16. Wetterich, C. Cosmon inflation. Phys. Lett. B 2013, 726, 15–22. [CrossRef]
17. Wetterich, C. Inflation, quintessence, and the origin of mass. Nucl. Phys. B 2015, 897, 111–178. [CrossRef]
18. Rubio, J.; Wetterich, C. Emergent scale symmetry: Connecting inflation and dark energy. Phys. Rev. D 2017, 96, 063509. [CrossRef]

http://doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://dx.doi.org/10.1016/0370-2693(83)90125-9
http://dx.doi.org/10.1016/0550-3213(88)90193-9
http://dx.doi.org/10.1086/185100
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1016/0370-2693(93)90155-B
http://dx.doi.org/10.1103/PhysRevD.59.063505
http://dx.doi.org/10.1088/1126-6708/1999/12/026
http://dx.doi.org/10.1016/S0927-6505(02)00115-9
http://dx.doi.org/10.1103/PhysRevD.67.123512
http://dx.doi.org/10.1103/PhysRevD.71.063530
http://dx.doi.org/10.1007/s10714-015-1852-1
http://dx.doi.org/10.1016/j.physletb.2013.08.023
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.019
http://dx.doi.org/10.1103/PhysRevD.96.063509


Galaxies 2022, 10, 50 17 of 19

19. Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Variable gravity: A suitable framework for quintessential inflation.
Phys. Rev. D 2014, 90, 023512. [CrossRef]

20. Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Class of quintessential inflation models with parameter space consistent
with BICEP2. Phys. Rev. D 2014, 89, 123513. [CrossRef]

21. Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Unification of inflation and dark energyà laquintessential inflation. Int.
J. Mod. Phys. D 2015, 24, 1530014. [CrossRef]

22. De Haro, J.; Saló, L.A. A review of Quintessential Inflation. Galaxies 2021, 9, 73. [CrossRef]
23. Bettoni, D.; Rubio, J. Quintessential inflation: A tale of emergent and broken symmetries. Galaxies 2022, 10, 22. [CrossRef]
24. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [CrossRef]
25. Wetterich, C. Quantum scale symmetry. arXiv 2019, arXiv:1901.04741. Available online: https://arxiv.org/pdf/1901.04741.pdf

(accessed on 25 February 2022).
26. Wetterich, C. Cosmologies with variable Newton’s “constant”. Nucl. Phys. B 1988, 302, 645–667. [CrossRef]
27. Damour, T.; Polyakov, A. The string dilation and a least coupling principle. Nucl. Phys. B 1994, 423, 532–558. [CrossRef]
28. Wetterich, C. The Cosmon model for an asymptotically vanishing time dependent cosmological ’constant’. Astron. Astrophys.

1995, 301, 321–328.
29. Chiba, T. Quintessence, the gravitational constant, and gravity. Phys. Rev. D 1999, 60, 083508. [CrossRef]
30. Uzan, J.P. Cosmological scaling solutions of nonminimally coupled scalar fields. Phys. Rev. D 1999, 59, 123510. [CrossRef]
31. Dvali, G.; Zaldarriaga, M. Changing αwith Time: Implications for Fifth-Force-Type Experiments and Quintessence. Phys. Rev.

Lett. 2002, 88, 091303. [CrossRef] [PubMed]
32. Wetterich, C. Probing quintessence with time variation of couplings. J. Cosmol. Astropart. Phys. 2003, 2003, 002. [CrossRef]
33. Damour, T.; Piazza, F.; Veneziano, G. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D 2002, 66,

046007. [CrossRef]
34. Wetterich, C. Cosmology with Varying Scales and Couplings. In Strong and Electroweak Matter 2002; World Scientific: Singapore,

