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Abstract: This review investigates the convergence of artificial intelligence (AI) and personalized
health monitoring through wearable devices, classifying them into three distinct categories: bio-
electrical, bio-impedance and electro-chemical, and electro-mechanical. Wearable devices have
emerged as promising tools for personalized health monitoring, utilizing machine learning to distill
meaningful insights from the expansive datasets they capture. Within the bio-electrical category,
these devices employ biosignal data, such as electrocardiograms (ECGs), electromyograms (EMGs),
electroencephalograms (EEGs), etc., to monitor and assess health. The bio-impedance and electro-
chemical category focuses on devices measuring physiological signals, including glucose levels and
electrolytes, offering a holistic understanding of the wearer’s physiological state. Lastly, the electro-
mechanical category encompasses devices designed to capture motion and physical activity data,
providing valuable insights into an individual’s physical activity and behavior. This review critically
evaluates the integration of machine learning algorithms within these wearable devices, illuminating
their potential to revolutionize healthcare. Emphasizing early detection, timely intervention, and the
provision of personalized lifestyle recommendations, the paper outlines how the amalgamation of
advanced machine learning techniques with wearable devices can pave the way for more effective
and individualized healthcare solutions. The exploration of this intersection promises a paradigm
shift, heralding a new era in healthcare innovation and personalized well-being.

Keywords: wearable devices; personalized; machine learning

1. Introduction

Recent advances in the development of wearable devices have showcased the in-
tegration of machine learning algorithms to enable personalized health monitoring and
intervention systems. These systems leverage advanced algorithms to process data from
various sensors embedded in wearable devices, such as strain gauges, plastic optical fibers,
actuators, and electrochemical sensors, to provide personalized health insights and inter-
ventions [1–4]. The use of machine learning allows these devices to classify and predict
various health-related parameters, including blood glucose levels, blood pressure, stress
levels, and physical activity, tailored to individual users’ needs and health conditions [5–8].

Moreover, the application of machine learning in wearable devices has extended
to personalized healthcare monitoring for specific medical conditions, such as diabetes,
sleep disorders, and neurological rehabilitation [9–11]. These systems utilize AI to analyze
physiological signals, predict disease states, and recommend personalized interventions,
contributing to improved disease management and patient outcomes. The integration of
machine learning in these devices enables the real-time monitoring and interpretation of
health-related data, leading to actionable insights and personalized recommendations for
users’ health management.

Furthermore, the development of personalized wearable devices has been driven by
the need to provide tailored solutions for individuals with specific health conditions, such
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as urinary incontinence, panic attacks, and obsessive compulsive disorder [12–14]. Machine
learning algorithms have been employed to detect and predict these conditions using
sensor data from wearable devices, enabling early intervention and personalized support
for individuals with these health challenges. These advancements highlight the potential
of personalized wearable devices in addressing specific health needs and improving the
quality of life for individuals with diverse health conditions. In recent years, there has been a
notable surge in publications addressing the integration of machine learning methodologies
in wearable devices. This upward trend, as evidenced by Figure 1, underscores the growing
scholarly interest in exploring innovative applications and methodologies at the intersection
of wearable technologies and machine learning algorithms. Simultaneously, a conspicuous
thematic focus has emerged on personalized wearable devices, reflecting researchers’
increasing attention to the customization of wearable solutions. This indicates the massive
potential of personalized wearable devices in patient care and underscores the ongoing
evolution of contemporary academic research in wearable technology.
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Figure 1. The blue plot illustrates number of publications on wearable devices utilizing machine
learning and the orange plot is number of publications on personalized wearable devices using
machine learning [15]. The keywords used were “wearable machine learning” and “personalized
wearable machine learning”. The extrapolated data for 2024 were based on the number of publications
up to 25 January 2024.

The literature review was carried out by refining the papers through the SCOPUS,
Nature, and IEEE-Xplore databases using the search terms “Personalized + Wearable
+ Machine Learning”. Eventually, the investigation methodically categorizes academic
papers into three distinct thematic groups, as illustrated in Figure 2. The first category,
designated as “Bio-electrical Wearable Devices”, delves into topics concerning electrical
phenomena within biological systems, encompassing ECG, EEG, and EMG, among others.
Papers in this category extensively explore the intricacies of bio-electrical processes and
their implications. The second category, denoted as “Electro-Chemical and Bio-Impedance”,
centers on the nuanced interplay between electrical and chemical processes in biological
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systems, with a specific emphasis on bio-impedance dynamics. Lastly, the third category,
termed “Electro-Mechanical,” encompasses papers that investigate the intersection of
electrical and mechanical phenomena within biological contexts. These papers explore
electro-mechanical interactions, exemplified by technologies like gait sensors, stretchable
sensors, and strain gauges. This tripartite categorization system provides a structured
framework, enhancing the comprehension and navigation of the diverse themes presented
in the journal papers.
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2. Bio-Electrical Wearable Devices

Personalized wearable devices that utilize bio-electrical signals, such as ECG, EEG,
and EMG, play a crucial role in revolutionizing healthcare and well-being. These devices
offer the continuous and non-invasive monitoring of physiological signals, providing
valuable insights into an individual’s health status and enabling personalized health
management. The integration of machine learning algorithms with these wearable devices
enhances their capabilities by enabling the analysis of complex bio-electrical data to detect
anomalies, predict health conditions, and provide personalized recommendations. For
instance, machine learning models can be trained to classify ECG signals for blood pressure
estimation [6], EEG signals for emotion recognition [16], and EMG signals for gesture
recognition [17]. This combination of personalized wearable devices and machine learning
holds great promise in advancing preventive healthcare, early disease detection, and
personalized treatment strategies, ultimately leading to improved patient outcomes and
quality of life.

