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Abstract: Obesity, hypertension, insulin resistance, and dyslipidemia are all clusters of an entity
called “Metabolic Syndrome”. The global trends of this syndrome’s incidence/prevalence continue
to increase reciprocally, converting it into a massive epidemic problem in the medical community.
Observing the risk factors of atrial fibrillation, a medical condition that is also converted to a scourge,
almost all parts of the metabolic syndrome are encountered. In addition, several studies demonstrated
a robust correlation between metabolic syndrome and the occurrence of atrial fibrillation. For atrial
fibrillation to develop, a combination of the appropriate substrate and a trigger point is necessary. The
metabolic syndrome affects the left atrium in a multifactorial way, leading to atrial remodeling, thus
providing both the substrate and provoking the trigger needed, which possibly plays a substantial
role in the progression of atrial fibrillation. Due to the remodeling, treatment of atrial fibrillation may
culminate in pernicious sequelae, such as repeated catheter ablation procedures. A holistic approach
of the patient, with simultaneous treatment of both entities, is suggested in order to ensure better
outcomes for the patients.
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1. Introduction

Atrial fibrillation (AF) stands as the most prevalent form of arrhythmia on a global
scale, boasting an estimated prevalence of approximately 2–4% among adults—an incidence
poised for considerable escalation in the times ahead [1]. Notably, the European Society
of Cardiology’s (ESC) task force dedicated to AF diagnosis and management has recently
introduced the “Atrial fibrillation Better Care (ABC)” approach. This innovative framework
designates the letter ‘C’ to signify Cardiovascular risk factors and concomitant diseases [1].
It is under this guidance that a multidisciplinary and comprehensive approach has been
proposed, advocating not only lifestyle modifications and risk factor management but also
venturing beyond conventional medical interventions.

The multifaceted dimensions of the ‘C’ encompass central obesity, dyslipidemia, glu-
cose intolerance, and hypertension—constituting both the essence of the ABC approach and
collectively forming the framework of metabolic syndrome (MetS) [2]. Notably, registries
have garnered evidence supporting a robust correlation between MetS and the prevalence
of AF [3,4]. Furthermore, it is discerned that the coexistence of two distinctive clusters
within MetS independently contributes to an elevated risk of AF incidence [5].

This review undertakes a twofold objective. Firstly, it endeavors to meticulously assess
the interrelationship between AF and MetS. Secondly, it aspires to advance and enrich our
comprehension of this specific domain.
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2. Definitions
2.1. Metabolic Syndrome

The first recognizable definition of the MetS was provided by the World Health Or-
ganization (WHO) in 1998 as the presence of insulin resistance or fasting plasma glucose
> 6.1 mmol/L (110 mg/dL) or 2 h plasma glucose levels > 7.8 mmol (140 mg/dL) (glu-
cose tolerance test) (required) along with two or more of the following: 1. High-Density
Lipoprotein (HDL) cholesterol < 0.9 mmol/L (35 mg/dL) in men, <1.0 mmol/L (40 mg/dL)
in women 2. Triglycerides > 1.7 mmol/L (150 mg/dL) 3. Waist/hip ratio > 0.9 (men) or
>0.85 (women) or Body Mass Index (BMI) > 30 kg/m2 4, Arterial Blood pressure > 140/90
mmHg [6]. Since then, multiple, less recognizable definitions have been proposed [7–9], al-
though the more recent definitions of the National Cholesterol Education Program (NCEP)
ATP3 2005 [10] and the International Diabetes Federation 2006 (IDF) [11] are the most
widely used (Table 1). However, the consensus of several major organizations in 2009
agreed on the newly revised criteria for MetS shown in Table 2 [2]. Since 2009, the definition
of MetS has been standardized, and all the above have been used in different studies;
innovative trials have proven that fasting glucose is an inadequate parameter due to its
inferiority in the younger population and proposed the replacement of elevated fasting
glucose with insulin resistance [12,13].

Table 1. Revised Criteria for Clinical Diagnosis of the Metabolic Syndrome.

Revised Criteria for Clinical Diagnosis of the Metabolic Syndrome

Measure Categorical Cut Points

Elevated waist circumference * Population- and country-specific definitions

Elevated triglycerides (drug treatment for
elevated triglycerides is an alternate
indicator †)

150 mg/dL (1.7 mmol/L)

Reduced HDL-C (drug treatment for reduced
HDL-C is an alternate indicator †)

<40 mg/dL (1.0 mmol/L) in males;
<50 mg/dL (1.3 mmol/L) in women

Elevated blood pressure (antihypertensive
drug treatment in a patient with a history of
hypertension is an alternate indicator)

Systolic 130 and/or diastolic 85 mm Hg

Elevated fasting glucose ‡ (drug treatment of
elevated glucose is an alternate indicator) 100 mg/dL

HDL-C indicates high-density lipoprotein cholesterol. * It is recommended that the IDF cut points be used for
non-Europeans and either the IDF or AHA/NHLBI cut points used for people of European origin until more data
are available. † The most used drugs for elevated triglycerides and reduced HDL-C are fibrates and nicotinic acid.
A patient taking 1 of these drugs can be presumed to have high triglycerides and low HDL-C. High-dose −3 fatty
acids presume high triglycerides. ‡ Most patients with type 2 diabetes mellitus will have the metabolic syndrome
by the proposed criteria.

2.2. Atrial Fibrillation

According to ESC guidelines, AF is a supraventricular tachyarrhythmia with unco-
ordinated atrial electrical activation and, consequently, ineffective atrial contraction. The
electrocardiographic characteristics of AF are 1. Irregularly irregular R-R intervals (when
atrioventricular conduction is not impaired), 2. Absence of distinct repeating P waves, and
3. Irregular atrial activations [1].
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Table 2. Diagnostic Criteria of Metabolic Syndrome.

