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Abstract: The impact of metformin on the rat facial nerve following crush injury has only occasionally
been documented to date. The purpose of the current investigation was to use functional and
electrophysiological evaluations to investigate the effects of metformin administration on recovery
following crush injury to the rat facial nerve. The rats were randomly divided into four groups:
the nonDM/PBS group (n = 4), the nonDM/metformin group (n = 4), the DM/PBS group (n = 4),
and the DM/metformin group (n = 4). Diabetes was generated by an intraperitoneal injection of
streptozotocin. Facial nerve paralysis was induced by a crush injury 7 days after diabetes induction.
The blood glucose levels of the DM/PBS and DM/metformin groups were maintained at over
300 mg/dL, whereas the blood glucose levels of the nonDM/PBS and nonDM/metformin groups
were maintained at less than 150 mg/dL. There was no significant difference between the two nonDM
groups. In comparison to the PBS group, the metformin group’s recurrence of vibrissa fibrillation
occurred noticeably sooner over time. The nonDM/metformin group showed the highest recovery
rate in the second, third, and fourth weeks post-crush, respectively. The threshold of action potential
4 weeks after crush injury showed that the nonDM/metformin group had a significantly lower
mean threshold of MAP compared to other groups. The short-term effect of metformin on the
recovery of facial nerve blood flow (FNBF) was significantly increased compared to the DM/PBS
group. However, there was no significant difference in FNBF between the nonDM/metformin and
nonDM/PBS groups. A diabetic condition promoted a delay in FN regeneration. Metformin is able
to accelerate functional recovery in diabetic or nondiabetic FN-injured rats. Further studies using
a morphometric or molecular approach are planned to understand the pharmacologic mechanism
of metformin.
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1. Introduction

All facial nerve-innervated structures are paralyzed in a condition known as facial
nerve palsy, which prevents facial expressiveness, and 10-23% of the causes of facial nerve
paralysis are related to trauma, whether unintentional or brought on by tumor involvement,
which can include facial paralysis [1]. The quality of life of patients is significantly impacted
by facial nerve palsy, which is important.

J. Pers. Med. 2023, 13, 1317. https://doi.org/10.3390/jpm13091317

https:/ /www.mdpi.com/journal /jpm


https://doi.org/10.3390/jpm13091317
https://doi.org/10.3390/jpm13091317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-2149-5095
https://orcid.org/0000-0003-4084-2301
https://doi.org/10.3390/jpm13091317
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm13091317?type=check_update&version=1

J. Pers. Med. 2023, 13, 1317

20f11

Patients with diabetes mellitus frequently develop peripheral neuropathy, a group of
clinical disorders that affect the motor, sensory, and autonomic nerves [2].

Several treatment strategies have been created in the last ten years to promote nerve regen-
eration, including topical nerve growth factors [3-6] or extracellular matrix molecules [7-10],
as well as the use of electrical stimulation [11-14]. All of these techniques have been per-
formed in animal research and, sadly, have a limited range because they have not been
clinically applied, except electrical stimulation.

