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Abstract: The cyclin-dependent kinase inhibitor 1B (CDKN1B) gene, which encodes the p27Kip1
protein, is important in regulating the cell cycle process and cell proliferation. Its role in breast
cancer prognosis is controversial. We evaluated the significance and predictive role of CDKN1B
expression in breast cancer prognosis. We investigated the clinicopathologic factors, survival rates,
immune cells, gene sets, and prognostic models according to CDKN1B expression in 3794 breast
cancer patients. We performed gene set enrichment analysis (GSEA), in silico cytometry, pathway
network analyses, gradient boosting machine (GBM) learning, and in vitro drug screening. High
CDKN1B expression levels in breast cancer correlated with high lymphocyte infiltration signature
scores and increased CD8+ T cells, both of which were associated with improved prognosis in breast
cancer. which were associated with a better prognosis. CDKN1B expression was associated with
gene sets for the upregulation of T-cell receptor signaling pathways and downregulation of CD8+ T
cells. Pathway network analysis revealed a direct link between CDKN1B and the pathway involved
in the positive regulation of the protein catabolic process pathway. In addition, an indirect link was
identified between CDKN1B and the T-cell receptor signaling pathway. In in vitro drug screening,
BMS-345541 demonstrated efficacy as a therapeutic targeting of CDKN1B, effectively impeding the
growth of breast cancer cells characterized by low CDKN1B expression. The inclusion of CDKN1B
expression in GBM models increased the accuracy of survival predictions. CDKN1B expression plays
a significant role in breast cancer progression, implying that targeting CDKN1B might be a promising
strategy for treating breast cancer.

Keywords: breast cancer; prognosis; tumor infiltrating lymphocyte; CDKN1B

1. Introduction

Breast cancer is one of the most commonly diagnosed cancers in women, and recent
advances in early detection and a variety of systemic and targeted therapies have im-
proved survival rates for breast cancer patients. Breast cancer is still one of the primary
causes of death from cancer, and the rate of decline in mortality has decelerated in recent
years [1]. Breast cancer has a heterogeneous nature and exhibits genetic and phenotypic
diversity, which may appear clinically or pathologically similar but demonstrate different
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behaviors due to underlying biological differences [2,3]. Therefore, to improve overall
survival, it is essential to understand the molecular mechanisms associated with breast
cancer progression.

The cyclin-dependent kinase inhibitor 1B (CDKN1B) is critical for the regulation of
the cell cycle and cell proliferation. It encodes p27, a cyclin-dependent kinase inhibitor
(CDKi) in the Kip family of cyclin-dependent kinase inhibitors. p27 functions as a tumor
suppressor because it inhibits the activity of cyclin-dependent kinases (CDKs) and prevents
cell division, thereby inhibiting the transition from the G1 to the S phase [4,5]. Down-
regulation or inactivation of CDKN1B resulting from genetic mutations, modifications,
or dysregulation of the signaling pathway can impair normal function. Consequently,
it may promote human tumorigenesis or oncogenic development in numerous human
malignancies, including breast cancer, by causing uncontrolled cell growth [5–7].

Advances in next-generation sequencing (NGS) and genome-wide association analysis
have revealed many potential factors that promote tumor progression in various cancers.
Among these, mutations in CDKN1B have been shown to occur at a frequency of 2.8% in
breast cancer patients [8]. Mutations in CDKN1B have been discovered and confirmed to
be most significantly altered in luminal breast cancer, a subtype that accounts for more than
60% of all breast cancers, and high CDKN1B expression has been demonstrated to predict
sensitivity to endocrine therapy and chemotherapy in luminal breast cancer patients [9,10].
The molecular processes driving carcinogenesis and the clinicopathological variances
associated with CDKN1B expression in breast cancer remain incompletely understood.
Understanding the molecular mechanisms underlying CDKN1B dysregulation and its
impact on breast cancer progression is important to improve treatment strategies for
breast cancer by developing potential therapeutic targets and identifying its role as a
prognostic marker. In recent years, bioinformatics and high-throughput experimental
analyses have utilized multi-omic data obtained from marker genes, quantification of
tumor-infiltrating immune cells, and molecular networks to identify reliable biomarkers
essential for successful treatment approaches.

