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Abstract: The postulate of universal conformal (local Weyl scaling) symmetry modifies both general
relativity and the Higgs scalar field model. The conformal Higgs model (CHM) generates an effective
cosmological constant that fits the observed accelerating Hubble expansion for redshifts z < 1
(7.33 Gyr) accurately with only one free parameter. Growth of a galaxy is modeled by the central
accumulation of matter from an enclosing empty spherical halo whose radius expands with depletion.
Details of this process account for the nonclassical, radial centripetal acceleration observed at excessive
orbital velocities in galactic haloes. There is no need for dark matter.
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1. Introduction

Universal conformal symmetry, requiring local Weyl scaling covariance [1-4] of all
elementary physical fields [5], offers a paradigm alternative to consensus ACDM for cos-
mology, motivated by the absence of experimental confirmation of conjectured dark matter
and need for an explanation of currently accelerating Hubble expansion. The conformal
Higgs model (CHM) [6-9] retains the Higgs mechanism for gauge boson mass, but ac-
quires a gravitational term in the scalar field Lagrangian density. The CHM determines
centrifugal cosmic acceleration accurately for redshifts z < 1 (7.33 Gyr) [6,7]. Conformal
gravity (CG) replaces the Einstein-Lagrangian density by a quadratic contraction of the
conformal Weyl tensor [3,10-14]. Substantial empirical support for this proposed break
with convention is provided by applications of CG to anomalous galactic rotation velocities.
CG has recently been fitted to rotation data for 138 galaxies [15-19]. The CHM precludes
the existence of a massive Higgs particle, but conformal theory is found to be compatible
with a compound gauge diboson, W, of mass 125 GeV [20], consistent with the observed
LHC resonance [21,22]. Fits of CG and the CHM to observed galactic and cosmological
data do not require dark matter [9].

2. Dark Matter

When it became possible to measure orbital velocities in the outer reaches of galaxies,
they were found to systematically exceed the uniformly decreasing value implied by
standard Einstein/Newton gravity. The general functional form of v(r) was observed to
level off at a characteristic radial acceleration of ay ~ 1071 m/s2. This led to the conjecture
that standard gravity, due to observed galactic mass, was augmented by some additional
gravitational source. Since this source was not directly observed, it was called dark matter.

Alternatively, general relativity might be modified to account for this excess cen-
tripetal acceleration. The most successful model assumes modified Newtonian dynamics
(MOND) [23,24]. The basic postulate for radial acceleration a, given Newtonian ay, is that
a? — anag for ay < ap.

When conformal gravity (CG) is applied to a Schwarzschild model (a central grav-
itational source with spherical symmetry), it has an exact solution in the form of the
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Schwarzschild radial potential, B(r) [10,13], for constants related by a2 =1-— 6By [13].
Outside a source of a finite radius [10],

B(r) = —2B/7r+a +yr — k12, 1)

B(r) determines circular geodesics with orbital velocity, v, such that 2/ = ra/c® =
%rB’(r) = B/r+ %'yr — xr2. The Kepler formula is ran/c® = B/r, from a 2nd-order
equation. The 4th-order conformal equation introduces two additional constants of motion,
radial acceleration, -, and a cutoff parameter, ¥, which determines the radius of a galactic
halo [8]. Classical gravitation is retained at subgalactic distances by setting 8 = Gm /c? for
a spherical source of mass m [3].

The depleted halo model [8], described below, treats all matter outside a defined
galactic radius as uniform and isotropic. Only spherical symmetry is considered. Following
Mannheim and Kazanas [11], galactic mass within this radius is essentially treated by
classical gravitation, describing a detailed, nonspherical geometric structure. Dark matter
is replaced by the anomalous acceleration parameter v [10].

An alternative to the multiplicative postulate of MOND is provided by the additive
acceleration parameter 9, which has the conceptual advantage of arising from a well-
defined variational field theory. Fits to anomalous galactic rotational velocities by CG and
MOND are of comparable accuracy in the flat velocity range. However, the halo cutoff
parameter x, unique to CG, is found to be relevant at very large galactic radii [16,17,25].

3. Dark Energy and Hubble Expansion

The Higgs scalar field [26,27] is an essential element of electroweak physics. It has a
spontaneously generated finite amplitude, constant in spacetime, responsible for the finite
mass of gauge bosons and fermions. Retaining Higgs V(®'®) = —(w? — A®T®)dT®,
which depends on the two assumed constants w? and A [26,27], the postulate of universal
conformal symmetry [5] requires the CHM Higgs-Lagrangian density to acquire a gravita-
tional term, — %Rqﬁd) [3], where R = g,y R"", a trace of the Ricci tensor. The variation of
Ricci R on a cosmic time scale implies a very small, but universal, source density for the Z,
neutral gauge field. Dressing of the scalar field by Z, determines the Higgs parameter w?,
and dressing by diboson W, determines A [20]. These two parameters and Ricci scalar R
imply finite ® amplitude and broken gauge and conformal symmetry.