Treatment of facial nerve injury is becoming more challenging due to the increased fre-
quency of chronic diseases like diabetes mellitus (DM), and only a small number of studies
have shown therapies effective for peripheral nerve regeneration in diabetes. Considering
that type 2 diabetes (T2D) is so common, has a growing scope of usage, and has a positive
safety profile, metformin has emerged as one of the antidiabetic medications that doctors
most regularly recommend to their patients globally. Poor results may be connected to the
peripheral nerve injury population’s steadily increasing prevalence of chronic diseases, such
as diabetes mellitus (DM), which is anticipated to afflict 591.9 million people by 2035 [15].
Due to its direct effects on nervous system function, including axonal atrophy, segmental
demyelination, and the slowly regenerating nature of injured nerves, long-term hyper-
glycemia, a typical manifestation of DM, considerably complicates treatment outcomes [16].
The main mechanism of action of metformin is inhibition of hepatic glucose-6-phophatase
activity, which activates glycogen sparing [17]. And then it enhances the effect of insulin
on glucose transport at sites beyond insulin receptor binding and phosphorylation without
changing insulin receptor number or their affinity in adipose tissue. Despite the fact that
metformin is the preferred treatment for type 2 diabetes, a detailed mechanism is not
known about its therapeutic ability to avert or postpone peripheral nerve damage in the
disease. Metformin may have a variety of effects [18-20], but this study could not totally
rule out the benefit of the medication’s ability to lower blood sugar levels. Therefore, more
investigation is needed to ascertain the mechanism of neuroprotective pathways unrelated
to glucose regulation. Recently, reports have begun to emerge that metformin exhibits neu-
roprotective effects by suppressing oxidative stress [21-23]. In addition to the antioxidant
effect of metformin, through AMPK and autophagy activation, metformin can improve
neuronal bioenergetics, encourage nerve healing, and lessen harmful protein aggregation in
neurological disorders [24]. After a peripheral nerve injury, numerous biological processes,
such as inflammation, oxidative stress, hypoxia, etc., take place at the injury site. Metformin
may prevent hypoxia-induced apoptosis and assist Schwann cells (5C)s in recovering from
hypoxia-induced damage [25]. Metformin may also partially counteract the negative effects
of hypoxia on cell proliferation, viability, migration, and adhesion [25].

To date, the effect of metformin on the sciatic nerve has been reported in a few
studies [26-28]. We believe that metformin would be considerably more effective in the
regeneration of the crush-injured facial nerve in diabetes mellitus. The impact of metformin
on the rat facial nerve following a crush injury has not been documented to date. The
aim of this study was to use functional and electrophysiological evaluations to investigate
the effects of metformin administration on recovery following crush injury to the rat
facial nerve.

2. Materials and Methods
2.1. Diabetes Induction

This study was approved by the Animal Experimentation Committee (CIACUC2021-
50021).

Adult male Sprague Dawley rats (200-250 g, 6-8 weeks old; SamtakoBio Korea, Suwon,
Republic of Korea) were used in this study. Rats were randomly divided into four groups:
nonDM/PBS group (n = 4), nonDM/metformin group (n = 4), DM/PBS group (n = 4), and
DM /metformin group (n = 4). Diabetes was induced by an intraperitoneal injection of
streptozotocin (75 mg/kg) (Merck Korea, Seoul, Republic of Korea) dissolved in 0.1 mol/L
sodium citrate buffer (30 mg/kg body weight). Phosphate-buffered saline (PBS) and
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metformin (100 mg/kg) were administered daily by the oral route using a flexible oral
zondae needle (Jeung Do Bio & Plant Co, Seoul, Republic of Korea). Facial nerve paralysis
was induced by a crush injury 7 days after diabetes induction. Using the Precision Xtra
Plus instrument, blood samples were collected from the tail vein for analyzing blood
glucose levels (G 400 Green Doctor, Blood Glucose Monitoring System, GCMS, Yongin City,
Gyeonggi, Republic of Korea). In this study, diabetes was defined as having blood glucose
levels of more than 250 mg/dL.

2.2. Induction of Facial Nerve Paralysis by a Crush Injury

After shaving around the left auricle, a postauricular incision was made. We preferred
the left side because it allows easy setup for measuring action potential thresholds. The
subcutaneous layer was dissected, and the main trunk of the facial nerve was identified
after peeling the surrounding tissue under a surgical microscope (Leica, Wetzlar, Germany).
A hemostat was used to crush the main trunk for one minute. This method of crushing
caused damage to all nerve fibers while sparing the axonal sheath. Each rat was kept in a
separate cage with free access to food and water. One week before the surgery, the animals
were provided with the opportunity to settle in without stress.