The integration of bio-electrical wearables into healthcare has ushered in a new era,
with machine learning algorithms enhancing their capabilities across a myriad of appli-
cations. In the realm of personalized Parkinson’s disease management, LeMoyne et al.
developed a groundbreaking system using the BioStamp nPoint. By adjusting the ampli-
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tude of the current applied to deep brain stimulation (4.0 mA, 2.5 mA, 1.0 mA, off), this
multilayer neural network was capable of classifying tremor responses with 95% accuracy,
demonstrating the potential for tailored interventions [10]. Moving to the domain of re-
habilitation, LeMoyne et al. undertook a longitudinal investigation spanning 10 months.
During this study, a smartphone affixed to the foot with an armband was employed to
capture gyro data and transfer them to the cloud. The gathered data encompassed key
metrics such as the maximum, minimum, mean, standard deviation, and coefficient of
variation of the gyroscope signal. Subsequently, a support vector machine, facilitated by
the Waikato Environment for Knowledge Analysis (WEKA), was employed to classify
the gyroscope-acquired data in order to distinguish between the initial and final phases
of the therapy regimen. The evaluation of the data demonstrates the effectiveness of the
rehabilitation process [18].

Transitioning to cardiovascular health, Banerjee et al. proposed a methodology for
blood pressure estimation using ECG data. Utilizing XGBoost for classification and an
artificial neural network (ANN) for regression, their system achieved a mean error of
0.89 mm Hg. This application highlights the potential of lightweight ML algorithms in
remote health monitoring, particularly in cardiovascular conditions [6]. An example of a
wearable cardiovascular healthcare device is the system developed by Chiang et al. for
predicting blood pressure (BP) and providing personalized lifestyle recommendations
based on ECG data. Utilizing ECG, sleep, and physical activity data collected from smart-
watches, the system uses ML models such as random forest and autoregressive integrated
moving average (ARIMA) to predict BP and make lifestyle recommendations. The sub-
jects experienced decreased BPs by 3.8 and 2.3 for systolic and diastolic BP. Furthermore,
the system used Shapley values to identify lifestyle factors that contribute to high blood
pressure [19]. Pramukantoro et al.’s real-time heartbeat monitoring system utilized the
Polar H10 wearable device. For classification, they used SVM to categorize the data into
five sections: normal, supraventricular, ventricular ectopic, fusion, and unknown. This
exemplifies the potential for the accurate classification of heartbeats into five categories.
The system’s use of RR interval data and Bluetooth low energy (BLE) enables real-time
monitoring, showcasing bio-electrical wearables’ potential in cardiovascular health [20].
To show the unlimited features of an ECG signal, Maged et al. utilized ECG sensors in
smartwatches to predict blood glucose levels in diabetic patients. Leveraging machine
learning methods for regression, such as LGBM, GBR, AdaBoost, and linear and ridge
regressors. and heart rate variability parameters, their system presented a novel approach
to health monitoring. This application underscores the versatility of bio-electrical wearables
in managing chronic conditions [21].

In the field of predictive healthcare and occupational safety, Shimazaki et al. employed
supervised machine learning to prevent heat stroke in hot environments. Based on a
personalized heat strain temperature (pHST) meter, their web survey-based automatic
annotation system classified workers into thermal and non-thermal groups based on vital
data, achieving an 85.2% accuracy in predicting heat stroke. This application highlights
the potential of bio-electrical wearables in ensuring safety in challenging occupational
environments [22].

Shifting focus to mental health, Campanella et al.’s stress detection system, utilizing
physiological signals collected by the Empatica E4 bracelet and machine learning algo-
rithms, introduces an application in stress management. The system collects physiological
data through four sensors: a temperature sensor, accelerometer, photoplethysmogram
(PPG) sensors, and electrodermal activity (EDA) sensors. Achieving an accuracy range of
70% to 79.17%, this study emphasizes the need for more extensive and diverse datasets to
improve model accuracy, showcasing the potential of bio-electrical wearables in mental
health [23]. Examining the real-time stress detection domain, Zhu et al. delved into EDA,
ECG, and PPG signals from wearable devices. Utilizing six machine learning methods,
including support vector machine (SVM) and k-nearest neighbors (KNNs), their stacking
ensemble learning method achieved the best accuracy of 86.4% for EDA signals. This appli-
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cation demonstrates the potential of bio-electrical wearables in managing stress, offering
real-time insights for users [7]. Tsai et al. devised a 7-day panic attack prediction model
by leveraging data from a mobile app and a Garmin Vivosmart 4 smartwatch. The study
encompassed 59 participants diagnosed with panic disorder (PD), and data on activity lev-
els, heart rate, sleep patterns, anxiety, and depression scores were collected over a one-year
period. Integrating questionnaires and additional physiological and environmental data,
including the Air Quality Index (AQI), the researchers employed a random forest model,
achieving prediction accuracies ranging from 67.4% to 81.3%. Crucial features such as Beck
Anxiety Inventory (BAI), Beck Depression Inventory (BDI), State-Trait Anxiety Inventory
(STAI), a Mini International Neuropsychiatric Interview (MINI), heart rate (HR), and deep
sleep duration played pivotal roles in ensuring accurate predictions. This underscores the
potential for early and personalized mental health interventions for patients diagnosed
with panic disorder [13].

On the topic of gesture recognition, Ghaffar Nia et al. developed an artificial neural
network (ANN) model with a few control parameters, achieving 98.9% and 93% accuracy
in training and testing processes, respectively. The study focused on classifying EMG
signals to control assistive devices for individuals with sensory-motor disorders. The
ANN model’s application demonstrates the potential of machine learning algorithms
in improving the accuracy and efficiency of EMG signal classification [17]. In another
work, Avramoni et al. developed a sophisticated algorithm to detect pill intake using a
smart wearable device with inertial measurement unit (IMU) sensors by evaluating the
associated gestures. Employing supervised machine learning, the algorithm achieved over
99% accuracy in training and validation datasets and 100% accuracy in testing datasets.
This application showcases the potential of bio-electrical wearables in gesture recognition
and human–computer interaction [24].

Moving to neurological applications, Meisel et al. harnessed wristband sensor data
and machine learning to develop a seizure forecasting system. The acquired signals
includes EDA, blood volume pulse (BVP), temperature, and accelerometer data. The use
of long short-term memory (LSTM) and 1D convolutional neural networks, optimized
through grid searches, yielded promising results. The system not only showcased accurate
predictions but also hinted at the potential for further improvement through individualized
parameter tuning [25]. Transitioning to seizure detection, Jeppesen et al. developed a
personalized seizure detection algorithm using patient-adaptive logistic regression machine
learning (LRML). Utilizing a wearable ECG device and collecting heart rate variability
(HRV) during a long-term video-EEG recording, the system achieved a 78.2% sensitivity
and a 31% reduction in false alarm rates. This system contributes to the evolution of
personalized healthcare interventions, showcasing the potential of bio-electrical wearables
in neurological health [26].