In the uniform, isotropic cosmic geometry assumed for cosmology, the CHM implies
a Friedmann cosmic evolution equation [5,7] with parameters determined by the scalar
Higgs field. This modified Friedmann equation contains an effective cosmological constant,
defining dark energy density. The integrated luminosity distance, computed as a function of
redshift, fits observed data back to the CMB (cosmic microwave background) [6]. Omitting
cosmic mass and curvature, the fit to observed Hubble expansion data, with centrifugal
acceleration, is accurate back to redshift z = 1(7.33Gyr) [7].

4. Depleted Halo Model

CG and the CHM are consistent, but interdependent [9], in the context of a depleted
dark halo model [8] for an isolated galaxy. A galaxy of mass M is modeled by a spherically
averaged mass density, pg /c?, within an effective galactic radius rg, formed by the conden-
sation of primordial uniform, isotropic matter of uniform mass density p,;/c?. A model
valid for nonclassical gravitation can take advantage of spherical symmetry at large galac-
tic radii, assuming classical gravitation within ;. Nonspherical gravitation is neglected
outside r¢. The dark halo inferred from gravitational lensing and centripetal acceleration is
identified with the resulting depleted sphere of a large radius, ry [8]. Given mean mass
density, pg /c?, within rg, this implies an empty halo radius of rg = r5 (g /om) 5.

CG determines source-free Schwarzschild potential, B(r), as Equation (1) outside
a galactic radius r¢ [3,10]. As shown in detail below, the physically relevant particular
solution for B(r) [9] incorporates nonclassical radial acceleration, v, as a free parameter. Its
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value is determined by the halo model. Gravitational lensing by a spherical halo is observed
as the centripetal deflection of a photon geodesic passing from the external intergalactic
space with a postulated universal isotropic mass-energy density of p;; into the empty halo
sphere. The conformal Friedmann cosmic evolution equation implies dimensionless cosmic
acceleration parameters (;(p) [8], which are locally constant but differ across the halo
boundary rg. Smooth evolution of the cosmos implies an observable centripetal particle
acceleration  within ry proportional to 0, (in) — Q4(out) = Og(0) — Q4 (om). Uniform
cosmological p;; implies a constant 7y for r < rp, independent of galactic mass [9]. This
surprising result is consistent with recent observations of galactic rotational velocities for
galaxies with directly measured mass [25,28], implying that radial acceleration, a, observed
as orbital velocity, is a function of Newtonian ay, independent of orbital radius and galactic
mass.

In the CHM, observed nonclassical gravitational acceleration, %’ycz, in the halo is
proportional to [8] AQY; = Q;(0) — Qy(om) = Quulpm), Where, given p,,, and Hy, Qi (0m) =
-2
7 from uniform universal cosmic baryonic mass density p;; /c2, which includes radiation

energy density here.

[6], for the Hubble constant Hy and T < 0. Thus, the halo model determines constant

5. Consistency of CG and CHM

CG and CHM must be consistent for an isolated galaxy and its dark halo, observed
by gravitational lensing. CG is valid for anomalous outer galactic rotation velocities in the
static spherical Schwarzschild metric, solving a differential equation for Schwarzschild
gravitational potential, B(r) [3,10]. The CHM is valid for cosmic Hubble expansion in the
uniform, isotropic FLRW metric, solving a differential equation for the Friedmann scale
factor, a(t) [6]. Concurrent validity is achieved by introducing a common hybrid metric:

2
AL 2. ?)

2 _ UiV — 2 2
ds® = gudxtdx B(r)dt- +a (t)(B(r)

Metric tensor gy, is determined by conformal field equations derived from L¢ + Lo [8],
driven by the energy-momentum tensor ®),, where subscript m refers to conventional
matter and radiation. The gravitational field equation within the halo radius r is:

1
Xy + Xy =50, ®3)

where X is a metric functional derivative [3,9]. The gravitational equations are decoupled
by separating mass/energy source density, o, into uniform isotropic mean density, p, and
residual p = p — p, which extends only to the galactic radius r¢ and integrates to zero over
the defining volume. Defining mean density, p;, and residual density, o = pg — pg, and
assuming @}, (p) =~ O}, () + @}, (p), solutions for r < r¢ of the two equations

1 . 1 _
Xy = §®%V(Pc)rxg>v = §®%V(Pc) (4)
decouple, implying a solution of the full equation.