2.3. Assessment of Recovery of Vibrissa Movement Using Slow Video Analysis Software

The rat’s body was fixed in a modified plastic bottle while the head was freely exposed.
The vibrissa movement on the left side in both groups was recorded using an iPhone video
recording system after tactile stimulation using a brush 1, 2, and 3 weeks after crush injury-
induced facial nerve paralysis. The number of vibrissa fibrillations was counted in slow
motion using behavioral observation research interactive software (BORIS), which is used
for animal behavior evaluation. This software was developed by Oliver Friard and Marco
Gamba (Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy)
and is provided freely for research purposes. The frequency of vibrissa movement (left side
vs. right normal side) was compared each week between the control and study groups.

2.4. Measurement of Electrically Evoked Action Potential

The facial nerves were re-exposed under general anesthesia using isoflurane inhalation
at postoperative week 4. The distal part of the crush site was stimulated using a monopolar
tungsten probe, and the threshold of the action potential was measured as described
previously [29]. Briefly, the midway point of the left orbicularis oculi and orbicularis oris
muscles was percutaneously fixed with three two-needle electrodes. As a ground needle,
it was fixed in the superficial muscle layer near the skin to record electrically evoked
muscle action potential (MAP) signals. A monopolar stimulating electrode (Xomed-Treace,
Jacksonville, FL, USA) attached to a pulse generator was used to send electrical impulses
(rectangular current pulses for 0.05 ms) to the main trunk of the facial nerve (A-320D; World
Precision Instruments Inc., Sarasota, FL, USA). A micromanipulator was used to adjust the
position and direction of the monopolar stimulating probe with respect to the facial nerve.
With maximum nerve stimulation, the MAP signals were assessed. A Samsung computer
monitor and the lab chart system (PowerLab; AD Instrument, Castle Hill, Australia) were
used to automatically collect the data, which were subsequently evaluated using the Scope
software (AD Instrument). To measure the extent of recovery following a facial nerve injury,
the peak amplitude of the action potential waveform was measured.

2.5. Nerve Blood Flow Measurement Using a Laser Doppler Blood Flowmeter

Two rats from each group at postoperative week 4 were anesthetized using an in-
traperitoneal injection of xylazine hydrochloride and tiletamine-zolazepam (Zoletil, Virbac,
Carros, France). The recombinant position is more convenient for the measurement of
FNBF when using Zoletil with xylazine hydrochloride. The main trunk of the facial nerve
was carefully re-exposed, and the femoral artery was also identified. FNBF in the re-
gion was assessed using a laser Doppler blood flowmeter, as described previously [30].
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The femoral artery, which is routinely used to measure systemic blood pressure (SBP),
was cannulated, and a pressure transducer was attached (AD Instruments, Castle Hill,
Sydney, NSW, Australia). On the main trunk of the FN, a 1.0 mm needle probe was po-
sitioned at a straight angle carefully to avoid nerve compression and coupled to a laser
Doppler blood flowmeter (moorLAB, Moor Instruments, Axminster, Devon, UK). Every
20 s, data on the FNBF output and SBP were sampled and evaluated using a data acquisition
program (PowerLab, AD Instruments) and a laptop (Samsung, Suwon, Republic of Korea).
The FNBF was recorded for 30 min.

2.6. Statistical Analysis

All statistical analyses were performed using the GraphPad Prism 8.0 software. Com-
parisons between the three groups were performed using a one-way ANOVA. A p-value
less than 0.05 was considered statistically significant.