Definitions of Metabolic Syndrome

National Cholesterol Education Program (NCEP) ATP3 2005

1. Blood glucose greater than 5.6 mmol/L (100 mg/dL) or drug treatment for elevated blood
glucose

2. HDL cholesterol < 1.0 mmol/L (40 mg/dL) in men, <1.3 mmol/L (50 mg/dL) in women or
drug treatment for low HDL-C

3. Blood triglycerides > 1.7 mmol/L (150 mg/dL) or drug treatment for elevated triglycerides
4. Waist > 102 cm (men) or >88 cm (women)
5. Blood pressure > 130/85 mmHg or drug treatment for hypertension

International Diabetes Federation 2006 (IDF)

Central obesity (defined as waist circumference ≥ 94 cm for Europid men and ≥80 cm for Europid
women, with ethnicity-specific values for other groups) plus any two of the following four factors:

1. Raised TG level: >150 mg/dL (1.7 mmol/L) or specific treatment for this lipid abnormality.
2. Reduced HDL cholesterol: <40 mg/dL (1.0 mmol/L) in males and <50 mg/dL (1.3 mmol/L)

in females, or specific treatment for this lipid abnormality
3. Raised blood pressure: systolic BP ≥ 130 or diastolic BP ≥ 85 mm Hg, or treatment of

previously diagnosed hypertension.
4. Raised fasting plasma glucose (FPG) ≥ 100 mg/dL (5.6 mmol/L) or previously diagnosed

type 2 diabetes.

If above 5.6 mmol/L or 100 mg/dL, OGTT is strongly recommended but is not necessary to define
the presence of the syndrome.

BP, Blood Pressure; FPG, Fasting Plasma Glucose; HDL, High-Density Lipoprotein; OGTT, Oral Glucose Tolerance
Test; TG, Triglycerides.

3. Metabolic Syndrome and Atrial Fibrillation: Is There a Correlation?

The heightened occurrence of AF is concomitant with its correlation to other car-
diovascular disorders, such as hypertensive cardiomyopathy, as established in the early
1980s in the renowned Framingham study [14]. The data from this study unveiled a di-
agnosis of chronic AF in approximately 2% of the population. A prolonged extension
of the study over 50 years exposed a substantial surge in AF prevalence. Distinct time
periods (1958–1967, 1968–1977, 1978–1987, and 1988–1997) exhibited a fourfold surge in
age-adjusted period prevalence from the earliest to the latest interval (1958–1967 versus
1998–2007). This rise underscored the significance of reducing attributable risk factors [15].
Presently, AF prevalence approximates 2–4%, with predictions anticipating a staggering
2.3-fold escalation [1].

Accurate estimation of MetS prevalence remains challenging due to divergent di-
agnostic criteria among surveys. However, the prevalence of its individual components
demonstrates a remarkable increase [16].

Numerous researchers have consistently depicted the robust link between MetS and
AF incidence, irrespective of distinct populations and definitions employed across studies
(Table 3). Even when the coexistence of major cardiovascular diseases such as coronary
heart disease and heart failure is excluded, this correlation remains steadfast (HR, 1.53;
95% CI, 1.35–1.74) [17]. Investigations into the various MetS clusters and their impact on
AF incidence yield intriguing findings. Hypertension emerges as the most prevalent com-
ponent of MetS, while elevated triglycerides represent the least frequent [18–20]. However,
the contribution of each component to AF incidence varies; some trials indicate the involve-
ment of all MetS components, while others suggest only select clusters are linked to AF
occurrence [18,21]. Generally, several trials absolve elevated triglycerides as a factor for AF
development [17,22,23]. Conversely, Kim et al. support the notion that only hypertension
and obesity may trigger AF [24]. Moreover, the cumulative longitudinal burden of MetS on
AF development has been documented. A Korean study categorizing participants based on
the number of MetS components demonstrated a positive association with the cumulative
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number of MetS clusters. This yielded HRs for groups meeting MetS diagnostic criteria with
1, 2, 3, and 4 clusters compared to 0 of 1.18 (95% CI, 1.13–1.24), 1.31 (95% CI, 1.25–1.39), 1.46
(95% CI, 1.38–1.55), and 1.72 (95% CI, 1.63–1.82), p < 0.001 [18]. Similar data have emerged
from multiple studies [17,25]. Lee et al. sought to substantiate the cumulative effect’s
association with AF risk by examining the impact of evolving MetS on the same individual.
Their findings revealed that the addition of MetS clusters between examinations incre-
mentally escalated the likelihood of AF development. Participants with 2, 3, and 4 MetS
components at reevaluation exhibited increased AF risk by 16%, 32%, and 47%, respectively,
compared to those maintaining ≤1 component [HR, 1.164 (95% CI, 1.138–1.192); HR, 1.316
(95% CI, 1.275–1.357); and HR, 1.465 (95% CI, 1.397–1.536), respectively) [25]. Importantly,
the reduction of MetS components between examinations corresponded with a decreased
AF risk [25], reinforcing the aforementioned premise. Earlier findings prompted Kwon et al.
to define a novel entity, termed pro-MetS, encompassing cases where one or two criteria
are met. Their analysis showcased elevated AF risk within this group [non-adjusted HRs
2.43 (95% CI 2.313–2.554)] [26]. A meta-analysis of 30,810,460 patients corroborated the
strong AF risk-MetS connection, establishing that MetS patients faced elevated AF risk (RR
1.57; 95% CI 1.40–1.77; Figure 1 in comparison to those without MetS. Notably, all MetS
components, except elevated triglycerides, were associated with heightened AF incidence
in line with this meta-analysis, albeit with substantial heterogeneity (I2 = 97%) [3].

Table 3. Characteristics and results of the studies included in the review.