In this study, our objective was to examine the correlation between CDKN1B expres-
sion levels and clinicopathological factors as well as survival rates in breast cancer patients.
We analyzed the effect of CDKN1B expression on breast cancer survival using the gradient
boosting machine (GBM) algorithm. Additionally, we conducted gene set enrichment
analysis (GSEA) and pathway network analysis to investigate the gene sets associated with
CDKN1B expression. This investigation revealed the underlying mechanism of CDKN1B
expression in breast cancer by understanding the anticancer immune responses associated
with these gene sets. To identify potential effective drug targets for breast cancer cell
lines with low CDKN1B expression, the Genomics of Drug Sensitivity in Cancer (GDSC)
database was used as an in vitro drug screening platform (Figure 1).
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pathologic diagnosis of invasive ductal carcinoma from the Molecular Taxonomy of 
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GSE1456, GSE4922, GSE7390, and GSE20685 were downloaded from the GEO (gene ex-
press omnibus) database (http://www.ncbi.nlm.nih.gov/geo/) (accessed on 1 June 2021) 
[14–17]. Survival analyses were performed to determine clinical significance in four inde-
pendent cohorts, including GSE1456 (N = 157), GSE4922 (N = 247), GSE7390 (N = 198), and 
GSE20685 (N = 327). Genomic data from 179 normal breast tissue samples were obtained 
from a resource database, the Genotype-Tissue Expression (GTEx) project [18]. 

Survival data included disease-free survival (DFS), defined as the time (in months) 
from the date of diagnosis to recurrence including distant metastasis, and disease-specific 
survival (DSS), defined as time (in months) from the date of primary surgical treatment to 
the time of death by breast cancer. 

Figure 1. Schematic diagram depicting the plan of the study.

2. Materials and Methods
2.1. Patient Selection

The study included 456 breast cancer patients with invasive ductal carcinoma whose
primary tumors were operated on at both Hanyang University Guri Hospital and Samsung
Kangbuk Medical Center. Patients with unavailable clinicopathological parameters or
missing tissue blocks were excluded. We enrolled 1620 breast cancer patients with a
pathologic diagnosis of invasive ductal carcinoma from the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC), as well as 789 such patients from The
Cancer Genome Atlas (TCGA) [11–13]. Gene expression profiling data sets such as GSE1456,
GSE4922, GSE7390, and GSE20685 were downloaded from the GEO (gene express omnibus)
database (http://www.ncbi.nlm.nih.gov/geo/) (accessed on 1 June 2021) [14–17]. Survival
analyses were performed to determine clinical significance in four independent cohorts,
including GSE1456 (N = 157), GSE4922 (N = 247), GSE7390 (N = 198), and GSE20685
(N = 327). Genomic data from 179 normal breast tissue samples were obtained from a
resource database, the Genotype-Tissue Expression (GTEx) project [18].

Survival data included disease-free survival (DFS), defined as the time (in months)
from the date of diagnosis to recurrence including distant metastasis, and disease-specific
survival (DSS), defined as time (in months) from the date of primary surgical treatment to
the time of death by breast cancer.

http://www.ncbi.nlm.nih.gov/geo/
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2.2. Tissue Microarray Construction and Immunohistochemistry

Tissue microarray (TMA) was prepared using a tissue array device (AccuMax Array;
ISU ABXIS Co. Ltd., Seoul, Republic of Korea). We used duplicate 3 mm diameter tissue
cores (tumor component in a tissue core > 70%) from each donor block. Sections of four
micrometers in size were extracted from the TMA blocks following standard techniques.
Immunostaining for p27 protein (encoded by the CDKN1B gene) (clone 1B4, 1:50, Novo-
castra, Newcastle, UK) was performed using the Dako Autostainer Universal Staining
System (DakoCytomation, Carpinteria, CA, USA) and ChemMate™ Dako EnVision™ De-
tection Kit. By assessing the intensity and proportion of nucleus-stained tumor cells, the
immunoreactive score (IRS) for p27 expression was derived [19] (Figure 2A). The level
of p27 expression was evaluated via a receiver operating characteristic (ROC) curve and
categorized as low (IRS < 1) or high (IRS ≥ 1). Hormone receptor (HR) positive status
was defined as positive immunohistochemistry (IHC) for estrogen and/or progesterone
receptors (ER/PR). Human epidermal growth factor receptor 2 (HER2)-positive status was
defined as an IHC score of 3+ or 2+ accompanied by confirmed HER2 gene amplification by
fluorescent in situ hybridization (FISH) or silver in situ hybridization (SISH) [20]. The IHC
results have been used for the classification of tumors into different molecular subtypes
of breast cancer in our cohort: HR-positive/HER2-negative, HR-positive/HER2-positive,
HR-negative/HER2-positive, and HR-negative/HER2-negative [21].
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Figure 2. (A) Immunohistochemical staining showing CDKN1B expression in breast cancer (original
magnification 200×). (B) Bar plots of CDKN1B expression, normal tissue versus breast cancer (error
bars: standard errors of the mean) (p < 0.001). (C) Low CDKN1B expression was associated with
shorter survival time compared with high CDKN1B expression (all p < 0.05).