3. Results
3.1. Induction of Diabetes and Facial Nerve Paralysis by a Crush Injury

There were no intraoperative complications, and all rats survived after the surgery.
The blood sugar levels of the diabetic group were measured daily using a portable glucose
monitoring machine. The diabetic groups (DM/PBS and DM /Metformin) displayed higher
glycemic levels and lower body weights than the non-diabetic groups during the entire
trial period. The blood glucose levels of the DM/PBS and DM /metformin groups were
maintained at over 300 mg/dL, whereas those of the nonDM/PBS and nonDM /metformin
groups were maintained at less than 150 mg/dL (Figure 1). One-way ANOVA showed
significant differences between the four groups (p < 0.0001). Furthermore, multiple compar-
isons by Tukey’s test showed significant differences between groups except nonDM/PBS
vs. nonDM/metformin, p = 0.5104 (nonDM/PBS vs. DM /PBS, p < 0.0001; nonDM/PBS vs.
DM /metformin, p < 0001; nonDM/metformin vs. DM/PBS, p < 0.0001; nonDM/metformin
vs. DM/metformin, p < 0001; and DM/PBS vs. DM/metformin p = 0.0002). Body weight
gain was observed in the nonDM/PBS group, but no change was observed in the DM /PBS
or DM/metformin groups. One-way analysis of variance (ANOVA) showed significant dif-
ferences among the four groups (p = 0.0358). However, post hoc Tukey’s test showed that sig-
nificant differences exist only between the nonDM/PBS and DM /PBS groups (p = 0.0427).
No differences were observed between the nonDM/PBS and nonDM/metformin groups
(p = 0.2539) or between the DM /PBS and DM/metformin groups (p = 0.7458) (Figure 2).
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Figure 1. Blood glucose levels. **** p < 0.0001, ns: not significance.

3.2. Recovery of Vibrissa Fibrillation

Compared to the DM/PBS group, vibrissa fibrillation occurred noticeably sooner over
time in the nonDM/metformin group. There was a significant difference between the
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four groups in the repeated one-way ANOVA, p = 0.0015. There was a significant difference
between postoperative weeks, with p = 0.0008 (Figure 3).
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Figure 3. Recovery rate of vibrissa fibrillation. red: nonDM/PBSI, blue: DM/PBS, black:
DM /metformin, green: nonDM/metformin (Repeated one-way ANNOVA between groups,
p =0.0015, between weeks, p = 0.0008, ** p < 0.01, *** p < 0.001.

3.3. Recovery of the Action Potential of Facial Muscles

As shown in Figure 4, four weeks after the crush injury, there was a significant differ-
ence between four groups (one-way ANOVA, p < 0.0001; multiple comparisons by Tukey’s
test, nonDM/PBS vs. DM /metformin, p < 0.0001; nonDM/PBS vs. DM/PBS, p < 0.0001;
nonDM/metformin vs. DM/PBS, p < 0.0001; nonDM/metformin vs. DM/metformin,
p <0.0001; DM/PBS vs. DM/metformin, p < 0.0001).

3.4. Recovery of Facial Nerve Blood Flow

Compared with the nonDM/PBS group, both DM groups showed a decrease in FNBF
(Sham PBS vs. DM/PBS, p < 0.01). The recovery of FNBF in the DM/metformin group was
significantly higher than that of the DM/PBS group (Figure 5). The nonDM/metformin
group showed the highest recovery of FNBF compared to other groups.
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Figure 5. Facial nerve blood flow at 4 weeks post-crush. * p < 0.05, **p < 0.01.

4. Discussion

Axonotmesis, a condition frequently associated with crush injuries, results in signifi-
cant sensory dysfunction and functional limitations [31]. As observed in our work, crush
injuries resulted in a brief but total loss of function in non-diabetic rats, which returned to
normal levels after 4 weeks. In the present study, we observed the effect of metformin on
electrophysiological recovery. In fact, our observation period was 4 weeks. In the current
study, we used animal behavior analysis software (BORIS) with video analysis to evaluate
the recovery of vibrissa fibrillation. In contrast to subjective observation, this procedure
was objective. Subjective observation is not a good enough tool to examine the recovery
of vibrissa fibrillation in a facial nerve paralysis model. Prior to this, we made subjective
observations using a modified version of Gilad’s arbitrary score [32]: 0, complete paralysis
with vibrissae flattened and oriented posteriorly; 1, slight quivering vibrissae movements;
moderate quivering vibrissae movements; 3, quivering movements but abnormal orienta-
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tion; 4, apparently normal movements but still abnormal orientation of caudal vibrissae;
5, full movement and normal orientation. However, two or three observers are needed for
this subjective evaluation.

