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Abstract: Background: Computational modeling of physiology has become a routine element in
the development, evaluation, and safety testing of many types of medical devices. Members of the
Food and Drug Administration have recently published a manuscript detailing the development,
validation, and sensitivity testing of a computational model for blood volume, cardiac stroke volume,
and blood pressure, noting that such a model might be useful in the development of closed-loop
fluid administration systems. In the present study, we have expanded on this model to include
the pharmacologic effect of sodium nitroprusside and calibrated the model against our previous
experimental animal model data. Methods: Beginning with the model elements in the original
publication, we added six new parameters to control the effect of sodium nitroprusside: two for the
onset time and clearance rates, two for the stroke volume effect (which includes venodilation as a
“hidden” element), and two for the direct effect on arterial blood pressure. Using this new model,
we then calibrated the predictive performance against previously collected animal study data using
nitroprusside infusions to simulate shock with the primary emphasis on MAP. Root-mean-squared
error (RMSE) was calculated, and the performance was compared to the performance of the model
in the original study. Results: RMSE of model-predicted MAP to actual MAP was lower than that
reported in the original model, but higher for SV and CO. The individually fit models showed lower
RMSE than using the population average values for parameters, suggesting the fitting process was
effective in identifying improved parameters. Use of partially fit models after removal of the lowest
variance population parameters showed a very minor decrement in improvement over the fully fit
models. Conclusion: The new model added the clinical effects of SNP and was successfully calibrated
against experimental data with an RMSE of <10% for mean arterial pressure. Model-predicted MAP
showed an error similar to that seen in the original base model when using fluid shifts, heart rate,
and drug dose as model inputs.

Keywords: hemodynamic modeling; sodium nitroprusside; lumped-parameter model

1. Introduction

Computational modeling of physiology is commonly used in both the early develop-
ment and validation and safety testing of medical devices [1,2]. The benefits are myriad
and include relatively low cost compared to that of in vivo and clinical trials, the ability
to mitigate risk prior to introduction into clinical environments, and the ability to rapidly
modify and iterate testing conditions during development [3–5]. Moreover, computational
physiology models allow for testing in conditions or at extremes that may not be observed
even in large clinical trials but are nevertheless necessary for safety assurance [6,7]. These
models, and the credibility assessment that supports them, may be an essential element of
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regulatory submissions to agencies like the US Food and Drug Administration (FDA) or
European Notified Bodies to support a marketing application [5,8–10].

Bighamian et al. have published a lumped-parameter computational model of core
cardiovascular physiology that includes a fluid-shift mechanism (accounting for both
intravascular losses like bleeding and urine production, and gains like crystalloid admin-
istration and redistribution), a stroke-volume mechanism, and a mean arterial pressure
mechanism [11,12]. The authors (1) provide a foundational basis for the model elements;
(2) validate individually parameterized implementations against experimental animal data
for blood volume, mean arterial pressure (MAP), stroke volume (SV), and cardiac output
(CO); and (3) perform an analysis of parameter sensitivity and performance when low-
sensitivity elements are removed from the model. The strengths of this model include
physiological and physics-based mechanisms, a well-considered fluid-shift mechanism
describing not only blood volume changes but the differential responses to crystalloid
and colloid administration and compensatory physiologic mechanisms, the ability to fully
individualize models to specific subjects, validation against in vivo data, and parameter
sensitivity analysis and subsequent model conditioning. Limitations noted by the authors
of the model are that heart rate (HR) is assumed to be available as an input parameter (and
the model is therefore not self-sufficiently capable of generating all physiologic parameters
on its own from volume changes/parameters), the model does not explicitly consider the
effects of the unstressed blood volume, and the model includes some non-linear elements
that might complicate identification and observation of model outputs.