2.3. Immunohistochemistry for CD8+ T Cells

Formalin-fixed paraffin-embedded blocks from 172 of the 456 patients in our cohort
were sectioned and stained for immunohistochemistry from one of our cohorts. Anti-
CD8 (clone 4B11; Leica Biosystems, Newcastle, UK) and anti-CD4 (clone 4B12; Leica
Biosystems) antibodies were detected using the Bond Polymer Refine Detection System
(Leica Biosystems) according to the manufacturer’s instructions. CD8+ T cell and CD4+ T
cell counts were determined avoiding areas of necrosis. In cases of heterogeneity, CD8+ T
cell and CD4+ T cell counts were estimated at the tumor front within the area of deepest
invasion. A minimum of three random fields were examined to assess both the tumor
center and the intraepithelial compartment. In cases of heterogeneity, the count that best
represented the entire section was assigned, as previously described [22].

2.4. GSEA, In Silico Cytometry, and Pathway Network Analyses

Using gene set enrichment analysis (GSEA, version 4.2.2), we performed a compre-
hensive analysis of relevant gene sets [23]. To identify gene sets associated with low
CDKN1B expression, curated gene sets (C2, 6495 sets), oncogenic gene sets (C6, 189 sets),
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and immunological gene sets (C7, 5219 sets) were applied. For this study, we performed
1000 permutations to determine p values, using a phenotype-based permutation type. The
following cutoffs were used: p < 0.05 and false discovery rate (FDR) < 0.25. To explore
leukocyte subsets, we used in silico cytometry (CIBERSORT) [24]. Pathway network analy-
ses were plotted using Cytoscape software (version 3.9.1) and ClueGO (version 2.5.8), an
application for Gene Ontology (GO) analyses. The networks were categorized by consid-
ering functionally enriched Gene Ontology (GO) terms and pathways [25,26]. We used
the Tumor Immune Dysfunction and Exclusion (TIDE) tool to identify two biomarkers,
interferon-γ and TIDE; cancer-associated fibroblasts; and immunotherapy response [27].

2.5. Genomics of Drug Sensitivity in Cancer Database and GBMs

We investigated the relationship between sensitivity to anticancer drugs using data
from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset [28] and the Cell Lines
Project of the Catalog Of Somatic Mutations In Cancer (COSMIC) database [29]. A total of
50 breast cancer cell lines were stratified into high and low groups according to the median
CDKN1B expression level. In breast cancer cell lines exhibiting low or high CDKN1B
expression, drug response was determined as the natural log of the half-maximal inhibitory
concentration (LN IC50). Drug efficacy was determined by a decrease in the calculated
LN IC50 in cell lines with low CDKN1B expression and an increase in those with high
CDKN1B expression, indicating a positive correlation between drug effect and CDKN1B
expression levels [30,31].

To construct prognostic models for survival prediction, we integrated CDKN1B with
clinical risk factors including T and N stage, histological grade, perineural invasion, lym-
phatic invasion, ER, HER2, and CDKN1B. Machine learning algorithms were then applied
to a dataset of 456 cases, with 70% randomly assigned as the training set and 30% as the
validation set. A machine learning algorithm was used to automatically select and combine
several predictors from gradient boosting machines (GBMs) using multivariate Bernoulli
models. The performance of the GBM method was evaluated by a receiver operating
characteristic (ROC) curve.

2.6. Statistical Analysis

The study utilized the χ2 test to analyze the correlations between clinicopathological
parameters and CDKN1B. Differences among continuous variables were examined using
the student’s t-test and/or Spearman’s correlation analysis. To compare survival curves, the
study employed the Kaplan–Meier method and the log-rank test. Moreover, independent
prognostic markers for survival were identified using multivariate Cox regression analyses.
A statistical significance level was set at a two-tailed p-value of less than 0.05. The analysis
of all data was conducted using the R (version 4.0.2, R Foundation for Statistical Computing,
Vienna, Austria).