Studies Design Total Cases Population MetS Definition
AF-MetS (% of
Total
Population)

Findings

Hyo-Jeong Ahn
et al. [18], 2021

Retrospective
Cohort Study 2.985.189

Korean
(2009–2013)
(NHID) (aged >
20)

NCEP-ATPIII +
modified waist
circumference
(WC) criteria of
the Korean
Society for the
Study of Obesity

−14.1

positive association of AF
with the cumulative number
of MetS criteria 1.46
(1.38–1.55), and 1.72
(1.63–1.82), p for trend < 0.001.
HR for 3 and 4 criteria,
respectively

Pastori et al. [27],
2021

Prospective
Cohort Study 1.735

Italian (mean age
75.1)
Patients with a
history of AF

NCEP-ATPIII 100–49

MetS and NAFLD were more
frequently affected by
persistent/permanent AF
AF combined with MetS
showed a higher risk for CVEs

Lee et al. [25],
2021

Retrospective
Cohort Study 7.565.531

Korean
(2008–2009)
(NHID) (aged
>20)

AHA/NHLBI 1.79–36.9

AF risk was higher by 31% in
the MM group [hazard ratio
(HR), 1.308; 95% CI,
1.290–1.327], 26% in the MH
group (HR, 1.259; 95% CI,
1.238–1.280), and 16% in the
HM group (HR, 1.155; 95% CI,
1.134–1.178) compared with
the HH group, respectively

Wang et al. [28],
2020

Prospective
Cohort Study 81.092

Chinese
(2006–2007)
(Kailuan study)
(aged 18–98)

NCEP-ATPIII 0.3–29.8

MS and a high hs-CRP level
were associated with higher
AF risk (HR = 1.61; 95% CI
1.08–2.41; p = 0.019)

Choe et al. [21],
2019

Retrospective
Cohort Study 22.896.663

Korean
(2009–2012)
(NHID) (aged >
40)

NCEP-ATPIII 0.98–27.4

HR for incident AF in patients
with MetS was 1.38 (95%
confidence interval [CI]
1.36–1.39) compared to those
without MetS

Kwon et al. [26],
2019

Retrospective
Cohort Study 7.830.602

Korean
(2009–2016)
(NHID) (aged
30–69)

NCEP-ATPIII 0.26–15.9
Incidence of AF 0.12% in the
normal group and 0.53% in
the MetS group
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Table 3. Cont.

Studies Design Total Cases Population MetS Definition
AF-MetS (% of
Total
Population)

Findings

Kim et al. [24],
2018

Retrospective
Cohort Study 21.981

Korean
(2003–2008)
(University
Hospital of Ulsan)
(mean age 46)

IDF 0.8–11.5

MetS was associated with an
increased risk of AF.
Age-adjusted HR for AF in
subjects with MetS was 1.62
(95% CI 1.08–2.44, p = 0.02)

Nyström
et al. [19], 2015

Prospective
Cohort Study 4.021 Swedish

(1997–1999)

Revised MetS
criteria of IDF
[11]

7.1–27.6
37.9% of the AF group had
MetS vs. 26.8% of the non-AF
group had MetS

Vyssoulis
et al. [5], 2013

Prospective
Cohort Study 15.075

Greek (1988–2010)
(aged > 40)
Patients with
hypertension

NCEP-ATPIII
AHA/NHLBI
WHO
IDF
GISSI Score

Not
mentioned—
from 31.7 to
47.8, according
to the definition
used

Presence of MS in patients
with hypertension was
constantly associated with a
higher incidence of AF in all
groups (p < 0.001).
Odds ratio 1.61 to 1.99,
depending on the definition of
MS used

Chamberlain
et al. [17], 2010

Prospective
Cohort Study 15.094

Americans
(1987–1989)
Atherosclerosis
Risk in
Communities
(ARIC) Study
Two groups:
Black race and
white race
(aged 45–64)

AHA/NHLBI 8.2–41.1

HR for AF among individuals
with, compared to those
without, the MetSyn was 1.67
(95% CI, 1.49–1.87) in both
races

Tang et al. [20],
2009

Retrospective
Cohort Study 741

Chinese
(2005–2007)
(Mean age 55.8)

NCEP-ATPIII 100–46.3
Higher prevalence of MetS in
AF than that in Chinese adults
(46.3% vs. 16.5%, p < 0.001)

Watanabe
et al. [22], 2008

Prospective
Cohort Study 28.449

Japanese
(1996–1998)
(aged > 20)

NCEP-ATPIII
AHA/NHLBI

0.9–13
(NCEP-ATPIII)
16
(AHA/NHLBI)

HR for developing AF in
patients with METS was 1.88
(95% CI, 1.4–2.52) for
NCEP-ATPIII and 1.61
(95% CI, 1.21–2.15) for
AHA/NHLBI

Umetanani
et al. [23], 2007

Prospective
Cohort Study 592

Japanese
(2001–2005)
(mean age 63)

NCEP-ATPIII 5–21

MetS was a risk factor for
PAF/PAFL independently
from other parameters OR 2.8,
95% confidence interval (CI)
1.3–6.2, p < 0.01)

Echadidi
et al. [29], 2007

Retrospective
Cohort Study 5.085

Canadians
(2000–2004)
(mean age 64)
After CABG

NCEP-ATPIII 27–46

Incidence of AF in patients
with MetS was 29% and 26%
in patients without MetS
(p = 0.01)

AHA/NHLBI, American Heart Association (AHA) and the National Heart, Lung, and Blood Institute; AF, Atrial
Fibrillation; ARIC, Atherosclerosis Risk in Communities; CABG, Coronary Artery Bypass Graft; CI, Confidence
Interval; hs-CRP, high sensitive C reactive Protein; MetS, Metabolic Syndrome; NCEP-ATPIII, NAFLD, Non-
Alcoholic Fatty Liver Disease; National Cholesterol Education Program Adult Treatment Panel III, PAF/PAFL,
Paroxysmal Atrial Fibrillation/Paroxysmal Atrial Flatter; IDF GISSI; HR, Hazard Ratio.
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4. A Correlation Exists: But Why?