Multiple studies have been conducted on sleep apnea detection and intervention. As
an example, Ji et al. developed an airline point-of-care system for hybrid physiological
signal monitoring, achieving high accuracy of 84–85% using a long short-term memory
recurrent neural network (LSTM-RNN). The system detects electrocardiogram (ECG),
breathing, and motion signals, with the diagnosis of sleep apnea-hypopnea syndrome
(SAHS) as a key application. The hardware design includes ECG electrodes, flexible
piezoelectric belts, and a control box, providing a low-cost, long-term monitoring solution
for passengers during flights [27]. In another work, Mohan et al.’s exploration of deep
learning and machine learning techniques for sleep apnea detection from single-lead ECG
data emphasizes the potential of AI-based bio-signal processing. Their hybrid deep models
achieved a sensitivity of 84.26%, a specificity of 92.27%, and an accuracy of 88.13%. This
application showcases the potential for bio-electrical wearables in sleep monitoring and
respiratory health [9].

The real-time emotion recognition system developed by Mai et al. using an ear-EEG-
based on-chip device introduces a compact, battery-powered solution for emotion classi-
fication. Leveraging machine learning models such as SVM, MLP, and one-dimensional
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convolutional neural networks (1D-CNNs), this system utilizes Bluetooth low-energy wire-
less technology for data transmission, showcasing the potential for bio-electrical wearables
in mental health applications [16].

Figure 3 represents instances of the examined studies highlighting the utilization of
bio-electrical wearable devices employing machine learning techniques.
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Figure 3. Schematics depicting the sensor setups for: (a) a system to prevent heat stroke in hot
environments [22], (b) a real-time emotion recognition system [16], and (c) an intelligent wearable
system for wound monitoring [28]. (c) is adapted by permission from [28]. Copyright 2022 American
Chemical Society.

Table 1 reviews recent research on personalized wearable bio-electrical devices from
2020 to 2023. The vast majority (86.6%) of the papers discuss devices customized to
individual users. These personalized wearables leverage sensors like IMUs, ECGs, and
EDAs to monitor physiological signals and detect conditions accurately, often with over 90%
accuracy. For example, personalized devices using IMUs and ECGs can detect panic attacks,
dehydration, wound healing, and Parkinson’s with over 90% accuracy [10,28–30]. Other
applications include monitoring heart rate variability, sleep apnea, and stress levels [7,9,26].
The research shows a trend towards more personalized and accurate wearable sensors
over time. While earlier papers from 2022 focus on non-personalized devices [6,23], the
most recent 2023 studies emphasize personalized wearables [16,29]. In summary, Table 1
demonstrates personalized health monitoring wearables using sensors like IMUs and ECGs
can provide highly accurate and customized detection for a variety of conditions.
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Table 1. Summary of the reviewed papers with bio-electrical sensors.

R
ef

.

Medical Application Type of Sensor Type of Input
Data Use of ML

Ty
pe

of
M

L
M

od
el

A
C

C
.*

PE
R

SO
N

.*

Ye
ar

[10]
Personalized deep

brain stimulation for
Parkinson’s patients

BioStamp
nPoint

Inertial sensor
data

Classify deep brain
stimulation
parameters

MLP 95% Yes 2020

[25] Non-invasive seizure
forecasting E4, Empatica

EDA,
accelerometer,

BVP, temperature

Classify seizure
periods from
non-seizure

periods

LSTM N/A Yes 2020

[19]
Personalized lifestyle
recommendations to

improve blood pressure

Fitbit Charge
HR and

Omron Evolv

HR, sleep
activity, number

of steps

Classify input data
and identify the
most important

lifestyle factors that
impact BP trend

RF N/A Yes 2021

[21] Prediction of blood
glucose level

Zephyr
BioHarness3

ECG, glucose
level

Regression of the
input data was

carried out using
LGBM, GBR,

AdaBoost, and
linear and ridge

regressors

LGBM, GBR N/A Yes 2022

[13] Seven-day panic attack
prediction

Garmin
Viívosmart 4

Sleep, HR,
activity level,

AQI

Classify and
predict panic attack RF, LDA 67.4~81.3%. Yes 2022

[7] Monitoring stress level E4, Empatica EDA, ECG, PPG
To classify stress
and non-stress

status prediction

SVM. KNN,
RF, NB, LR 86.4% Yes 2022

[18]

Monitoring the
rehabilitation phase

and its effectiveness on
hemiplegic ankle

patients

Smartphone
gyroscope

Max, min, mean,
standard

deviation, and
CV of gyro signal

Classify gyro data
and distinguish

between the initial
phase and the final

phase of therapy
regimen

SVM 91.7% Yes 2022

[22]

Prediction and
prevention of heat

stroke in hot
environments

pHST meter,
HR monitor,

accelerometer

pHST, heart rate,
acceleration data

Classify the pHST
parameter to

predict heat stroke
KNN 85.2% Yes 2022

[6]

Estimating BP and
categorizing it to

(normal, pretension,
and hypertension)

ECG sensor ECG

Classification of
ECG data with

XGBoost to
estimate BP and

categorize.
Regression by

ANN

ANN,
XGBoost 73.37%. No 2022

[24]

Detection of pill intake
for patients with
dementia-related

conditions

LILYGO®

TTGO T-Watch Acceleration data

Supervised
learning to detect

three types of hand
gestures: pill

intake, casual hand
movement, and

still hand

three-layer
NN 99% Yes 2022

[20]
Real-time monitoring
and interpreting RR

interval data
Polar H10 ECG

Classify data into
five categories:

normal,
supraventricular,

ventricular ectopic,
fusion, and
unknown

SVM,
decision tree 96% Yes 2022

[16] Real-time emotion
recognition

Behind-the-ear
EEG sensor EEG

Classify EEG data
into two emotional

states: positive
states and negative

states

SVM, MLP,
1D-CNN 94.87% Yes 2023

[9] Detection of sleep
apnea

Single-lead
ECG sensor ECG

Classify ECG data
to recognize sleep

apnea

Voting
classifier 88.13% No 2023
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Table 1. Cont.
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[26] Personalized detection
of seizure using HRV

wearable ECG
device

ECG, HR
variability, EEG

Patient-adaptive
LRML was used to
classify HRV data
according to the

video-EEG to
detect seizure

LRML 78.2% Yes 2023

[23] Measuring stress level Empatica E4 PPG, EDA

Binary
classification of
PPG and EDA
using RF, SVM,

and LR algorithms

RF, SVM, LR 90% Yes 2023

* ACC.: accuracy of the proposed wearable system. PERSON.: whether the proposed system is defined as a
personalized wearable system or not.