3. Results
3.1. Clinicopathological Parameters and Survival Analysis of CDKN1B

In our study, the cohort of 456 breast cancer patients was stratified into two categories
using the optimal cut-off for CDKN1B expression. Of these patients, 85 (18.6%) were
classified as having low CDKN1B expression, while 371 (81.4%) were classified as having
high CDKN1B expression. A detailed comparison of the clinicopathological characteristics
between the two groups is shown in Table 1. Low CDKN1B expression was significantly
associated with advanced T stage (p = 0.034), advanced N stage (p = 0.021), vascular invasion
(p = 0.001), and perineural invasion (p = 0.008). On the other hand, high CDKN1B expression
was significantly associated with HER2 overexpression (p = 0.016), higher Ki67 (p = 0.001),
and higher p53 expression (p < 0.001). Within the GTEx and TCGA datasets, a significant
decrease in CDKN1B expression was observed in primary tumors compared to normal
tissue (p < 0.001) (Figure 2B). Among our cohort, individuals with low CDKN1B expression
had notably worse disease-free survival (DFS) and overall survival (OS) outcomes than
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those with high CDKN1B expression (p = 0.05 and p = 0.025, respectively). We conducted
further survival analysis on six large datasets (TCGA, METABRIC, GSE1456, GSE4922,
GSE7390, and GSE20685) to validate the level of CDKN1B expression and clinical outcomes.
Low CDKN1B expression revealed a significantly shorter survival time than high CDKN1B
expression (all p < 0.05) (Figure 2C). In our cohort, as well as in the TCGA and METABRIC
datasets, the statistical significance persisted in the multivariate analysis (Table 2).

Table 1. Clinicopathological parameters of p27 (encoded by CDKN1B gene) expression in our cohort.

Parameter
CDKN1B Expression

p-Value 1

Low (n = 85), n (%) High (n = 371), n (%)

Age (years) 50.4 ± 10.0 49.3 ± 9.9 0.333

T stage

1 30 (35.3%) 178 (48.0%) 0.034 3

2 48 (56.5%) 178 (48.0%)

3 7 (8.2%) 15 (4.0%)

N stage

0 39 (45.9%) 194 (52.3%) 0.021 3

1 22 (25.9%) 113 (30.5%)

2 15 (17.6%) 45 (12.1%)

3 9 (10.6%) 19 (5.1%)

Histological grade

1 13 (15.3%) 74 (19.9%) 0.325 3

2 45 (52.9%) 171 (46.1%)

3 27 (31.8%) 126 (34.0%)

Lymphatic invasion

Negative 44 (51.8%) 186 (50.1%) 0.88

Positive 41 (48.2%) 185 (49.9%)

Vascular invasion 0.001

Negative 72 (84.7%) 354 (95.4%)

Positive 13 (15.3%) 17 (4.6%)

Perineural invasion 0.008

Negative 58 (68.2%) 304 (81.9%)

Positive 27 (31.8%) 67 (18.1%)

ER 0.356

Negative 28 (32.9%) 101 (27.2%)

Positive 57 (67.1%) 270 (72.8%)

PR 0.44

Negative 37 (43.5%) 142 (38.3%)

Positive 48 (56.5%) 229 (61.7%)

HER2 0.016

Negative 69 (81.2%) 249 (67.1%)

Positive 16 (18.8%) 122 (32.9%)
T or N stage, 8th edition; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor
receptor 2. 1 Chi-square test. 3 T stage: 1 vs. 2, 3; N stage: 0, 1 vs. 2, 3; Histological grade: 1 vs. 2, 3. p < 0.05 is
shown in bold.
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Table 2. Overall and disease-free survival analyses according to p27 (encoded by CDKN1B gene)
from our cohort.