To comprehend the link between MetS and AF and to establish a cohesive understand-
ing of the mechanisms underlying AF development, it is imperative to first elucidate the
pathogenetic factors leading to AF occurrence. An array of parameters contributes to the
pivotal atrial transformations necessary for the initiation of AF, encompassing elements
like inflammation, ion-channel modifications, hypocontractility, fatty infiltration, vascular
remodeling, and fibrosis [1]. The crux of these mechanisms can be encapsulated by two
pivotal terms: “trigger” and “substrate”.

The “trigger” takes on the role of an instigator, initiating atrial fibrillation through rapid
and repetitive ectopic beats. These triggers are predominantly located at the junctional
interface between the pulmonary veins and the left atrium, although they can manifest
throughout both the left and right atria. These triggers can manifest as rapidly firing ectopic
beats, various types of arrhythmias, and factors inducing atrial stretch, ischemia, or autonomic
disorientation—examples include mitral regurgitation and myocardial infarction [30].

On the other hand, the “fibrotic substrate” constitutes the principal pathophysiological
component in the maintenance of atrial fibrillation. It catalyzes structural or electrical
remodeling of the atria. Disturbances in myocyte action potential or conduction between
atrial cells contribute to electrical remodeling, while atrial dilation and fibrosis are key
players in instigating structural changes [30]. Consequently, MetS must either function as a
trigger point or furnish the essential substrate to induce AF. Remarkably, all components
of MetS have demonstrated correlations with AF, albeit through distinct mechanisms
(Figure 1).

4.1. Obesity

Atrial fibrillation is markedly more prevalent among obese individuals compared to
those with a BMI below 30.0 kg/m2 [31,32]. Remarkably, even within the latter group,
an elevated level of abdominal fat has been associated with an increased risk of AF oc-
currence [32]. Notably, an expanded body size during early adulthood, elevated BMI in
midlife, and weight gain from the age of 20 to midlife have all been linked to an augmented
likelihood of future AF development. This highlights that increased BMI at any stage of life
can potentially serve as a risk factor for AF [33]. Individuals classified as obese face nearly a
50% heightened risk of developing AF when compared to their non-obese counterparts [34].

Obesity exerts a twofold influence by altering both cardiac hemodynamics and heart
morphology. This leads to an amplified blood volume, increased cardiac output, remodel-
ing of cardiac chambers, and an augmentation of epicardial fat [35]. Cardiac remodeling

https://creativecommons.org/licenses/by/3.0/
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precipitated by obesity encompasses the emergence of left ventricular hypertrophy, result-
ing in diastolic dysfunction and pronounced enlargement of the left atrium [35,36]. These
effects, in conjunction with the altered hemodynamics—such as heightened stroke volume
and pulmonary pressures—establish an environment conducive to the initiation of AF [36].
The potential for echocardiographic left atrial volumetric enlargement over a decade is
almost 2.4 times higher in obese individuals [37]. Moreover, pericardial adipose tissue sig-
nificantly contributes to the burgeoning frequency of AF [38]. Of particular note, epicardial
fat secretes adipocytokines, including Activin-1, which incites fibroblast proliferation and
amplifies fibrosis within myocardial tissue [39]. This phenomenon plays a role in shaping
the substrate required for AF.

Mahajan et al. highlighted the impact of obesity on cardiac tissue in sheep, demon-
strating electroanatomical changes. Significantly reduced mean conduction velocity was
observed in the obese group (LA 1.18 ± 0.04 m/s vs. 1.58 ± 0.04 m/s, p < 0.001) compared
to the normal group. While the mean total voltage remained unchanged, distinct regional
voltage patterns emerged in the left atrium of the obese and control groups, primarily
due to a substantial reduction in posterior LA voltage (3.7 ± 2.3 mV vs. 5.5 ± 2.3 mV;
p < 0.001) [40]. These findings were recently corroborated in men by the same research
group [conduction velocity: 0.86 ± 0.31 m/s vs. 1.26 ± 0.29 m/s; p < 0.001]. In the obese
group, 13.9% of all points in the left atrium exhibited low voltage, compared to 3.4% in
the reference group (p < 0.001) [41]. These electrical changes contribute to the creation and
maintenance of the substrate required for AF occurrence.

4.2. Hypertension

Hypertension contributes to around 14% of all cases of AF, and among AF patients,
over 70% have hypertension. Hypertension independently amplifies the risk of AF progres-
sion and leads to the emergence of adverse effects associated with AF [42]. The impact of
long-standing hypertension on the heart is well-documented, resulting in elevated cardiac
filling pressures and diastolic dysfunction. A study from Norway established a link be-
tween diastolic dysfunction and AF [43]. Notably, this connection is applicable in cases with
both left atrial enlargement and without it, where elevated left ventricular filling pressures
primarily drive AF [44]. However, the most significant structural alteration attributed to
hypertension is the enlargement of the left atrium (LA), influenced by various mechanisms
encompassing hemodynamic and electrical remodeling, neurohormonal activation, and
inflammation [45]. Electrical remodeling is also evident in individuals with hypertension,
characterized by extensive areas of double potentials, fractionated signals, and varying and
slower regional activation times within the atria, leading to atrial conduction delays [46].
Another noteworthy aspect of hypertension is the role of the renin-angiotensin-aldosterone
system (RAAS), which becomes highly activated in hypertensive individuals. Experiments
conducted on mice revealed that elevated levels of angiotensin II trigger both electrophys-
iological and structural modifications in the heart, along with increased fibrosis in the
left atrium [47,48]. This fibrosis, as mentioned earlier, constitutes a significant factor in
the development of AF [49]. Moreover, an alternate pathway through which hyperten-
sion may lead to fibrosis and subsequently to AF involves the extensive activation of the
inflammatory process [50].