2003; pp. 230–249.
35. Wetterich, C. Variable gravity Universe. Phys. Rev. D 2014, 89, 024005. [CrossRef]
36. Dicke, R.H. Mach’s Principle and Invariance under Transformation of Units. Phys. Rev. 1962, 125, 2163–2167. [CrossRef]
37. Bertolami, O. Time Dependent Cosmological Term. Nuovo Cim. B 1986, 93, 36–42. [CrossRef]
38. Ford, L.H. Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 1987, 35, 2339–2344. [CrossRef]
39. Weiss, N. Possible Origins of a Small Nonzero Cosmological Constant. Phys. Lett. B 1987, 197, 42–44. [CrossRef]
40. Weyl, H. Gravitation and electricity. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1918, 1918, 465. [CrossRef]
41. Fakir, R.; Habib, S.; Unruh, W. Cosmological density perturbations with modified gravity. Astrophys. J. 1992, 394, 396. [CrossRef]
42. Damour, T.; Esposito-Farese, G. Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 1992, 9, 2093–2176. [CrossRef]
43. Catena, R.; Pietroni, M.; Scarabello, L. Einstein and Jordan frames reconciled: A frame-invariant approach to scalar-tensor

cosmology. Phys. Rev. D 2007, 76, 084039. [CrossRef]
44. Deruelle, N.; Sasaki, M. Conformal Equivalence in Classical Gravity: The Example of “Veiled” General Relativity. arXiv 2010,

arXiv:1007.3563. Available online: https://arxiv.org/pdf/1007.3563.pdf (accessed on 25 February 2022).
45. Chiba, T.; Yamaguchi, M. Conformal-frame (in)dependence of cosmological observations in scalar-tensor theory. J. Cosmol.

Astropart. Phys. 2013, 2013, 040. [CrossRef]
46. Wetterich, C. Eternal Universe. Phys. Rev. D 2014, 90, 043520. [CrossRef]
47. Postma, M.; Volponi, M. Equivalence of the Einstein and Jordan frames. Phys. Rev. D 2014, 90, 103516. [CrossRef]
48. Järv, L.; Kuusk, P.; Saal, M.; Vilson, O. Invariant quantities in the scalar-tensor theories of gravitation. Phys. Rev. D 2015, 91,

024041. [CrossRef]
49. Järv, L.; Kannike, K.; Marzola, L.; Racioppi, A.; Raidal, M.; Rünkla, M.; Saal, M.; Veermäe, H. Frame-Independent Classification of

Single-Field Inflationary Models. Phys. Rev. Lett. 2017, 118, 151302. [CrossRef]
50. Karamitsos, S.; Pilaftsis, A. Frame covariant nonminimal multifield inflation. Nucl. Phys. B 2018, 927, 219–254. [CrossRef]
51. Wetterich, C. Universe without expansion. Phys. Dark Universe 2013, 2, 184–187. [CrossRef]
52. Henz, T.; Pawlowski, J.; Wetterich, C. Scaling solutions for dilaton quantum gravity. Phys. Lett. B 2017, 769, 105–110. [CrossRef]
53. Frieman, J.A.; Hill, C.T.; Stebbins, A.; Waga, I. Cosmology with Ultralight Pseudo Nambu-Goldstone Bosons. Phys. Rev. Lett.

1995, 75, 2077–2080. [CrossRef] [PubMed]
54. Ferreira, P.G.; Joyce, M. Structure Formation with a Self-Tuning Scalar Field. Phys. Rev. Lett. 1997, 79, 4740–4743. [CrossRef]
55. Viana, P.T.P.; Liddle, A.R. Perturbation evolution in cosmologies with a decaying cosmological constant. Phys. Rev. D 1998, 57,

674–684. [CrossRef]
56. Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57,

4686–4690. [CrossRef]
57. Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation of State. Phys.