The severity of diabetic patients” neuropathy is significantly connected with their
glycemic management, with hyperglycemia serving as the primary causative factor.

When compared to crush-injured non-diabetic rats, diabetic rats in our study dis-
played significantly lower recovery of vibrissa fibrillation values in the first three weeks
following a facial nerve crush. Furthermore, while diabetes rats did not regain their motor
function until post-injury week four, non-diabetic rats did so by post-injury week four.
According to these results, spontaneous functional motor recovery is slower when there
is persistent hyperglycemia, which may be related to problems with nerve regeneration
following damage.

It has been demonstrated that metformin is beneficial for conditions associated with
diabetes, including cancer, inflammation, and heart failure. Human bone metabolism and
metformin have both been studied [33]. The modest axonal regenerating rate of mammalian
peripheral nervous system neurons severely restricts their ability to regenerate following
injury [34]. Endoneurial ischemia, or hypoxia, is caused by a pathological alteration in the
endoneurial microvessels in the peripheral nerves as a result of a crush injury [35]. This
change affects both the blood flow to the nerves and the oxygen tension in the endoneurium.
By producing free radicals, crushing causes oxidative stress by introducing factors such
as lipid peroxidants into the neurovascular cells [36]. Instead of neuroinflammation and
edema, the repair process after a nerve injury is decreased primarily by free oxygen
radicals [37]. Antioxidant substances aid in the regeneration of nerves by scavenging free
oxygen radicals. Mammalian species have antioxidant enzymes like superoxide dismutase
and catalase, whose function is to shield the cells from the harmful effects of free radicals.
A fundamental mechanism for cell death is free radical-induced traumatic cell injury. In
the present study, we did not perform molecular studies for the antioxidant effect of
metformin on the repair process of crush-injured facial nerves. However, the enhanced
electrophysiological recovery by metformin suggests the therapeutic antioxidant effect
of metformin. In the present study, the DM /metformin group showed that facial nerve
blood flow was significantly better than that of the DM/PBS group. In acute streptozotocin-
induced diabetes, nerve blood flow is modestly decreased, and antioxidants can improve
nerve blood flow [38—40]. Moreover, by reducing nerve blood flow, crush damage hastens
nerve ischemia. Reactive oxygen species (ROS) are produced, and hypoxia is induced as
a result of this lowered nerve blood flow [30,38,41]. Metformin affects insulin resistance
in these subjects and boosts blood flow and muscle uptake of glucose. Although not yet
explicitly stated, the increased blood flow and lower levels of free fatty acids may be direct
effects of the medication or result from lessened glucose toxicity. The improvement in
vascular function must be the result of these advantageous effects. Following treatment
with 200 mg of metformin, increases in angiogenic (vascular endothelial growth factor),
anti-inflammatory (inhibitor kappa B-alpha and interleukin 10), and neurotrophic (myelin
basic protein and neural growth factor) factors were more pronounced [24]. As a result,
treatment with metformin, particularly at a dose of 200 mg, helped to prevent nerve damage
from chronic hyperglycemia [27].

In the present study, metformin also increased microvascular circulation by increas-
ing facial nerve blood flow. Acute focal injuries may make the peripheral nerve trunk’s
microvascular supply susceptible, especially if they are linked to a direct lesion to the
epineurial blood supply. Metformin has antioxidant properties that protect microvascular
cells from oxidative damage. Additionally, metformin may prevent structural nerve de-
generation, including axonal degeneration from distributed axonal transport, during the
diabetic process by preventing microvascular abnormalities through AMPK activation [42].