3. Bio-Impedance and Electro-Chemical Wearables

Wearable devices utilizing electro-chemical and bio-impedance sensors have gained
significant importance in healthcare and personalized health monitoring. These devices
enable the non-invasive and continuous monitoring of various physiological parameters,
such as glucose levels, electrolyte biomarkers, and tissue regeneration, providing valuable
insights into an individual’s health status. The integration of machine learning algorithms
with these wearable devices allows for the accurate interpretation of the collected data,
leading to real-time health assessments and predictive analytics. The combination of
wearable devices with electro-chemical and bio-impedance sensors, along with machine
learning, holds great promise for revolutionizing personalized healthcare and improving
overall well-being.

On impedance-based flow cytometry, Annabestani et al. introduced a sheath-free
microfluidic system that employs machine learning to estimate the size and quantity of
particles passing through the channel. This innovative approach utilizes a set of variables
termed “Basis Impedances” and a memory-less version of a polynomial-based nonlinear
auto-regressive with exogenous inputs (NARX) model to predict the total output impedance
of multiparticle systems [31]. Shifting focus to respiratory monitoring, Rozo et al. developed
machine learning models to assess thoracic bio-impedance (BioZ) measurements. Using
SVM and CNN classifiers, transfer learning, and feature-based classification, they evaluated
the impact of different breathing patterns on model performance [32].

Continuing the exploration of non-invasive health monitoring, Chahine et al. de-
veloped a wearable system utilizing electromagnetic sensors and artificial intelligence to
non-invasively monitor glucose levels. This comprehensive system integrates environmen-
tal and physiological sensors to account for temperature, humidity, sweat, and motion
effects, achieving high fidelity in tracking glucose variations with low error and good
prediction accuracy [33]. Following the topic, Islam et al. designed a non-invasive glucose
monitoring system using PPG and galvanic skin response (GSR) sensors, implementing
a deep learning algorithm for improved prediction accuracy. The system collected data
from 10 volunteers over 2 days and 15 patients over 1 day, using a total of 210 sample data
points for training and testing the deep learning model. The deep learning model consisted
of three stages: feature extraction, global average pooling, and regression. The results
showed that the predicted blood glucose levels were accurate, with 80% of the training
data and 40% of the testing data falling within acceptable error margins [5]. Another
compelling area of research revolves around initiatives dedicated to wound monitoring and
tissue regeneration. Kalasin et al. developed a contactless wearable system. This system,
incorporating AI-enabled sensors and advanced wound dressing bandages, utilized an
artificial neural network algorithm and a pH-responsive mechanism for wound monitoring.
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The integration of these elements showcases the potential for bio-electrical wearables in
advanced healthcare applications [28].

Advancing the field of non-invasive sweat sensors, Sankhala et al. introduced a
platform using electrochemical impedance spectroscopy and machine learning to report
glucose concentrations. Employing ensemble and decision tree regression algorithms with
k-fold cross-validation, the system optimizes models and prevents overfitting. The machine
learning algorithm accurately interprets the progression trend of glucose levels, making it
a valuable tool for lifestyle management [3]. As another example on sweat analysis, Wang
et al. developed a patch with printed electrochemical sensors to monitor sweat biomarkers
and predict core body temperature using machine learning algorithms. The system employs
printed sensor patches with integrated microfluidics, utilizing machine learning to predict
core body temperature based on real-time sweat biomarker measurements [34]. Nyein
et al. developed a microfluidic patch for continuous sweat analysis during rest. The patch
collects sweat from different body sites, enabling noninvasive monitoring of sweat rate, pH,
and chloride levels. The study emphasizes machine learning for real-time data analysis.
The patch’s potential for continuous metabolite monitoring makes it a promising tool for
health and fitness applications [35]. Khosravi et al. developed a flexible electrochemical
glucose sensor screen-printed onto a textile substrate, demonstrating a linear response in the
range of 20–1000 µM of glucose concentration with high sensitivity (18.41 µA mM−1 cm−2,
R2 = 0.996). The sensor showed high selectivity toward glucose and excellent stability over
30 days of storage. The study evaluated the successful immobilization of glucose oxidase
and the sensor’s response to repeated glucose measurements [36].

The exploration of skin hydration levels by Liaqat et al. introduced a hybrid algorithm
combining machine learning and deep learning methods. The collection of data from
various postures and fasting durations facilitated the estimation of skin hydration levels
with an impressive accuracy of around 97%. This application showcases the potential of
bio-electrical wearables in non-invasive monitoring for skincare [30]. As another approach
to applications of electro-dermal sensors, Almadhor et al.’s proposed federated learning
framework for stress prediction showcases the potential for collaborative AI models based
on wrist-worn sensor data. Achieving improved stress detection accuracy compared to
traditional approaches, this system ensures privacy by training local models before sending
parameters to a global model [37].

In the domain of real-time bladder monitoring, Zhang et al. proposed a wearable
utilizing bio-impedance data and a random forest machine learning algorithm. Achieving
over 90% accuracy in predicting bladder fullness, this system holds promise for aiding in
urinary incontinence [12]. To mention another example on the topic, Dheman et al. devel-
oped a non-invasive bladder volume estimation system using tetrapolar bio-impedance
measurements and a deep learning algorithm. The system uses a wearable sensor node
and AI-based artefact suppression to provide quantitative bladder volume measures. The
algorithm demonstrated feasibility and comparability to commercial portable ultrasound
devices [38].