The goal of the present project was to begin extending this model to include effects
of common pharmacologic agents used in anesthesiology and critical care in order to
create a simulation model suitable for initial development of additional closed-loop drug
controllers. We have previously performed a detailed in vivo experiment using a porcine
model of hypotension induced by sodium nitroprusside (SNP) in the development of
our closed-loop vasopressor system, so this was a natural place to start expanding the
model [13–16]. Detailed physiological data including cardiac stroke volume and precise
times for initiation and changes in the SNP infusion were recorded, providing a robust
data source for calibration of the model and identification of appropriate parameter ranges
and/or simulation of individuals. With a focus on potential use in the development of
future closed-loop pharmacologic interventions [17–20], we hypothesized that the present
model could be extended to include the effects of SNP with a root-mean-squared error of
less than 10% for MAP itself, as was achieved with the original model.

2. Methods

The present study was performed completely in silico and was therefore non-human-
subjects research. The animal data used in this study was collected previously at Erasme
University Hospital in Brussels, Belgium, and that study was approved by the Institutional
Animal Ethics Committee on 8 February 2018 (LA1230336) [13].

2.1. Base Computational Model

All of the computational model and analysis work was done in Python 3.9 (www.
python.org) (accessed on 3 July 2023).

For the base computational model we began with an implementation of the model
described by Bighamian et al. [11]. This is a lumped-parameter model and includes three
sub models: fluid-shifts in response to blood volume perturbations from bleeding, fluid
administration, and renal excretion; a model for relating blood volume to cardiac stroke
volume and cardiac output; and a model for relating cardiac output to blood pressure.

For our purposes, the model was implemented using the author’s final
Equations (5), (12) and (14) as described in the original manuscript and shown below. For
any timepoint t, fluid shift, cardiac output (CO), and mean arterial blood pressure (BP),
respectively, can be calculated as:

www.python.org
www.python.org
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∆
...
V B(t) + Kp∆

..
VB(t) + Ki∆

.
VB(t) =

[ ..
u(t)− ..

v(t)
]
+

Kp

1 + Au

.
u(t)−

Kp

1 + Av

.
v(t) +

Ki
1 + Au

u(t)− Ki
1 + Av

v(t) (5)

CO(t) = HR(t) ∗ SV(t) = HR(t) ∗ θ1log(θ2 ∗ CO(t) + θ3VB(t) + θ4) (12)

BP(t) = CO(t) ∗

TPR0 −
∆TPR ∗ sgn(BP(t)− BP0) ∗ 3

√
|BP(t)− BP0|

2 ∗
(

1 + 3
√
|BP(t)− BP0|

)
 (14)

where ∆V represents the rate of change in blood volume with dots representing degrees
of derivative; Kp and Ki are proportional and integral gains for the fluid-shift mecha-
nism; u and v are model inputs describing the rates of blood volume/fluid gain and loss,
respectively (with dots again representing the degree of derivative); Au and Av are pa-
rameters describing the ratio of steady-state intravascular to extravascular distribution
of fluid gain and loss, respectively; thetas are subject-specific parameters defining stroke
volume response to blood volume (θ3), current cardiac output (θ2), and general gain/curve
parameters (θ1 and θ4); TPR0 is the total peripheral resistance at time zero calculated as:

TPR0 =
BP0

CO0

and TPR at time t is calculated as the large parenthesis in Equation (14) in the previous
time point. The authors additionally evaluated Kp and Ki independently in the original
model for crystalloid and colloid, so we implemented them independently as separate
mechanisms for the two different fluid types in this model.

2.2. Addition of SNP to the Model

The net effect of SNP on the cardiovascular system is arterial and venous venodilation,
reduced afterload, decreased ventricular filling pressures, lower systemic blood pressure,
and relatively unchanged heart rate [21]. In the Bighamian model, central venous pressure
is not explicitly tracked, so venous dilation and decreased ventricular filling pressures
would need to be accounted for in the stroke volume calculation itself (Equation (12)).
Afterload and blood pressure could then separately be accounted for in the blood pressure
equation (Equation (14)). In the original model, the fluid-shift mechanism (Equation (5))
was not dependent on any of the hemodynamics, so for the present work, no modifications
were indicated or made.