4.3. Insulin Resistance/Diabetes

Individuals with either type of diabetes have a twofold higher prevalence of AF, a
figure that steadily rises as the severity of the disease and its microvascular complications
progress. The presence of silent AF episodes is highly probable due to autonomic dysfunc-
tion [1]. Similar to hypertension, diabetes also involves structural and electrical remodeling,
autonomic dysregulation, and inflammation. The renin–angiotensin–aldosterone system
(RAAS) is enhanced, and elevated levels of angiotensin II are linked to diabetes, contribut-
ing to atrial fibrosis [51]. Another contributing factor in diabetes is the increased production
of advanced glycation end products (AGEs) and their receptors, potentially exacerbating
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atrial scarring and fibrosis and thus contributing to the substrate for AF [52]. Consequently,
patients develop diabetic cardiomyopathy characterized by diastolic dysfunction, which
creates conditions within the atria conducive to AF occurrence [53]. Diabetic patients ex-
hibit delayed conduction velocities and atrial emptying [54], intra-atrial electromechanical
delay [55], prolonged action potentials, and abnormal atrial voltage [56]. These observa-
tions might be explained by the pathological expression of gap-junction proteins known
as connexins [57]. Autonomic abnormalities, including sympathetic upregulation leading
to sympathetic denervation and an imbalance in the autonomic nervous system—termed
diabetic neuropathy—also impact the heart and can contribute to AF [58,59]. Inflammation
and oxidative stress further contribute to the proarrhythmic state of diabetes. Disturbed
mitochondrial function prevents the elimination of reactive oxygen species (ROS), leading
to the activation of inflammation pathways evidenced by elevated inflammatory mark-
ers [60]. Additionally, hypoglycemia, with its accompanying sympathetic activation and
fluctuations in blood glucose levels, can reinforce myocardial fibrosis and elevate oxidative
stress, forming unique key mediators of the arrhythmic substrate in diabetes [61,62].

4.4. Dyslipidemia

The role of dyslipidemia in the occurrence of AF has not yet been fully elucidated.
Low HDL cholesterol has been associated with an increased risk of AF, although elevated
triglycerides have not shown a similar correlation [3]. However, findings from a Japanese
cohort indicated that the relationship between low HDL and AF risk exists only in women,
not men [63]. In contrast to the preceding clusters of MetS, the underlying mechanisms
connecting dyslipidemia to AF have not been extensively investigated. Elevated blood
lipids create an inflammatory environment and increase oxidative stress [64], potentially
contributing to AF development. A comparison between patients with and without AF
revealed that the AF group had 1.6-fold higher plasma triglycerides and increased inflam-
mation markers [65]. Increased myocardial triglyceride content (MTGC), as measured by
magnetic resonance spectroscopy, has been linked to diastolic dysfunction, although the
precise connection between MTGC and plasma triglycerides remains unclear [66]. Recent
studies have suggested a connection between postprandial, very low-density lipoprotein
(VLDL), composed of triglycerides, and atrial remodeling in MetS patients [67]. Further sup-
port for this observation comes from new data demonstrating that a surplus of triglycerides
within VLDL leads to atrial enlargement and disturbances in PR duration. In MetS patients,
the left atrium diameter and volume were larger compared to non-MetS individuals (LA
diameter: non-MetS 3.2 ± 0.3 cm vs. MetS-off statin 4.4 ± 0.4 cm vs. MetS-on statin 4.3 ±
0.3 cm, p < 0.0001; LA maximum volume: non-MetS 45.2± 9.5 mL vs. MetS-off statin 81.9±
13.9 mL vs. MetS-on statin 77.5 ± 18.9 mL, p < 0.0001; LA minimum volume: non-MetS 28.1
± 7.5 mL vs. MetS-off statin 39.3 ± 10.8 mL vs. MetS-on statin 42.0 ± 11.3 mL, p = 0.0065).
Additionally, atrioventricular conduction, as measured by PR interval, was prolonged in
MetS patients (176.1± 19.0 ms vs. 156.2± 15.4 ms, p = 0.0014) [68]. Therefore, it is plausible
that dyslipidemia contributes to structural and electrical changes in the cardiac chambers,
yet further research is warranted in this area.