Finally, in the realm of wireless biomedical monitoring, Yang et al. introduced a
non-printed integrated-circuit textile (NIT). This innovative textile, woven with sensors,
logic computing, wireless transmission, and power supply, utilizes AI for continuous on-
body monitoring and logical codes for emergency assistance. The NIT can monitor body
movement, sweat, and light, sending wireless signals for various emergency scenarios.
Powered by solar energy harvesting, it serves as a 24/7 private AI nurse [39].

Figure 4 provides visual depictions illustrating the practical application of the de-
scribed wearable technologies. Following this, the subsequent discourse will conduct
a comprehensive review of recent advanced research dedicated to implementing bio-
impedance and electro-chemical wearable devices through the incorporation of machine
learning methodologies.
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Figure 4. Illustration of examples on bio-impedance and electro-chemical wearables as presented in
the literature: (a) a wearable system utilizing electromagnetic sensors to non-invasive glucose level
measuring [33], (b) a non-printed integrated-circuit textile [39], (c) a microfluidic patch for continuous
sweat analysis [35], and (d) an impedance-based wearable for real-time bladder monitoring [12].

Among the examined papers on wearable sensors for health monitoring, 75% were
identified as employing personalized devices, while the remaining 25% demonstrated
potential for personalization (Table 2). The personalized devices utilized a variety of sensors,
including photoplethysmography, galvanic skin response, smart textiles, sweat sensors,
electromagnetic sensors, printed sensors, and impedance sensors to monitor biomarkers
such as blood glucose, respiratory rate, sweat composition, core body temperature, and
bladder volume. Reported accuracy ranged from 74.6% to over 99%. The studies spanned
publication dates from 2019 to 2023, reflecting the recent progress in the development
of personalized wearable health sensors. Overall, this review of the recent literature
demonstrates a substantial advancement of personalized wearable devices for continuous
health monitoring and their potential to provide individualized care.

Table 2. Synopsis of wearable devices employing electro-chemical and bio-impedance technologies.
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[5] Estimation of blood
glucose level

PPG and GSR
sensor PPG, GSR

Used deep neural
network for feature

extraction and
regression.

1D-CNN 80% Yes 2019

[31]
Analyzing cell

based-on impedance
flowcytometry

Microfluidic
impedance

meter

Basic
impedances in

microfluidic
channel

NARX model was used
to extract features from
the channel impedance
as combination of basis

impedances.

NARX 99.99% No 2020

[32] Respiratory monitoring Biopac belt,
ECG sensor

Thoracic
bio-impedance,

ECG

Classifying BioZ into
clean and noisy classes,

carried out by SVM.
Then, TL was used to
optimize each of the

classifiers and to obtain
an adapted model of

CNN for each
breathing type.

TL, SVM,
CNN N/A No 2021
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[39]
As an AI nursery

assistant to monitor
body health and

environment

Smart textile
with sweat,
motion, and

light intensity
sensor

Sweat, motion,
and light
intensity

N/A N/A N/A Yes 2021

[3] Measurement of sweat
glucose level

Electrochemical
sweat sensor

Impedance,
relative humidity,

temperature

Estimation of glucose
level based on raw

impedance, humidity
level and temperature.

SL, decision
tree 94% Yes 2022

[30] Monitoring hydration
level on the skin GSR sensor GSR

Classifying the GSR
data to three hydration

states, namely
hydrated, mildly

dehydrated, extremely
dehydrated, along with

three posture types,
namely sitting,

standing, and walking.

Hybrid
Bi-LSTM 97.83% Yes 2022

[33]

Personalized and
non-invasive

monitoring of blood
glucose level

Body-matched
electromag-
netic sensor

EM scattering
parameters,

ambient and skin
temperature,

humidity level

Gaussian parametric
regression (GPR) was
used to estimate blood
glucose level based on

the selected
parameters.

GPR 99.01% Yes 2022

[28] Monitoring wound
healing

MXENE-
attached
wound

bandage
(SMART-WD)

pH
Recognition of the

healing stage of the
wound.

Deep ANN 94.6% Yes 2022

[37] Monitoring and
detecting stress EDA sensor EDA

Classify the input data
into five categories:
transient, baseline,

stress, amusement, and
meditation.

DNN 86.82% Yes 2023

[34] Monitoring core-body
temperature

Printed electro-
chemical
sensors

embedded into
a plastic

microfluidic
sweat collector

Na+ and K+

printed sensor

Linear regression (LR),
support vector

regression (SVR), and
random forest

regression (RFR) were
used to estimate core

body temperature.

LR, SVR,
RFR >99% Yes 2023

[12] Monitor and analyze
bladder monitor

Bio-impedance
meter

Impedance of the
bladder region

Determination of the
urination status using

RF algorithm.

RF, SVM,
DNN >90% Yes 2023

[38] Bladder level Bio-impedance
meter

Lower abdomen
impedance

Using SVM and DNN
to estimate the bladder
volume quantitatively
and remove artefacts.

SVM, DNN 74.6~84.8% No 2023

4. Electro-Mechanical Wearable Devices

The utilization of electro-mechanical elements in wearable devices for the analysis of
gait and recognition of motion holds substantial significance in diverse fields, including
healthcare, rehabilitation, and robotics. These devices, encompassing soft sensors [40,41]
and strain gauges [1,42], facilitate the non-invasive monitoring of human movement pat-
terns, providing invaluable insights for gait analysis and motion tracking. Soft sensors
integrated into wearable systems, for example, have the capacity to capture nuanced
changes in joint movements and muscle activities, enabling the assessment of gait patterns
and the detection of abnormalities in movement. Furthermore, these devices contribute to
the creation of intelligent wearable systems, serving purposes such as fall detection, silent
communication, and human activity recognition. The incorporation of machine learning
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algorithms with these wearable devices further amplifies their capabilities, enabling the
precise and real-time analysis of gait and motion data. These advancements have the po-
tential to transform personalized healthcare, enhance rehabilitation outcomes, and advance
the development of intelligent robotic systems.