Rev. Lett. 1998, 80, 1582–1585. [CrossRef]
58. Amendola, L. Scaling solutions in general nonminimal coupling theories. Phys. Rev. D 1999, 60, 043501. [CrossRef]
59. Amendola, L. Coupled quintessence. Phys. Rev. D 2000, 62, 043511. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.90.023512
http://dx.doi.org/10.1103/PhysRevD.89.123513
http://dx.doi.org/10.1142/S0218271815300141
http://dx.doi.org/10.3390/galaxies9040073
http://dx.doi.org/10.3390/galaxies10010022
http://dx.doi.org/10.1103/RevModPhys.61.1
https://arxiv.org/pdf/1901.04741.pdf
http://dx.doi.org/10.1016/0550-3213(88)90192-7
http://dx.doi.org/10.1016/0550-3213(94)90143-0
http://dx.doi.org/10.1103/PhysRevD.60.083508
http://dx.doi.org/10.1103/PhysRevD.59.123510
http://dx.doi.org/10.1103/PhysRevLett.88.091303
http://www.ncbi.nlm.nih.gov/pubmed/11863992
http://dx.doi.org/10.1088/1475-7516/2003/10/002
http://dx.doi.org/10.1103/PhysRevD.66.046007
http://dx.doi.org/10.1103/PhysRevD.89.024005
http://dx.doi.org/10.1103/PhysRev.125.2163
http://dx.doi.org/10.1007/BF02728301
http://dx.doi.org/10.1103/PhysRevD.35.2339
http://dx.doi.org/10.1016/0370-2693(87)90338-8
http://dx.doi.org/10.1038/106800a0
http://dx.doi.org/10.1086/171591
http://dx.doi.org/10.1088/0264-9381/9/9/015
http://dx.doi.org/10.1103/PhysRevD.76.084039
https://arxiv.org/pdf/1007.3563.pdf
http://dx.doi.org/10.1088/1475-7516/2013/10/040
http://dx.doi.org/10.1103/PhysRevD.90.043520
http://dx.doi.org/10.1103/PhysRevD.90.103516
http://dx.doi.org/10.1103/PhysRevD.91.024041
http://dx.doi.org/10.1103/PhysRevLett.118.151302
http://dx.doi.org/10.1016/j.nuclphysb.2017.12.015
http://dx.doi.org/10.1016/j.dark.2013.10.002
http://dx.doi.org/10.1016/j.physletb.2017.01.057
http://dx.doi.org/10.1103/PhysRevLett.75.2077
http://www.ncbi.nlm.nih.gov/pubmed/10059208
http://dx.doi.org/10.1103/PhysRevLett.79.4740
http://dx.doi.org/10.1103/PhysRevD.57.674
http://dx.doi.org/10.1103/PhysRevD.57.4686
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevD.60.043501
http://dx.doi.org/10.1103/PhysRevD.62.043511


Galaxies 2022, 10, 50 18 of 19

60. Galante, M.; Kallosh, R.; Linde, A.; Roest, D. Unity of Cosmological Inflation Attractors. Phys. Rev. Lett. 2015, 114, 141302.
[CrossRef]

61. Kallosh, R.; Linde, A.; Roest, D. Universal Attractor for Inflation at Strong Coupling. Phys. Rev. Lett. 2014, 112, 011303. [CrossRef]
62. Wetterich, C. Cosmology from pregeometry. Phys. Rev. D 2021, 104, 104040. [CrossRef]
63. Ade, P.A.R.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R.B.; Bischoff, C.A.; Beck, D.; Bock, J.J.; Boenish, H.; Bullock, E.; et al.

Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018
Observing Season. Phys. Rev. Lett. 2021, 127, 151301. [CrossRef] [PubMed]

64. Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.;
et al. Planck2018 results. Astron. Astrophys. 2020, 641, A10.

65. Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [CrossRef]
66. Reuter, M.; Wetterich, C. Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B 1994, 417,

181–214. [CrossRef]
67. Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971. [CrossRef]
68. Henz, T.; Pawlowski, J.; Rodigast, A.; Wetterich, C. Dilaton quantum gravity. Phys. Lett. B 2013, 727, 298–302. [CrossRef]
69. Wetterich, C. Effective scalar potential in asymptotically safe quantum gravity. Universe 2020, 7, 45. [CrossRef]
70. Eichhorn, A.; Pauly, M. Constraining power of asymptotic safety for scalar fields. Phys. Rev. D 2021, 103, 026006. [CrossRef]
71. Laporte, C.; Pereira, A.D.; Saueressig, F.; Wang, J. Scalar-tensor theories within Asymptotic Safety. J. High Energy Phys. 2021, 2021,

1–50. [CrossRef]
72. Weinberg, S. Ultraviolet divergences in quantum theories of gravitation. In General Relativity: An Einstein Centenary Survey;

Cambridge University Press: Cambridge, UK, 1980; pp. 790–813.
73. Souma, W. Non-Trivial Ultraviolet Fixed Point in Quantum Gravity. Prog. Theor. Phys. 1999, 102, 181. [CrossRef]
74. Dou, D.; Percacci, R. The running gravitational couplings. Class. Quant. Grav. 1998, 15, 3449. [CrossRef]
75. Reuter, M.; Saueressig, F. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. D 2002,

65, 065016. [CrossRef]
76. Lauscher, O.; Reuter, M. Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 2001, 65, 025013.

[CrossRef]
77. Narain, G.; Percacci, R. Renormalization group flow in scalar-tensor theories: I. Class. Quantum Gravity 2010, 27, 075001. [CrossRef]
78. Donà, P.; Eichhorn, A.; Labus, P.; Percacci, R. Asymptotic safety in an interacting system of gravity and scalar matter. Phys. Rev.

D 2016, 93, 044049. [CrossRef]
79. Bonanno, A.; Eichhorn, A.; Gies, H.; Pawlowski, J.M.; Percacci, R.; Reuter, M.; Saueressig, F.; Vacca, G.P. Critical reflections on

asymptotically safe gravity. Front. Phys. 2020, 8, 269. [CrossRef]
80. Stelle, K.S. Renormalization of higher-derivative quantum gravity. Phys. Rev. D 1977, 16, 953. [CrossRef]
81. Fradkin, E.S.; Tseytlin, A.A. Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B 1982, 201, 469. [CrossRef]
82. Avramidy, I.G.; Barvinsky, A.O. Asymptotic freedom in higher-derivative quantum gravity. Phys. Lett. B 1985, 159, 269. [CrossRef]
83. Sen, S.; Wetterich, C.; Yamada, M. Asymptotic freedom and safety in quantum gravity. arXiv 2021, arXiv:2111.04696.
84. Wetterich, C. Fundamental Scale Invariance. Nucl. Phys. B 2021, 964, 115326. [CrossRef]
85. Wetterich, C. Gauge invariant flow equation. Nucl. Phys. B 2018, 931, 262–282. [CrossRef]
86. Pawlowski, J.M.; Reichert, M.; Wetterich, C.; Yamada, M. Higgs scalar potential in asymptotically safe quantum gravity. Phys.

Rev. D 2019, 99, 086010. [CrossRef]
87. Wetterich, C.; Yamada, M. Variable Planck mass from the gauge invariant flow equation. Phys. Rev. D 2019, 100, 066017.

[CrossRef]
88. Wetterich, C. Quantum correlations for the metric. Phys. Rev. D 2017, 95, 123525. [CrossRef]
89. Wetterich, C. Graviton fluctuations erase the cosmological constant. Phys. Lett. B 2017, 773, 6–19. [CrossRef]
90. Tetradis, N.; Wetterich, C. Scale dependence of the average potential around the maximum in φ4 theories. Nucl. Phys. B 1992, 383,