4.5. Metabolic Syndrome

It is readily apparent that when these risk factors converge within the framework of
“Metabolic syndrome,” they profoundly disrupt the proper functioning of the left atrium,
precipitating the occurrence of AF through a multitude of mechanisms. Overall, there is
insufficient evidence to substantiate the direct association of MetS as a distinct entity with
AF. Instead, much of the research has focused on the individual components of MetS in
relation to AF. A rat study revealed that obesity compounds the atrial arrhythmogenic
phenotype in hypertensive rats, exacerbating interstitial atrial fibrotic changes, conduction
velocities, and left atrial emptying [69]. This lends credence to the idea that MetS, as
an integrated entity, can indeed instigate AF. Additionally, evidence suggests that MetS
patients experience both structural alterations—such as left ventricular and left atrial
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remodeling—and electrical changes (PR interval in MetS group vs. non-MetS: 167.6 ±
20.0 msec vs. 156.2 ± 24.9 msec, p = 0.0064) [67,68]. Furthermore, both MetS and AF
are characterized by inflammation, and their coexistence has been associated with even
greater levels of inflammation, potentially introducing another mechanism that leads
to fibrosis and AF development [70]. Beyond inflammatory markers, other biomarkers
dysregulated in MetS—such as adiponectin, leptin, ghrelin, uric acid, and OxLDL—appear
to contribute to the initiation and progression of AF. Adiponectin appears to mitigate cardiac
chamber remodeling [71]. Leptin-mediated pathways impact Angiotensin metabolism,
thus contributing to AF [72]. Moreover, since leptin regulates calcium homeostasis, it
significantly influences electrophysiological pathways [73]. Lastly, MetS disrupts autonomic
tone, with the degree of impairment corresponding to the number of MetS clusters [74].
This observation suggests that MetS could potentially play a role not only in the formation
of substrate but also in triggering AF (Figure 2).
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The human heart, alongside skeletal muscles, kidneys, and the brain, is a highly
energy-consuming organ, necessitating significant amounts of adenosine triphosphate
(ATP) molecules for proper function. Approximately 60% of the required energy is derived
from fatty acid (FA) metabolism through β-oxidation [75]. However, this process is ac-
companied by a reduction in the NADH/NAD+ system within mitochondria, leading to
the generation of electrons that enter the electron transport chain (ETC) to produce ATP.
In situations where β-oxidation becomes overactive, or ATP levels decrease, an excess of
electrons is generated, resulting in the conversion of these electrons into superoxide radicals
(ROS) [76]. Metabolic syndrome has been demonstrated to lead to a condition in which
the heart predominantly relies on FA for ATP production, imposing excessive stress on
mitochondria and causing damage through various mechanisms [77]. The malfunctioning
ATP production mechanisms lead to a decreased ATP-to-O2 consumption ratio, triggering
hyperactivity of the cardiac muscle, subsequent hypertrophy, and diastolic dysfunction.
Moreover, mitochondria play a crucial role in maintaining Ca2+ homeostasis. Thus, mito-
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chondrial dysfunction results in disruptions and oscillations of intracellular Ca2+ levels,
potentially inducing arrhythmias [78]. Lastly, due to the incapacity of mitochondria to
generate ATP and their shift towards ROS production in the ETC, substantial quantities of
ROS are released into circulation [77]. As mentioned earlier, ROS triggers inflammation,
leading to structural remodeling of the heart as previously described. Consequently, recent
findings underscore the significance of mitophagy—the process that selectively eliminates
damaged mitochondria from cells, facilitating their degradation by lysosomes and main-
taining mitochondrial homeostasis—in the pathophysiology of Metabolic Syndrome (MetS).
There is a suggestion for its potential therapeutic application in the future [79].

5. Are These Patients Suitable for Catheter Ablation?

The management of atrial fibrillation (AF) has undergone significant transformation in
the past two decades, with an increasing reliance on catheter ablation as a favored approach.
The successful adoption of ablation as a viable treatment hinges on its capacity to either
catalyze or substantially diminish AF recurrence while ensuring safety and enhancing
quality of life. Achieving these objectives hinges not only on the efficacy of the procedure
itself but also on the reduction of AF risk factors [80].

Initial data suggested that obesity, a noteworthy risk factor, did not significantly impact
the outcomes of catheter ablation [81]. However, recent investigations have demonstrated
that only individuals with a BMI greater than 35 kg/m2 experience effects on ablation
success and complications. The role of BMI remains complex and contradictory, with lower
BMI associated with paroxysmal AF and higher BMI correlated with persistent AF. This
implies that elevated BMI could be a detrimental prognostic factor for AF ablation, primarily
due to the augmented likelihood of ablation failure in persistent AF cases compared to
paroxysmal AF [82]. Notably, weight loss might contribute to improved quality of life in
these patients rather than a reduction in AF burden [83]. Conversely, a comprehensive
meta-analysis revealed that every 5-unit increase in BMI was associated with nearly a
30% elevated risk of post-ablation AF occurrence [84]. The influence of hypertension on
AF ablation outcomes is still unclear. In contrast to earlier findings, a German registry
demonstrated that hypertension did not significantly impact the long-term results of AF
ablation [85]. However, conditions such as diabetes and impaired fasting glucose not
only contribute to AF recurrence post-ablation but also alter the atrial remodeling process
following the procedure [56]. The question remains: How does Metabolic Syndrome
(MetS) as a unified entity affect AF ablation outcomes? Firstly, catheter ablation can be
safely conducted in patients with MetS, with no substantial difference in the incidence of
complications between MetS and non-MetS patients (1.86% vs. 2.42%, p = 0.621) [86]. It is
worth noting that this observation did not reach statistical significance in any of the existing
studies, likely due to the limited number of complications, thus warranting further research.
In terms of AF recurrence, MetS has been associated with a considerable increase in post-
ablation AF [87,88]. Initially, MetS was linked with the recurrence of non-paroxysmal
AF (150 [46%] vs. 257 [35%], p < 0.002), whereas its impact on paroxysmal AF was less
significant (39 [25%] vs. 62 [22%] in group 2, p = 0.295) within MetS vs. non-MetS groups,
respectively. Nonetheless, the quality of life for both types of AF improved during a 1-year
follow-up [87]. However, another study by Xia et al. demonstrated a robust correlation
between MetS and paroxysmal AF (freedom from AF: MetS vs. non-MetS: 50.0% vs. 74.2%,
log-rank p < 0.01). MetS was associated with an increased risk of AF recurrence (HR =
2.15, 95% CI: 1.207–3.841, p = 0.009) [88]. A meta-analysis further highlighted that younger
individuals with MetS exhibited an even higher risk of recurrence (RR, 3.03; 95% CI, 1.70–
5.40) [89]. Additionally, MetS emerged as the sole predictor for AF reappearance two
years post-ablation [90], a theory supported by an analysis of risk factors contributing
to unsuccessful ablation outcomes. MetS, obesity, and hypertension were identified as
the only modifiable factors [91]. When combined with obstructive sleep apnea, MetS
significantly elevated the probability of AF recurrence post-ablation [92]. Consequently, all
AF risk factors, including MetS, must be meticulously considered by medical practitioners
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during treatment planning. In conclusion, while catheter ablation is a recommended option
for patients with MetS, enduring results necessitate a holistic patient-centered approach
alongside vigorous interventions to address all modifiable AF risk factors.