Advancing the field of hand gesture recognition, Ferrone et al. developed a wearable
wristband equipped with strain sensors. The system utilized strain gauge sensors, machine
learning algorithms such as linear discriminant analysis (LDA) and support vector machine
(SVM) as well as a leap motion system for validation. Featuring stretchable strain gauge
sensors and readout electronics, the wristband achieved a reproducibility of over 98%
using the LDA classifier [42]. Another approach was based on an e-textile, where Zeng
et al. developed a highly conductive carbon-based e-textile for gesture recognition using
heat transfer printing and screen printing. The system uses AI to recognize eight different
gestures with 96.58% accuracy [43]. One of the applications of hand gesture recognition
was introduced by DelPreto et al., who developed a smart glove with resistive sensors
and an accelerometer, using machine learning to classify American Sign Language poses
and gestures in real time with high accuracy (96.3%). The system utilizes a strain-sensitive
resistive knit for postural information and an accelerometer for motion, with a small custom
PCB and microcontroller reading sensors, performing feature extraction, and running a
pre-trained neural network [44]. Another interesting application of hand motion detection
was introduced during the COVID-19 pandemic. Marullo et al. developed No Face-Touch,
a system that uses wearable devices and machine learning to detect hand motions ending
in face-touches. The system utilizes a recurrent neural network (RNN) with long short-term
memory (LSTM) cells and accelerometer data to detect face-touches, achieving a high
true detections rate, low false detection rate, and short time to detect the contact. The
system is designed to run on smartwatches and low-cost devices, with a focus on battery
consumption and generalization to different users [45]. In silent communication, Smith
et al. developed a wearable patch with a graphene-based strain gauge sensor and haptic
feedback for silent communication. They used machine learning algorithms, including
neural networks, to classify throat movements and predict spoken words with 82% accuracy
for movements and 51% for words. They handcrafted a dataset with 15 words and four
movements, and used a sensor attached to the throat to collect resistance readings for
training and testing the algorithms [1]. In a more recent approach, Tashakori et al. achieved
the precise real-time tracking of hand and finger movements using stretchable, washable
smart gloves embedded with helical sensor yarns and inertial measurement units. The
sensor yarns exhibit a high dynamic range and stability during use and washing. Through
multi-stage machine learning, the system achieves low joint-angle estimation errors of
1.21◦ and 1.45◦ for intra- and inter-participant validation, matching costly motion-capture
cameras’ accuracy. A data augmentation technique enhances robustness to noise, enabling
accurate tracking during object interactions and diverse applications, including typing
on a simulated keyboard, recognizing dynamic and static gestures from American Sign
Language, and object identification [46].

Exploring joint analysis, Gholami et al. developed a fabric-based strain sensor system
for knee-joint angle estimation. Implementing machine learning algorithms, including
random forest and neural networks, the system processed sensor data and achieved an
accuracy of around 6 degrees. The study highlighted the potential applications in healthcare,
virtual reality, and robotics [47]. Following knee flexion and adduction moments estimation,
Stetter et al. developed an artificial neural network (ANN) using wearable sensors to
estimate knee flexion and adduction moments (KFM and KAM) during various locomotion
tasks. The ANN was trained with IMU signals and biomechanical data, and the model
architecture included two hidden layers with 100 and 20 neurons. The study used a leave-
one-subject-out cross-validation method to evaluate the ANN’s performance. The ANN
approach does not require musculoskeletal modeling and can provide accurate predictions
for new data [48].
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Shifting to fall detection, Desai et al. developed a wearable belt using machine learning
and signal processing algorithms. With the ability to detect falls within 0.25 s, the system
achieved high accuracy using a logistic regression classifier and triggered alerts via a
GSM module upon fall detection [49]. In medication adherence monitoring, Cheon et al.
utilized sensor data from an Apple Watch to detect low medication states in prescription
bottles. Employing machine learning, specifically a gradient-boosted tree model, the
system predicted low pill counts with high accuracy and F1 scores. The system involved
preprocessing sensor data, extracting summary statistics and training the model using
Apache Spark’s MLlib platform [50].

Another interesting application of gait analysis was introduced by Kirsten et al.,
who developed a sensor-based OCD detection system using AI, personalized federated
learning, and motion sensors. The system achieved high AUPRCs and demonstrated
privacy-preserving model training [14]. Meanwhile, Chee et al. explored gait analysis and
machine learning for diabetes detection. They emphasized the potential of deep learning
models like CNN and LSTM in analyzing gait data. The paper highlights the use of gait sen-
sors and features, as well as the need to implement DL models for improved accuracy [11].
In another approach, Igene et al.’s SVM model, utilizing accelerometer data, showcased an
accuracy of 94.4% in predicting Parkinson’s disease. Employing ANOVA, PCA, and grid
search for feature selection and hyperparameter tuning, this application emphasizes the
potential of electro-mechanical wearables in early disease detection and monitoring [29].
Li et al. developed a multimodal sensor glove to assess Parkinson’s disease symptoms
in patients’ hands. They used various algorithms to process signals, achieving a 95.83%
accuracy in identifying tremor signals. The glove assessed flexibility, muscle strength,
and stability, showing high consistency with clinical observations. The system’s reliabil-
ity was confirmed through repeated experiments, with intraclass correlation coefficients
exceeding 0.9 [51].

Moving to stretchable sensors, Nguyen et al. developed a stretchable gold nanowire
sensor for motion tracking. They used a machine learning algorithm to characterize
the sensor’s response, achieving a high gauge factor of 12 and an error of less than
2 degrees in measuring bending motion [52]. As another example on stretchable sen-
sors, Feng et al. developed a sensing-actuation unit for force estimation in soft stretch
sensors. They used deep learning methods, including LSTM and Informer, to calibrate and
predict force, achieving a mean square error (MSE) of less than 0.28 N2 and normalized
root mean square error (NRMSE) of less than 2.0%. The unit has adjustable stiffness and is
promising for applications like lightweight flexible exoskeletons [53]. Another soft sensor
for gait generation was introduced by Kim et al., who introduced a semi-supervised deep
learning model using microfluidic soft sensors. Leveraging a deep autoencoder, the model
embedded gait motion into a latent motion manifold, reducing the need for a large calibra-
tion dataset. The system utilized AI to generate natural human gait motion from sensor
outputs [40]. Transitioning to upper-limb posture detection, Giorgino et al. introduced a
system utilizing conductive elastomer sensors for neurological rehabilitation. Employing
machine learning for posture classification, the system addressed challenges related to
sensor noise and generalization, achieving high recognition performance for real-time
classification [54].