197–217. [CrossRef]
91. Wetterich, C. Primordial flat frame—A new view on inflation. Phys. Rev. D 2021, 104, 083525. [CrossRef]
92. Wetterich, C. Phenomenological parameterization of quintessence. Phys. Lett. B 2004, 594, 17–22. [CrossRef]
93. Doran, M.; Robbers, G. Early dark energy cosmologies. J. Cosmol. Astropart. Phys. 2006, 2006, 026. [CrossRef]
94. Gómez-Valent, A.; Zheng, Z.; Amendola, L.; Pettorino, V.; Wetterich, C. Early dark energy in the pre- and postrecombination

epochs. Phys. Rev. D 2021, 104, 083536. [CrossRef]
95. Wetterich, C. Primordial cosmic fluctuations for variable gravity. J. Cosmol. Astropart. Phys. 2016, 2016, 041. [CrossRef]
96. Shaposhnikov, M.; Zenhäusern, D. Scale invariance, unimodular gravity and dark energy. Phys. Lett. B 2009, 671, 187–192. [CrossRef]
97. García-Bellido, J.; Rubio, J.; Shaposhnikov, M.; Zenhäusern, D. Higgs-dilaton cosmology: From the early to the late Universe.

Phys. Rev. D 2011, 84, 123504. [CrossRef]
98. Ferreira, P.G.; Hill, C.T.; Noller, J.; Ross, G.G. Inflation in a scale-invariant universe. Phys. Rev. D 2018, 97, 123516. [CrossRef]
99. Shaposhnikov, M.; Tkachev, I. Quantum scale invariance on the lattice. Phys. Lett. B 2009, 675, 403–406. [CrossRef]
100. Müller, C.M.; Schäfer, G.; Wetterich, C. Nucleosynthesis and the variation of fundamental couplings. Phys. Rev. D 2004, 70,

083504. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.114.141302
http://dx.doi.org/10.1103/PhysRevLett.112.011303
http://dx.doi.org/10.1103/PhysRevD.104.104040
http://dx.doi.org/10.1103/PhysRevLett.127.151301
http://www.ncbi.nlm.nih.gov/pubmed/34678017
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1016/0550-3213(94)90543-6
http://dx.doi.org/10.1103/PhysRevD.57.971
http://dx.doi.org/10.1016/j.physletb.2013.10.015
http://dx.doi.org/10.3390/universe7020045
http://dx.doi.org/10.1103/PhysRevD.103.026006
http://dx.doi.org/10.1007/JHEP12(2021)001
http://dx.doi.org/10.1143/PTP.102.181
http://dx.doi.org/10.1088/0264-9381/15/11/011
http://dx.doi.org/10.1103/PhysRevD.65.065016
http://dx.doi.org/10.1103/PhysRevD.65.025013
http://dx.doi.org/10.1088/0264-9381/27/7/075001
http://dx.doi.org/10.1103/PhysRevD.93.044049
http://dx.doi.org/10.3389/fphy.2020.00269
http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1016/0550-3213(82)90444-8
http://dx.doi.org/10.1016/0370-2693(85)90248-5
http://dx.doi.org/10.1016/j.nuclphysb.2021.115326
http://dx.doi.org/10.1016/j.nuclphysb.2018.04.020
http://dx.doi.org/10.1103/PhysRevD.99.086010
http://dx.doi.org/10.1103/PhysRevD.100.066017
http://dx.doi.org/10.1103/PhysRevD.95.123525
http://dx.doi.org/10.1016/j.physletb.2017.08.002
http://dx.doi.org/10.1016/0550-3213(92)90676-3
http://dx.doi.org/10.1103/PhysRevD.104.083525
http://dx.doi.org/10.1016/j.physletb.2004.05.008
http://dx.doi.org/10.1088/1475-7516/2006/06/026
http://dx.doi.org/10.1103/PhysRevD.104.083536
http://dx.doi.org/10.1088/1475-7516/2016/05/041
http://dx.doi.org/10.1016/j.physletb.2008.11.054
http://dx.doi.org/10.1103/PhysRevD.84.123504
http://dx.doi.org/10.1103/PhysRevD.97.123516
http://dx.doi.org/10.1016/j.physletb.2009.04.040
http://dx.doi.org/10.1103/PhysRevD.70.083504