6. What Drugs to Use?
6.1. Antiarrhythmic

Regrettably, there is a paucity of evidence and recommendations regarding the ef-
fectiveness of various antiarrhythmic drugs in patients with Metabolic Syndrome (MetS).
Amiodarone, classified as a class III antiarrhythmic drug, has garnered criticism for its
potential acute hepatotoxicity when rapidly infused intravenously and chronic hepato-
toxicity when administered orally [93]. Nevertheless, in most instances, these adverse
effects are largely reversible, and only in rare cases do they escalate to cirrhosis [93]. It is
important to note that MetS has also been associated with hepatic damage, particularly
non-alcoholic fatty liver disease [94]. Consequently, the use of amiodarone in individuals
with MetS may augment the risk of drug-induced hepatotoxicity. Nonetheless, current
guidelines recommend judicious use of amiodarone when deemed appropriate, accom-
panied by vigilant monitoring of aminotransferase levels [93]. Similarly, dronedarone, a
newer class III antiarrhythmic drug, has been linked to potential liver damage. However,
unlike amiodarone, the precise extent of its impact remains uncharted [93]. Encouraging
data from a sub-analysis of the ATHENA and EURIDIS/ADONIS studies shed light on the
use of dronedarone in patients with diabetes [95]. In the context of obese patients with AF,
a study by Ornelas-Loredo et al. explored the efficacy of sodium channel blocker antiar-
rhythmic drugs (Class I) and their response in relation to obesity. Their findings indicated
that obesity, both in patients and mice, was associated with an increased likelihood of poor
response to such drugs, a trend more pronounced for class I drugs (class I vs. class III AAD:
OR, 4.54; 95% Wald CI, 1.84–11.2; p = 0.001). The authors suggested that reduced expression
of sodium channels in obesity might underlie this phenomenon and proposed considering
class III drugs for obesity-related AF treatment [96]. Given these insights, it is plausible that
class III antiarrhythmic drugs could be considered a favorable option for AF management
in MetS patients, with a caveat for potential hepatic harm. Notably, amiodarone tends to
accumulate in adipose tissue, and in obese patients with an increased adipose mass, the
drug’s pharmacokinetics are influenced, leading to reduced drug clearance [96]. In light of
this observation, personalized amiodarone dosing may be warranted, particularly in obese
individuals. This avenue holds promise for future investigations to explore in greater depth.
Finally, a discrepancy occurs regarding b-blockers. This class of drugs has been framed
for weight gain and glucose intolerance [97,98], as well as for provocation of new-onset
diabetes [99]. However, the Glycemic Effects in Diabetes Mellitus Carvedilol—Metoprolol
Comparison in Hypertensive study (GEMINI) demonstrated that b-blockers a-adrenergic
effects, such as carvedilol, improve insulin sensitivity, slower progression of microalbumin-
uria in diabetes and have a safer metabolic profile than cardioselective b-blockers, such as
metoprolol [100–102]. The improvement of metabolic parameters was also shown by the
YESTONO study for nebivolol due to induced nitric oxide synthesis leading to vasodilating
effects [103]. As a result, the revised ESC guidelines for hypertension of 2018 suggest the
usage of these types of b-blockers in patients with MetS [104].

6.2. Anticoagulants

Over the last few decades, direct oral anticoagulants (DOACs) have been increasingly
replacing older drugs like warfarin in the management of atrial fibrillation. Their overall
effectiveness and safety have not been thoroughly examined in the context of Metabolic
Syndrome (MetS) but rather in isolation for its individual clusters. The effectiveness and
safety of rivaroxaban in diabetic patients have shown similar or even superior results
compared to warfarin, resulting in fewer bleeding events [105,106]. Notably, DOACs
demonstrate fewer instances of hypoglycemia when used alongside antidiabetic treatments,
presenting a more favorable safety profile compared to warfarin [107]. A meta-analysis
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comparing DOACs for both effectiveness and safety in diabetic patients indicated that
lower-dose Dabigatran (110 mg BID) might be the better option, followed by rivaroxaban
at its full dose (20 mg once per day) [108]. Similar to diabetes, DOACs have proven to
be effective and generally safe for use in obese individuals [109]. In a study comparing
rivaroxaban and apixaban against warfarin, rivaroxaban demonstrated a safer profile
than apixaban, both effectively protecting patients from AF-related complications [110].
Moreover, separate research indicated that apixaban outperforms warfarin in terms of both
safety and efficacy [111]. Recent studies even confirmed the safety and efficacy of apixaban
and rivaroxaban in extremely overweight patients (BMI > 50 kg/m2) [112]. However, due
to an elevated bleeding risk associated with edoxaban, it is recommended to opt for DOACs
with a more favorable balance between efficacy and adverse effects [113]. Interestingly,
in contrast to diabetic patients, dabigatran in obese individuals has shown an increased
risk of gastrointestinal bleeding and might not be recommended when other DOACs
are available [114]. Apixaban has demonstrated superiority over other DOACs in obese
patients with both AF and heart failure [115]. Given that MetS is a complex condition
with varying mechanisms affecting the body in distinct ways, determining the optimal
treatment for patients with co-existing diabetes and obesity remains a challenge. Based on
existing data, the utilization of rivaroxaban or apixaban appears to be suitable, as neither
drug has shown inferiority compared to warfarin or other DOACs. Nevertheless, this
conclusion is preliminary, and more randomized clinical trials specifically focusing on MetS
and anticoagulants are warranted to provide clarity on these pertinent questions. (Table 4).

Table 4. Drugs for Atrial Fibrillation in patients with Metabolic Syndrome.

Antiarrhythmic Drugs

Amiodarone (Class III—Potassium channel blockers) [93,94]

• Preferred in MetS
• Monitoring of aminotransferases
• Dosage modification in obesity

Dronedarone (Class III—Potassium channel blockers) [95]

• Less hepatotoxic
• Less studied drug
• Effective in diabetics

Class I—Sodium channel blockers [96]
• Reduce expression of sodium channels in obesity
• Reduce efficacy in obesity

Class II—B blockers [97–104]

• Cardioelective b-blockers: weight gain, glucose
intolerance, induce new-onset diabetes -> not suggested

• B-blockers with a-adrenergic effect (carvedilol): improve
metabolic parameters -> suggested

• Vasodilating b-blockers (Nebivolol): improve metabolic
parameters-> suggested

Class IV—Nondihydropyridine Calcium channel blockers
• Data exist only for Dihydropyridine calcium channel

blockers that lack antiarrhythmic effect
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Table 4. Cont.