Exploring material surface recognition, Liu et al. developed smart gloves with ZNS-01
sensors to recognize five material surfaces. They used machine learning algorithms like
XGBoost to achieve 98% classification accuracy. The system extracts time and frequency
domain characteristics to train the models [55]. Introducing an advanced system for the
ongoing wireless monitoring of arterial blood pressure, this technology, created by Li et al.,
features a thin, soft, and miniaturized design. The system incorporates a sensing module,
active pressure adaptation module, and data processing module to identify the blood pulse
wave, apply back pressure, and extract the pulse transit time interval. Employing a sophis-
ticated multiple-feature fusion framework and ensemble learning, particularly extreme
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gradient boosting, the system constructs an estimation model. This model integration
includes AI techniques, ensuring meticulous control over blood pressure [56].

Shifting to body movement detection, Wang et al. developed a wearable plastic optical
fiber sensing system for human motion recognition using machine learning. The system
uses AI, such as support vector machines and convolutional neural networks, to analyze
motion signals and achieve high recognition accuracy. The system’s key parameters include
feature vectors, cumulative contribution rate, and time consumed for recognition [2]. On
another approach, Mani et al. developed a conductive fabric-based suspender system for
human activity recognition (HAR) using machine learning and deep learning techniques.
The system achieved an accuracy of 98.11% using eight different classifiers, including KNN,
SVM, RF, and LSTM [57]. Utilizing MXene technology, Yang et al. developed wearable
Ti3C2Tx MXene sensor modules with in-sensor machine learning (ML) models for full-
body motion classifications and avatar reconstruction. The sensors exhibited ultrahigh
sensitivities within user-designated working windows, and the ML chip enabled in-sensor
reconstruction of high-precision avatar animations with an average error of 3.5 cm. The
ML models achieved 100% accuracy for full-body motion classification without using
image/video data. The edge sensor module with ML chip allowed the real-time and
high-accuracy determination of 15 avatar joint locations, leading to personalized avatar
animations. The integration of wearable sensors with ML chip for in-sensor machine
learning and avatar reconstruction is a significant advancement in the field of wearable
sensors and human–machine interaction [58]. Jiang et al. summarized the benefits of
using advanced algorithms in wearable tactile sensors, including time series models and
classification algorithms based on machine learning and signal processing. They discussed
the integration of AI in the system, including the use of machine learning for motion
recognition and voice recognition [59].

Vasdekis et al. developed WeMoD, an AI-based approach for predicting daily step
count and setting personalized physical activity goals using a combination of physiolog-
ical, psychological, and contextual features. They utilized ML algorithms such as ridge
regression, decision tree, random forest, and gradient boosting regressor to achieve a mean
absolute error of 1908 steps [8]. Papaleonidas et al.’s focus on high-accuracy human activity
recognition models introduces the potential for health monitoring and smart home man-
agement. Utilizing machine learning and raw signals from wearables, the model achieved
99.9% accuracy. The integration of ML algorithms and variable segmentation methodology
showcases the versatility of electro-mechanical wearables in recognizing activities [60].

Visual representations exemplifying the application of these wearable technologies
are presented in Figure 5. The subsequent discussion will delve into a review of recent
advanced research focused on the implementation of electro-mechanical wearable devices
utilizing machine learning techniques.

Table 3 reviews recent progress in wearable sensors for personalized health monitoring.
Among the 23 papers reviewed, 78% (18 papers) demonstrated wearable devices person-
alized for individual users, while 22% (5 papers) showed potential for personalization
but did not implement it. The personalized devices targeted a wide range of applications
including posture, gesture, and motion tracking; fall detection; medication monitoring;
knee and joint movement; touch sensing; muscle activity; step counting; blood pressure;
and diabetes detection. Sensing modalities included strain gauges, stretchable sensors,
microfluidics, IMUs, EMG, tactile sensors, and optical fibers. Reported accuracy ranged
from 75–100%, with 78% of papers achieving over 90% accuracy. The high accuracy and
focus on personalization in the majority of surveyed devices highlights the growing ability
of wearable sensors to provide customized real-time health insights for individual users.
This progress suggests personalized wearable health monitoring will continue expanding
in the coming years.
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[54]
Posture recognition
and rehabilitation

exercise monitoring

Strain sensor
attached to the

upper body
Signals from
strain sensors

Logistic regression was
used to recover the

current body posture
from the sensor reading

LR 75% Yes 2006

[42]
Monitoring and

rehabilitating hand
gestures

Stretchable
strain gauge

Signals from
strain sensors

LDA and SVM were
used for evaluating the

performance of the
system with the
collected data

LDA, SVM 98% Yes 2016

[47]

In-home rehabilitation
and long-term tracking

of movements of
people with knee

disorders

Fabric-based
strain sensor

Signals from
strain sensors

sync with camera

NN and RF were used
for estimating the knee
joint angle based on the

strain sensor data

NN, RF 97% No 2018

[61] Movement and gesture
detection

Piezoresistive
woven wool

glove

Signal from
piezoresistive

sensor

Data pre-processing
and gesture recognition

was carried out by
SVM

SVM 97.8% No 2019
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[40]
Assistive human

walking in
rehabilitation

Microfluidic-
based

stretchable
sensor

Sensor output,
position vector

Semi-supervised deep
learning model

including a deep
auto-encoder and

components such as
sequential encoder

networks, alignment
networks, and motion

representation
networks

Semi-
supervised

DNN
N/A Yes 2019

[49]

Detection of falls in
elderly people,

triggering an alert,
taking immediate

action (e.g., airbag)

Gyroscope,
accelerometer

Gyro and
acceleration data

Utilizing logistic
regression, falling

incidents were
identified, taking into
account all overlooked

data during sensor
thresholding.

LR 100% Yes 2020

[50]

Detect low medication
state in the container
and notify a medical

system, doctor, or
pharmacy.

Apple Watch

Gyroscope,
accelerometer,
audio decibel

levels, and labels
indicating the

number of pills

Specifically comprising
200 estimators using a

tree-depth of three
used for detecting low

counts of pill
medication in standard

prescription bottles.

Gradient
Boosted Tree

machine
80.27% No 2020

[48]

Provide valuable
biofeedback systems

for knee osteoarthritis
(KOA) patients

IMUs located
on the right
thigh and

shank

IMU signals

ANN was used to
estimate KFM and

KAM during various
locomotion tasks

ANN N/A Yes 2020

[59]

Health status
monitoring, social

interactions evaluation,
disability assistance,

baby crying,
respiratory monitoring

for infants, etc.