6. Computed Parameters of the Schwarzschild Potential, B(r)

Given the mass/energy source density, f(r), enclosed within 7, the Schwarzschild
field equation is [10,13]:

3} (rB(r)) = 1£(r), ®)

for f(r) ~ (@) — @), as determined by the source— energy-momentum tensor @}, [3].
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Derivative functions y;(r) = 9i(rB(r)) for 0 < i < 3 satisfy differential equations [3,9]

0ryi =Yi+1,0<i <2,
ory3 = rf(r). (6)

The general solution, for independent constants ¢; = y;(0), determines the coefficients
B, &, 7y, and « such that at endpoint 7

yo(F) = —2B + af + 47 — k7,
y1(F) = & + 297 — 3k7?,
Y2 (F) = 2y — 6KF,

y3(7) = —6x. 7)

Gravitational potential B(r) is required to be differentiable and free of singularities. ¢y = 0
prevents a singularity at the origin. Specific values of 7y and «, consistent with Hubble
expansion and the observed galactic dark halo [6,8], can be fitted by adjusting c1, c3, and c3,
subject to cp = 0, a2=1— 6B [13].

A particular solution for B(r) [10,13], assumed by previous authors, derives an integral
for «y that vanishes for residual source density p. This is replaced here by an alternative
solution for which v is a free parameter [9]. Since the Weyl tensor vanishes identically in
uniform geometry, CG applies only to the residual density p.

The proposed particular solution, given 7y and « is:

1 rr 1 r
rB(r) = yo(r) = oo q4qu+o¢r — Er./r q3qu
o+ %rz /rqudq —xr’ — %r?’ / 9fdg. ®)

The integrated parameters ¢; = y;(0) are ¢; = a — %for Pfdg, co = 2y + [y 4*fdg,
c3=—6x— [y qfdg, and atr = 7, 2B = % [ q*fdq. Term 12 + 3+ [" q>fdq in this so-
lution differs from prior reference [10]. y here is a free parameter that determines generally
NONZero cy.

For an isolated single spherical solar mass in a galactic halo, mean internal mass
density, po, within 7, determines an exact solution of the conformal Higgs gravitational
equation, giving the internal acceleration Q; (o ). Given <y outside ¢, continuous accelera-
tion across boundary r¢,

o — cHoOy(pe) = 396 — cHyy (0), ©)
determines constant g ;,, which is valid inside 7. 7 ;, is determined by local mean
source density pe. 7y in the halo is not changed. Its value is a constant of integration that
cannot vary in the source-free halo [8,9]. Hence, there is no way to determine a mass-
dependent increment to 7. This replaces the usually assumed y = yg + N*y* by v = vy,
determined at the halo boundary ry.

7. Implications for Cosmology

The common assumption for galactic growth is that a primordially accumulated dark
matter halo subsequently attracts baryonic matter to form an observable galaxy. Conformal
theory, as well as MOND, reverse this sequence, while eliminating the need for dark
matter. The nonclassical CG gravitational acceleration is a byproduct of the gravitational
accumulation of baryonic matter attracted to a growing galaxy. The CHM generates a
uniform, constant, nonclassical centripetal acceleration within a halo of large expanding
radius. The rate of galactic growth must depend on the net incoming flux of matter diffusing
across the halo boundary, where the net gravitational radial acceleration vanishes.
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Galactic collision is initiated by halo contact. Since halo volume is determined by
galactic mass, it must remain constant, implying the distortion of colliding halo boundaries
analogous to the collision of two spherical balloons. A dynamical model must consider
the diffusion of matter across a changing halo boundary. A new, observable phenomenon
affects neighboring galaxies in a galactic cluster. Once halos are in contact, the accessible
source of primordial matter is restricted, thus reducing the rate of growth for both colliding
galaxies. This should be observed as a cessation of growth from the primordial background
in the extreme case of a galaxy completely surrounded by a cluster of contiguous halos.

The empirical correlation relation of McGaugh et al. [28] establishes total radial
acceleration as a function of its baryonic Newtonian value. This implies CG v independent
of galactic mass [25], which places a strong constraint on galactic rotation curves. The
selected particular solution, Equation (8) for B(r), which differs from [10], depends on an
independently determined -y. Resulting nonzero ¢, implies a singular Ricci scalar at the
galactic center [9], relevant to the formation of a supermassive black hole.

Since the coefficient of the source term in the conformal Friedman equation is negative,
primordial energy density must cause centrifugal acceleration. This may create a dynamical
Big Bang in the CHM without requiring a separate field. The relevancy of CHM should be
explored. A weak time-dependence of scalar field @ is implied [6,29]. For large redshifts,
the Friedmann equation for scale factor a(t) and the CHM equation for ®(t) must be
integrated together. A changed Higgs amplitude ¢ affects initial atomic abundances.
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