Covariate
Disease-Free Survival Overall Survival

HR 95%CI p-Value HR 95%CI p-Value

Our cohort

Multivariate 1 0.530 0.330 0.852 0.009 0.498 0.315 0.788 0.003

Covariate
Disease-free survival Disease-specific survival

HR 95%CI p value HR 95%CI p value

TCGA

Multivariate 2 0.560 0.318 0.989 0.046 0.509 0.267 0.971 0.04

Covariate
Disease-specific survival Overall survival

HR 95%CI p value HR 95%CI p value

METABRIC

Multivariate 3 0.829 0.689 0.999 0.048 0.857 0.746 0.984 0.028
1 Adjusted for T stage, N stage, estrogen receptor, histological grade, lymphatic invasion. 2 Adjusted for T stage, N
stage, estrogen receptor, histological grade. 3 Adjusted for T stage, N stage, estrogen receptor, histological grade.

In our cohort, the patients with low CDKN1B expression significantly correlated
with poor DFS (univariate, p = 0.014; multivariate, p = 0.043) and OS (univariate, p = 0.003;
multivariate, p = 0.033) in the HR(+) HER2(−) subtype. In the HR(+) HER2(+), patients with
low CDKN1B expression were associated with poor DFS (p = 0.012) and OS (p = 0.032) only
in univariate analysis. No statistically significant correlation was found between CDKN1B
expression and survival outcomes for the remaining subtypes (Supplementary Table S1).

3.2. Gene Sets, Immune Response, and Pathway Network Analysis According to
CDKN1B Expression

In GSEA, low CDKN1B expression was associated with genes upregulated in the
normal subtype of breast cancer, genes upregulated by mTOR kinase inhibitors, the T-cell
receptor signaling pathway, and genes downregulated in memory CD8 T cells (Figure 3A).

Low CDKN1B expression was significantly correlated with low lymphocyte-infiltrating
signature scores (p < 0.001), decreased B cells (p < 0.001), decreased CD8+ T cells (p = 0.04),
high tumor cell proliferation (p = 0.04), low leukocyte count (p < 0.001), and elevated
M2 macrophages (p < 0.001) (Figure 3B). Low CDKN1B expression was associated with
low interferon-γ (p = 0.018), high TIDE signature score (p = 0.065), and decreased cancer-
associated fibroblasts (p = 0.002). CDKN1B expression was decreased in patients with
an anti-PD1 therapy response (p = 0.015) (Figure 3C). In our study cohort, a significant
correlation was observed between low CDKN1B expression and reduced CD8+ T cell
counts (p = 0.007). While low CDKN1B expression did not reach statistical significance,
there was a correlation observed between low expression and a decline in the counts of
CD4+ T cells (p = 0.254) (Supplementary Figure S1).

The pathway network analysis revealed direct links between CDKN1B and the protein
catabolic process pathway. Furthermore, indirect connections were revealed between
CDKN1B and pathways such as the T-cell receptor signaling pathway, the Wnt signaling
pathway, the regulation of macroautophagy, the Toll-like receptor signaling pathway, and
the inflammatory response to an antigenic stimulus (Figure 4).
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Figure 3. (A) In gene set enrichment analyses, CDKN1B expression is related to genes upregulated
in the normal subtype of breast cancer, genes upregulated by mTOR kinase inhibitors, the T-cell
receptor signaling pathway, and genes downregulated in memory CD8 T cells. (B) Bar plots: low
CDKN1B expression is associated with a low lymphocyte infiltration signature score (p < 0.001),
decreased B cells (p < 0.001), increased CD4+ T cells (p = 0.938), decreased CD8+ T cells (p = 0.04),
high cell proliferation (p = 0.04), decreased leukocytes (p < 0.001), decreased M1 macrophages
(p = 0.1), and increased M2 macrophages (p < 0.001). (C) Low CDKN1B expression is related to low
interferon-g (IFNG) expression (p = 0.018), elevated Tumor Immune Dysfunction and Exclusion
(TIDE) signature score (p = 0.065), and decreased cancer-associated fibroblasts (CAFs) (p = 0.002). The
immunotherapy response was significantly different between low CDKN1B expression and high
CDKN1B expression (p = 0.015).