Anticoagulants

Dabigatran [105–108]
• Low dose (110 mg BID) best for diabetics
• Higher risk of bleeding in obesity

Rivaroxaban [105–110]
• Second best option for diabetics/full dose (20 mg daily)
• Safer profile than Apixaban
• Safe for extremely overweight

Apixaban [110–112,114,115]
• Safe in obesity
• Safe for extremely overweight
• Best option for obese patients with heart failure and AF

Edoxaban [113] • Last option, due to high bleeding risk

6.3. Holistic Approach

Focusing solely on intervening at the source of AF through techniques like catheter
ablation or antiarrhythmic drugs addresses the “trigger” point of AF while leaving the
proarrhythmic substrate untouched. To provide effective relief from AF symptoms in
patients with Metabolic Syndrome (MetS), our approach must target both the trigger and
the substrate. Consequently, our strategy should also address the various clusters of
MetS. Weight reduction through intensive interventions not only alleviates AF burden and
severity but also leads to the remodeling of heart chambers, resulting in a reduction of left
atrial (LA) volume [116]. This reversal of effects extends beyond the heart’s dimensions and
even alters the type of AF and its natural progression. Remarkably, weight loss exceeding
10% has been strongly associated with transitioning from persistent to paroxysmal AF
(odds ratio 4.3, 95% confidence interval 2.7–6.8; p < 0.001) [117]. The LEGACY Study
categorized patients into three groups based on weight loss and noted that AF frequency,
severity, and duration significantly improved in the first two groups compared to the
third (p < 0.001). Additionally, more patients in the first two groups remained free from
AF (45.5% in Group 1, 22.2% in Group 2, and 13.4% in Group 3; p < 0.001). Notably,
weight loss also positively impacted other clusters of MetS, improving glycemic control,
blood pressure management, and lipid profiles [118]. Surgical weight reduction, such as
bariatric surgery, has shown superior effects on reducing AF incidence compared to medical
treatments [119]. Even after catheter ablation, maintaining a weight reduction of up to
10% was associated with a 27% reduced likelihood of AF recurrence [120]. Hypertension
and AF frequently coexist, placing patients at a higher risk for complications. Optimal
blood pressure levels for these patients have been identified as systolic blood pressure of
120–129 mmHg and diastolic blood pressure < 80 mmHg, as levels outside these ranges are
associated with increased adverse cardiovascular effects [121]. Among antihypertensive
drugs, telmisartan has shown encouraging results in reducing AF recurrence compared
to amlodipine and ramipril (amlodipine: 44.2%, ramipril: 25.5%, telmisartan: 12.9%, vs.
amlodipine, p < 0.01 and vs. ramipril, p < 0.05), despite similar blood pressure reduction
with the other drugs [122]. Therefore, selecting the appropriate antihypertensive drug is
crucial, although complete data on the best antihypertensive for AF patients is still lacking.
Controlling lipid levels is also beneficial for preventing AF recurrence. Statins for lipid
control have demonstrated a reduction in AF occurrence [123,124], although intensive
lipid-lowering may not affect triglycerides and small lipoproteins. The impact of lowering
triglycerides in MetS patients with AF remains uncertain. Glycemic control is pivotal in AF
management. A 10% reduction in HbA1c levels 12 months before catheter ablation reduces
the likelihood of AF recurrence by 30% [125]. Ideally, maintaining HbA1c levels below 6.9%
increases the chances of successful ablation [126]. Papazoglou et al. emphasized the role of
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glycemic control on AF recurrence and highlighted specific drugs that affect it. Biguanides,
thiazolidinediones, secretagogues, and sodium-glucose cotransporter 2 (SGLT-2) inhibitors
reduce the risk of AF recurrence, while glucagon-like peptide-1 (GLP-1) receptor agonists
have a neutral effect on AF. Conversely, insulin and dipeptidyl peptidase 4 inhibitors have
an inverse relationship with AF [127]. The ARREST-AF Cohort Study has shown that
aggressive reduction of multiple risk factors significantly enhances ablation success rates
and considerably increases arrhythmia-free survival (87% in the Risk Factor Management
group compared to 17.8% in the control group, p < 0.001) [80]. Risk factor management also
leads to a 38% reduction in the need for initial ablation and a 20% decrease in the need for
redo ablation [128].

7. Key Points

• Metabolic syndrome significantly elevates the incidence of atrial fibrillation.
• Cardiac chamber structural and electrical remodeling, autonomic imbalance, inflam-

mation, oxidative stress, and fibrosis constitute the primary pathways through which
metabolic syndrome contributes to atrial fibrillation.

• For patients with both metabolic syndrome and atrial fibrillation, a comprehensive
approach is advised, encompassing the management of all syndrome clusters and
subsequent strategies for rhythm regulation.

• The imperative for clinical trials is evident, aiming to elucidate the optimal antiar-
rhythmic drugs and anticoagulants for this patient population.

8. Conclusions

Metabolic syndrome is a multifaceted collection of conditions that have been on the
rise in prevalence in recent times. Atrial fibrillation, likewise, is a condition for which
our knowledge and understanding continue to evolve, with an expanding array of tech-
niques for prevention and treatment. Devising an effective approach for addressing the
simultaneous occurrence of these two entities remains a complex challenge for healthcare
providers, and achieving optimal management necessitates the collaboration of various
medical specialties. The growing requirement for meticulously designed randomized
clinical trials is paramount in addressing the knowledge gaps that have emerged in the
management of patients with both Metabolic Syndrome and atrial fibrillation.
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