We chose to use the parameter phi (φ) to describe the pharmacologic elements of the
six new parameter additions used to model SNP. For simplicity, we chose to model drug
elimination as a first-order effect with a subject-specific half-life defined as φ1. For each
second of elapsed simulated time, the amount of drug in the plasma was reduced using the
following equation:

NTGplasma = NTGplasma

(
1− 0.5

φ1

)
There is an intrinsic delay between the “injection” of a drug and the effects of that

drug at the target receptor (in effect the, “onset time”). This delay will include infusion
line delay, circulation time, and properties of the drug itself and the target receptors. These
effects were collectively modeled as φ2. There is no specific equation this variable factors
into, rather, any drug effect “added” to the system is placed into a queue that delays the
effect for φ2 s. Finally, since SNP needs to affect mean arterial pressure directly, and then
venous tone and thereby cardiac stroke volume, we defined φ3 and φ4 as the curve and
gain parameters for the drug effect on arterial vascular tone, respectively, and φ5 and φ6 as
the curve and gain effect of the drug on cardiac stroke volume (via the venodilation effect
that is hidden).
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To implement the arterial effect and in anticipation of the desire to incorporate addi-
tional interacting pharmacologic effects in the model in the future, we sought to create a
single mechanism that could account for the combined influence of physiologic factors on
arterial vascular tone. We chose the symbol α for this effect in reference to alpha-adrenergic
receptors found in arterial vasculature and a priori defined the range of this parameter
as (100,−100) representing the percentage of combined possible receptor activity for all
vasodilatory and vasoconstrictive influences within the subject. With only SNP included in
the present model, α is calculated as:

α = 100 ∗ φ4

(
1− φ3

φ3 + SNP(t)

)
where φ3 is a subject-specific parameter that defines the SNP response curve inflection
point, ϕ4 is a subject-specific parameter that defines the overall potency of the drug, and
SNP(t) is the blood concentration of SNP in nanograms per milliliter. From this, the original
Equation (14) was then modified to include α’s effect on systemic resistance (changes
shown in bold):

BP(t) = CO(t)∗

TPR0 −
∆TPR ∗ sgn(BP(t)− BP0) ∗ 3

√
|BP(t)− BP0 − α|

2 ∗
(

1 + 3
√
|BP(t)− BP0 − α|

)
 (14b)

where α is the percentage of combined possible receptor activity for all vasodilatory
and vasoconstrictive influences within the subject, and TPR0 is the total peripheral re-
sistance at baseline. TPR at time t is calculated as the value of the large parenthesis in
Equation (14b), and ∆TPR is then calculated as the difference between TPR0 and TPRt in the
previous calculation.

Finally, in order to account for the drop in filling pressures from SNP, we added a fifth
parameter and term to Equation (12) specifically linked to the SNP concentration (changes
shown in bold):

CO(t) = HR(t) ∗ SV(t) = HR(t) ∗ θ1log(θ2 ∗ CO(t) + θ3VB(t) + θ4 +φ5(SNP(t)/(φ6 + SNP(t)) ) (12b)

where SNP(t) is the circulating SNP concentration in nanograms per milliliter, φ5 is a
subject-specific parameter reflecting the subject’s net stroke volume response sensitivity
to the drug (following from the venodilation that is not explicitly tracked in the model),
and φ6 is a parameter dictating the sharpness of the response curve. We initially attempted
to model this effect using only a single parameter, but the stroke volume responses in
some subjects showed high dose sensitivity where other animals exhibited a more on/off
response; thus, this last parameter was ultimately necessary to determine how sensitive the
response was to the dose versus the overall total effect.

2.3. Animal Data

The calibration data used in this study was taken from a previous study performed
by the authors as noted above [13]. In that protocol, a total of 16 pigs were studied, 14 of
which were randomized into closed-loop treatment or no treatment (the control). Only the
7 control animals from that study were used in the present work. The key points of that
protocol relevant to the present project are summarized here.