3.3. Drug Screening and Machine Learning Analysis

BMS-345541 effectively inhibited the growth of breast cancer cells in 50 cell lines,
especially those with low CDKN1B expression (p = 0.012). (Figure 5A). We assessed the
predictive capability of two gradient boosting machine (GBM) models in determining
survival rates in our cohort. The two GBM models were differentiated by the presence
or absence of CDKN1B (Model 1 (CDKN1B, T stage, N stage, histological grade, lympho-
vascular invasion, perineural invasion, ER and HER2) versus Model 2 (T stage, N stage,
histological grade, lymphovascular invasion, perineural invasion, ER and HER2)). The
ROC curve for the GBM model was generated using the multivariate Bernoulli model.
Adding CDKN1B to the prediction model improved the ability to predict prognosis, result-
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ing in the GBM algorithm outperforming (area under the curve: Model 1, 0.869; Model 2,
0.822) (Figure 5B,C).
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Figure 5. Genomics of Drug Sensitivity in Cancer (GDSC) database analysis. (A) Spearman’s
correlations were performed to illustrate the relationships between the natural logarithm of the
half-maximal inhibitory concentration (LN IC50) values obtained using BMS-345541 in breast cancer
cell lines (r = 0.38, p = 0.013) (blue, low CDKN1B expression; red, high CDKN1B expression). Bar
plot were performed to illustrate the LN IC50 values obtained using BMS-345541 between breast
cancer cell lines with low (blue) and high (red) CDKN1B expression (p = 0.012) (error bars: standard
errors of the mean). (B,C) A gradient boosting machine (GBM) model was employed to supervise a
machine learning model for prognostic prediction within our 456 cohorts. Covariates were added in
the confounding factors ((B) Model 1: T stage, N stage, histological grade (Grade), estrogen receptor
(ER), human epidermal growth factor receptor 2 (HER2), perineural invasion (PNI), lymphovascular
invasion (LVI), and CDKN1B versus (C) Model 2: T stage, N stage, Grade, ER, HER2, PNI, and LVI)
and their relative importance using survival. A multivariate Bernoulli model was applied to generate
a receiver operating characteristic curve for GBM.

4. Discussion

This study investigated the potential effects of CDKN1B, a negative cell cycle regulator,
in breast cancer. CDKN1B was found to primarily participate in anticancer functions,
exhibiting lower expression levels in breast cancer tissue in comparison to normal breast
tissue. Low CDKN1B expression has been shown to be significantly associated with
advanced cancer stage and worse clinicopathological parameters, such as high expression
of p53, Ki-67, and HER2. Furthermore, survival analyses in three databases (our cohort
including HYGH and KBSMC, METABRIC, and TCGA) demonstrated that low CDKN1B
expression is associated with unfavorable survival rates. Furthermore, low CDKN1B
expression was related to various immune factors, such as low interferon-γ, CD8+ T
cells, and immunotherapy response. According to our results, CDKN1B may represent a
meaningful biomarker for breast cancer immunotherapy.

Cyclin-dependent kinase inhibitors (CDKIs) are critical negative regulators of cell
cycle progression, and loss of cell cycle control may contribute to cancer development [32].
CDKN1B inhibits the enzymatic activity of the cyclin-CDK complex and plays a central
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role in the progression of the cell cycle from the G1 phase to the S phase. CDKN1B
is highly expressed in all normal epithelia, including the breast, prostate, esophagus,
stomach, colon, and lung mucous membranes. However, the loss of CDKN1B may occur in
carcinomas containing these tissues [33]. Our results also revealed that CDKN1B expression
was significantly lower in breast cancer tissues than in normal mammary gland tissues.
Loss of CDKN1B function or decreased expression has been implicated in various cancer
types, leading to uncontrolled cell cycle progression and increased tumor growth. Recent
studies on the association of CDKN1B with breast cancer have identified CDKN1B as a
driver gene that is almost exclusively mutated in luminal breast cancer (LBC) and found
that it is enriched in mutations leading to loss of function in metastatic breast cancer
patients [34]. Furthermore, high expression of CDKN1B is not only a marker of good
prognosis but also serves as an independent predictor of response to hormonal therapy,
while downregulation of CDKN1B has been shown to predict resistance to radiotherapy
and anti-HER2 therapy [35,36]. Our study also found that reduced CDKN1B expression
was linked to more aggressive tumor characteristics and poorer survival rates due to
disease progression in breast cancer patients. This association was particularly strong in
the luminal subtype. The precise molecular mechanisms and pathways responsible for
carcinogenesis in breast cancer, as determined by CDKN1B expression, remain unclear.