Galaxies 2022, 10, 50 19 of 19

101. Dent, T.; Stern, S.; Wetterich, C. Primordial nucleosynthesis as a probe of fundamental physics parameters. Phys. Rev. D 2007, 76,
063513. [CrossRef]

102. Coc, A.; Nunes, N.J.; Olive, K.A.; Uzan, J.P.; Vangioni, E. Coupled variations of fundamental couplings and primordial
nucleosynthesis. Phys. Rev. D 2007, 76, 023511. [CrossRef]

103. Hebecker, A.; Wetterich, C. Natural quintessence? Phys. Lett. B 2001, 497, 281–288. [CrossRef]
104. Linder, E.V. The dynamics of quintessence, the quintessence of dynamics. Gen. Relativ. Gravit. 2007, 40, 329–356. [CrossRef]
105. Wetterich, C. Crossover quintessence and cosmological history of fundamental “constants”. Phys. Lett. B 2003, 561, 10–16. [CrossRef]
106. Amendola, L.; Baldi, M.; Wetterich, C. Quintessence cosmologies with a growing matter component. Phys. Rev. D 2008, 78,

023015. [CrossRef]
107. Wetterich, C. Growing neutrinos and cosmological selection. Phys. Lett. B 2007, 655, 201–208. [CrossRef]
108. Minkowski, P. μ→eγ at a rate of one out of 109 muon decays? Phys. Lett. B 1977, 67, 421–428. [CrossRef]
109. Yanagida, T. Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C 1979, 7902131, 95–99.
110. Gell-Mann, M.; Ramond, P.; Slansky, R. Complex Spinors and Unified Theories. Conf. Proc. C 1979, 790927, 315–321.
111. Magg, M.; Wetterich, C. Neutrino mass problem and gauge hierarchy. Phys. Lett. B 1980, 94, 61–64. [CrossRef]
112. Lazarides, G.; Shafi, Q.; Wetterich, C. Proton lifetime and fermion masses in an SO(10) model. Nucl. Phys. B 1981, 181, 287–300.

[CrossRef]
113. Mota, D.; Pettorino, V.; Robbers, G.; Wetterich, C. Neutrino clustering in growing neutrino quintessence. Phys. Lett. B 2008, 663,

160–164. [CrossRef]
114. Ayaita, Y.; Baldi, M.; Führer, F.; Puchwein, E.; Wetterich, C. Nonlinear growing neutrino cosmology. Phys. Rev. D 2016, 93, 063511.

[CrossRef]
115. Casas, S.; Pettorino, V.; Wetterich, C. Dynamics of neutrino lumps in growing neutrino quintessence. Phys. Rev. D 2016, 94,

103518. [CrossRef]
116. Wetterich, C. The great emptiness at the beginning of the Universe. Phys. Lett. B 2021, 818, 136355. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.76.063513
http://dx.doi.org/10.1103/PhysRevD.76.023511
http://dx.doi.org/10.1016/S0370-2693(00)01339-3
http://dx.doi.org/10.1007/s10714-007-0550-z
http://dx.doi.org/10.1016/S0370-2693(03)00383-6
http://dx.doi.org/10.1103/PhysRevD.78.023015
http://dx.doi.org/10.1016/j.physletb.2007.08.060
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1016/0370-2693(80)90825-4
http://dx.doi.org/10.1016/0550-3213(81)90354-0
http://dx.doi.org/10.1016/j.physletb.2008.03.060
http://dx.doi.org/10.1103/PhysRevD.93.063511
http://dx.doi.org/10.1103/PhysRevD.94.103518
http://dx.doi.org/10.1016/j.physletb.2021.136355

	Introduction
	Overall Picture
	Single Scalar Field
	Naturalness and Fine Tuning
	Variable Gravity
	Crossover Cosmology
	Scaling Solution in (Dilaton) Quantum Gravity
	Quantum Scale Symmetry
	Cosmological Scaling Solution
	Cosmon Coupling to Matter
	Growing Neutrino Quintessence
	References