Tactile sensor Signals from
tactile sensors

To classify the signal
and output the

judgment results
(effective in complex

movements)

SVM, DNN N/A Yes 2021

[14]
Early detection of

obsessive compulsive
disorder (OCD)

IMU attached
to the left and

right arm

Gyro and
acceleration data

For evaluating
personalized federated

learning algorithms
and non-collaborative

training algorithms

LSTM 90% Yes 2021

[45] Hand motion IMU of a
smartwatch

acceleration data
with synced

video

Used for classification
tasks with unbalanced

datasets
RNN, LSTM N/A Yes 2021

[55]

Smart glove with the
ability of

distinguishing different
materials

Ultra-thin, and
stretchable

ZNS-01 sensor
Touch force data

Used for recognizing
five different material

surfaces
XGBoost 98% Yes 2021

[52]

Evaluation and
improvement of human
skills proficiency such

as medical skills

Stretchable
gold nano-wire

Output data of
the sensor

Used to enhance the
predictability of the

sensing response of the
developed sensor

LSTM ~99% Yes 2021

[1]
Silent communication
for individuals with
speech and hearing

impairments

Graphene
strain gauge

sensor

Sensor output
data

Used for automated
classification of input

signals
NN, LSTM 82% Yes 2021

[60]

Monitoring the
movements of elderly
individuals in hospital

rooms

RespiBAN and
Empatica E4

IMU data, BVP,
EDA data,

temperature

Gaussian support
vector machine was

used for human
activity recognition

KNN, GSVM 99.9% Yes 2022
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[8]

Boosting physical
activity levels through

personalized
self-monitoring and

coaching

Gyroscope and
IMU

Daily physical
activity

Supervised ML
regression algorithms
was used to predict

daily step count and set
goal

DT, RF, GBR N/A Yes 2022

[58] Full-body avatar
reconstruction

MXene-based
strain sensor

Signals from
strain sensors

In-sensor machine
learning model,

specifically
implemented on an ML

chip, for the
determination of

full-body avatar joint
locations

100% Yes 2022

[44]

Improve
communication for

individuals who use
American Sign

Language (ASL)

Smart glove,
accelerometer

Strain and
acceleration data

Classifying sign
language poses and
gestures in real time

LSTM 96.3% No 2022

[56]

Continuous wireless
monitoring of

ambulatory artery
blood pressure for

preventing and
diagnosing

hypertension-related
diseases

Conformal
piezoelectric
sensor array

Output of the
piezoelectric

sensors

Classify the input data
to detect the blood
pulse wave, pulse

transit time interval,
and other physiological
features and local pulse
wave velocity (PWV).

XGBoost
98%

(err < 5
mmHg)

Yes 2023

[2]

Health monitoring,
motion analysis,

activity monitoring of
the elderly, and
identifying falls

Optical
fiber-based
wearable
motion

detection
system

Data from optical
receiver module

For classification and
recognition of motion,
based on the data from

optical system

SVM, Mo-
bileNetV2
network,
transfer
learning

>98.28% Yes 2023

[29] Early prediction of
Parkinson’s disease Accelerometer Accelerometer

sensor signals

SVM classifier was
used for the automatic

detection of
Parkinson’s disease

based on daily
movement data.

SVM 94.4% Yes 2023

[43]
Monitoring of joint

motion and recognition
of different gestures

Highly
conductive

carbon-based
e-textile

Signal data from
the wearable

device

ANN was used for the
classification and

recognition of different
gestures

ANN 96.58% Yes 2023

[53]

Active rehabilitation,
walking assistance, and

continuous human
movement monitoring

Capacitive soft
stretchable

sensor

Electrical and
mechanical

properties of the
sensor

LSTM and Informer
were used for force

calibration and
prediction in the paper.

LSTM,
Informer >98% No 2023

[11]
Detection of diabetes

using human gait
analysis

Kinematic and
kinetic sensors

such as
accelerometers,

shoe-type
IMUs,

ear-worn
inertial sensors,
motion capture
systems, force-

measuring
shoes, pressure
sensors, EMG

sensors

IMU and
accelerometer

data, EMG,
motion capture
systems data,
signals from

force-measuring
shoes and

pressure sensors

A combination of
various machine
learning models

including SVM, KNN,
RF, DNN, CNN, MLP,

and LSTM was used to
detect diabetes

SVM, KNN,
RF, DNN,

CNN, MLP,
LSTM

98.68% Yes 2023

[57]
Human activity
monitoring and

identification

Conductive
fabric-based
suspender

Data from sensor
output

A variety of classifiers
were applied to extract

human activity from
the sensor data

KNN, SVM,
LSTM, RF,

LR, DT,
GBDT

98.11% Yes 2023
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5. Conclusions

In conclusion, recent strides in wearable device development underscore the inte-
gration of machine learning algorithms, ushering in a new era of personalized health
monitoring and intervention systems. The comprehensive review of literature in this field,
with a particular emphasis on personalized wearables, revealed a noteworthy finding:
78.5% of the scrutinized articles showcased the incorporation of personalized features,
while the remaining articles demonstrated the potential for personalization. These wear-
able systems leverage sophisticated algorithms to process diverse sensor data, ranging from
strain gauges to electrochemical sensors, enabling the provision of tailored health insights
and interventions. The application of machine learning extends beyond general health
monitoring, delving into personalized healthcare solutions for specific medical conditions
such as diabetes, sleep disorders, and neurological rehabilitation. The analytical power
of AI facilitates the interpretation of physiological signals, the prediction of disease states,
and the delivery of personalized interventions, thereby enhancing disease management
and patient outcomes. Furthermore, the development of personalized wearables addresses
specific health challenges, exemplified by conditions like urinary incontinence, panic at-
tacks, and obsessive compulsive disorder. Machine learning algorithms play a pivotal role
in detecting and predicting these conditions, enabling early intervention and personalized
support. These collective advancements underscore the immense potential of personalized
wearable devices in catering to individual health needs and ultimately elevating the quality
of life for individuals with diverse health conditions.
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