In a rat spinal cord injury model, Wu et al. investigated the function and molecular
mechanism of metformin on myelin preservation [43]. They demonstrated that giving
metformin (50 mg kg~ d~!, ip) to spinal cord injury rats for 28 days greatly enhanced
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their locomotor function. Additionally, metformin reduced the neuronal apoptosis brought
on by spinal cord injury and encouraged axon regrowth. Wu et al. showed that metformin
supported microglial cell polarization from M1 to M2, which, in turn, considerably aided
the removal of myelin debris and preserved myelin in spinal cord injury rats. By blocking
the AMPK-mTOR signaling pathway, metformin also improved the inhibition of autophagic
flux brought on by SCI in the spinal cord and the fusion of the autophagosome and lysosome.
After damage, metformin increases the expression of LC3-II, which dramatically stimulates
autophagy. Furthermore, metformin-induced autophagy decreased the rat lesion site’s
cell death. When compared to the control group, it improves the regeneration of nerve
tissue, as shown by enhanced expression of the differentiation markers GAP43 and SCG10
and axonal development [44]. In the present study, we compared the effect of metformin
on electrophysiological recovery. Currently, the medication metformin is used to treat
type 2 diabetes. In addition to the drug’s ability to lower blood sugar, researchers are
interested in how it may also affect cancer and cardiovascular disorders. The fundamental
mechanisms of action, though, are still unknown. Recently, it has been postulated that the
hypoglycemic effects of metformin are caused by metformin-mediated activation of hepatic
AMP-activated protein kinase (AMPK). [41]. AMPK is a heterotrimeric enzyme that is
expressed in many tissues and plays a central role in the regulation of energy homeostasis.

Wallerian degeneration is the degenerative process that destroys damaged axons and
the myelin sheaths that surround them. An essential step in the regeneration process is
the elimination of myelin debris. Within two days of injury, the distal stump fragments
and Schwann cells begin cleaning the myelin and axonal debris. At the same time, the
Schwann cells also proliferate and differentiate. Axonal injury causes the distal fibers to
separate from the neuronal stump and experience Wallerian degeneration, in which the
neural cytoskeleton breaks down and a lot of axonal and myelin debris is created [45]. The
difficulties of nerve regeneration are further exacerbated by the myelin sheet fragments that
surround the lesion locations. Therefore, for optimal nerve healing following injury, the
velocity and extent of myelin debris clearing are crucial. Serine/threonine (Ser/Thr) kinase
member 5'-AMP-activated protein kinase (AMPK) is present in all types of cells and organs.
As a cellular energy sensor and regulatory system, AMPK works to maintain the balance
between ATP synthesis and consumption in cells [46]. Increased intracellular AMP and
ADP levels trigger the activation of AMPK, which facilitates the production of ATP [47]. Itis
an important endogenous protective molecule that reacts to potentially hazardous stimuli,
including diseases like cerebral ischemia, cerebral hemorrhage, and neurodegenerative
disorders [48]. Metformin has been shown to have both AMP-activated protein kinase
(AMPK)-dependent and AMPK-independent modes of action, including reduction of
mitochondrial respiration, inhibition of mitochondrial glycerophosphate dehydrogenase,
and a lysosomal mechanism [41]. When normal cells are exposed to stressors known to
damage them by producing ROS, metformin has been shown to protect against ROS [49,50].
Metformin’s antineuropathic actions may be caused by activation of AMPK protein kinase
5 (AMPK), and peripheral neuropathy in test animals is associated with poor AMPK
signaling. Recently, Nagarajan et al. reported that activation of AMPK can protect against
senescence brought on by oxidative stress, both in vivo and in vitro [51]. The limitation of
this study is the lack of morphometric studies, which will be further required in the future.

5. Conclusions

Based on our findings, we assume that metformin hastens the recovery of facial
nerve crush damage in rats. These findings show that metformin is helpful in promoting
nerve regeneration in a rat model of experimental facial nerve crush in the diabetes model.
To better understand how metformin affects the facial nerve crush, additional research,
including morphological and molecular analysis, is required.
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