The survival of cancer cells depends on the complex interactions between cancer cells
and immune cells in the tumor microenvironment (TME). Marked lymphocyte infiltration
by tumor-infiltrating lymphocytes (TILs) can play a central role in anticancer immunity in
breast cancer patients and can be a beneficial prognostic factor in various cancers. Cytotoxic
T lymphocytes (CTLs), which express CD8 on their cell surface, are prototypical antitumor
immune cells and play an important role in anticancer immunity, as they can recognize
tumor cells in an antigen-specific manner and directly kill them by secreting cytotoxic
molecules [37]. An increase in the infiltration of CD8+ T cells is strongly associated with an
improvement in OS in patients with ER-negative breast cancer. Better response to adjuvant
chemotherapy is also associated with high immune infiltration [38–40]. Therefore, the
identification of different types of immune cells in the tumor microenvironment provides
an aid in predicting the prognosis of the cancer [41]. Using the GSEA, we observed a
correlation between the expression of CDKN1B and specific gene sets associated with the T
cell receptor signaling pathway and the downregulation of CD8+ T cells. These signaling
pathways are important for the complete eradication of cancer cells. Our results showed
that high CDKN1B mRNA levels were associated with higher lymphocyte-infiltrating
signature scores and increased CD8+ T cells. These findings suggest that high CDKN1B
expression promotes antitumor immune activity, leading to improved clinical outcomes.
To support these findings, pathway network analysis using the TCGA database found
that CDKN1B is indirectly involved in various immune pathways. These findings are in
accordance with previous research [42,43].

CDKN1B may also have implications for therapeutic strategies in breast cancer. Tar-
geting CDKs and cell cycle regulators has emerged as an attractive therapeutic approach
in cancer treatment. By in vitro drug screening, we found that BMS-345541 effectively
reduced breast cancer cells with low CDKN1B expression. BMS-345541, a potent small-
molecule compound, is a highly selective inhibitor of IκB kinase (IKK)α and IKKβ, key
regulators of NF-κB signaling [44]. Nuclear factor-κB (NF-κB) plays an important role in
cell survival, proliferation, and differentiation and is often involved in malignant transfor-
mation [45]. NF-κB is activated primarily on T lymphocytes in response to T-cell receptor
signaling but also in response to proinflammatory stimuli, where it protects tumor cells
from death in many cancers, thereby influencing tumor development and cancer treatment
resistance [46,47]. Further studies are needed to evaluate the efficacy of these treatments in
specific subsets of breast cancer patients based on CDKN1B expression.

In this study, we used GBM analysis to investigate the influence of CDKN1B expression
on breast cancer survival. GBM, a machine learning technique, has the advantage of
processing many predictor variables through a simple prediction algorithm. It combines
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the results in a non-linear and interactive way, thereby increasing the accuracy of the
predictions. The CDKN1B-induced survival model improvement suggests that CDKN1B is
a potent prognostic factor in breast cancer.

The present study has several limitations. First, the detailed molecular mechanisms
and signaling pathways through which CDKN1B influences the clinical outcomes of breast
cancer, using our bioinformatics approach and in silico analysis, need to be experimentally
validated. Specifically, the proposition that CDKN1B could serve as a biological marker
for anticancer immunotherapy, as assessed by the TIDE tool, requires validation across
multiple research cohorts. Second, the breast cancer data from TCGA and METABRIC did
not include sufficient clinicopathologic parameters to build a machine-learning model to
predict survival. This study could not assess the impact of CDKN1B due to the limited data
available. Third, the statistical significance of the difference in CD8+ T cell counts between
cases with low and high CDKN1B expression was observed in a limited number of cases
using immunohistochemistry. Fourth, we did not consider ki67 in classifying breast cancer
subtypes in this study. Further studies with larger cohorts will be essential to validate
our findings. Fourth, the drugs proposed in this study may be different depending on the
immune response and disease status. Therefore, our results need to be further verified.

5. Conclusions

Our findings provide insights into the potential role of CDKN1B as a biomarker
for survival prediction and immunotherapy response in breast cancer. Low CDKN1B
expression is associated with low lymphocyte-infiltrating signature scores and decreased
CD8+ T cells, which could induce unfavorable physiological changes. Intriguingly, there
is a correlation between low CDKN1B expression and immunotherapy responsiveness.
In vitro drug screening showed that BMS-345541 reduces the growth of breast cancer cells
with low CDKN1B expression. CDKN1B may serve as an important biomarker in the
treatment of breast cancer, and further experimental research and clinical trials of targeted
drugs for CDKN1B may be necessary to clarify its clinical significance. Our results are
expected to play an important role.
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