The animals were fasted, anesthetized, and monitoring was placed as described in
the original protocol, including advanced hemodynamic monitoring (EV-1000, Edwards
Lifesciences, Irvine, CA, USA) for cardiac stroke volume. All animals then underwent a
two-hour study protocol during which four hypotensive phases (30 min each) were induced
by fixed SNP infusion rates (doses between 65 and 130 µg/min). First, an SNP infusion
was initiated and increased until 130 µg/min, the dose that had caused a reduction in MAP
to around 50 mmHg in the two pilot animals. This infusion rate was continued for 30 min.
The infusion rate was then decreased to 65 µg/min for 30 min. In the third phase, the
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SNP rate was increased again to 130 µg/min for 30 min, and finally, in the fourth phase,
decreased by half again for the last 30 min of the study protocol. Hemodynamic variables
were recorded for 10 min after the discontinuation of the SNP to evaluate the return
to baseline.

Fluid administration was standardized in all animals: 500 mL of crystalloid was
administered during induction and then a 5 mL/kg/h infusion run. Additional 100 mL
boluses of 6% hydroxyethyl starch were administered when recommended by the Assisted
Fluid Management decision support on the monitor (Hemosphere, Edwards Lifesciences,
Irvine, CA, USA). Bolus start and stop times were recorded in the original protocol, making
it possible to accurately reproduce the fluid administrations for our modeling purposes.

2.4. Individual Model Fitting

Using this animal data, our aim was to evaluate whether the modeling of SNP intro-
duced by our modifications to the base hemodynamic model could be fit to individual
hemodynamic responses after individualized fitting of the model parameters to the subject.
The present model adds a total of five new parameters to the original Bighamian model
related to SNP. Parameter identification complexity can increase non-linearly with the
number of parameters depending on their interactions, so for the present project, since
fluid response was not the primary topic of interest, the fluid-related values (Au, Av, Kp,
and Ki) were standardized as shown in Table 1 to the population median from the initial
study to reduce complexity in fitting the new parameters.

Table 1. Model parameters at initialization and after fitting.

Model Parameter Initial Value 1 2 3 4 5 6 7 Mean SD % Var
Au (crystalloid) 1.9 (fixed) 1.9 0 0

Au (colloid) 0.0 (fixed) 0.0 0 0
Av 0.13 (fixed) 0.13 0 0
Kp 0.0031 (fixed) 0.0031 0 0
Ki 1.09 (fixed) 1.09 0 0
θ1 13 16 12 16 14 13 13 14 14 1.4 10
θ2 −1.0 −4.3 0.0 0.0 −6.9 −5.0 −4.6 −4.9 −3.7 2.6 −72
θ3 0.29 0.58 0.60 0.59 0.58 0.59 0.65 0.68 0.61 0.04 6
θ4 −420 46 0 0 0 101 130 175 65 71 111
ϕ1 120 144 46 187 207 108 120 120 133.2 53.2 40
ϕ2 60 104 72 179 149 60 60 60 98 49 50
ϕ3 200 1013 300 675 675 102 200 300 466.4 327.6 70
ϕ4 1.0 0.73 1.00 0.73 0.81 1.56 1.00 1.00 0.98 0.29 29
ϕ5 2000 2000 2208 1951 1951 1951 2000 2000 2009 91 5
ϕ6 5.0 21.1 1.9 7.0 63.5 19.2 14.7 17.3 20.7 20.1 97

Au, population standardized redistribution factor for fluid administration in the fluid-shift mechanism; Av,
population standardized redistribution factor for volume loss in the fluid-shift mechanism; Kp, proportional
gain for the fluid-shift mechanism; Ki, integral gain for the fluid-shift mechanism; θ1, general gain parameter;
θ2, current cardiac output feedback parameter; θ3, stroke volume response to blood volume; θ4, general curve
parameter; φ1, first-order model drug elimination subject-specific half-life for sodium nitroprusside; φ2, onset
time (including infusion delay, circulation time, and drug/target properties) for sodium nitroprusside; φ3, curve
effect of sodium nitroprusside on mean arterial pressure; φ4, gain effect of sodium nitroprusside on mean arterial
pressure; φ5, curve effect of sodium nitroprusside on venous tone and cardiac stroke volume; φ6, gain effect of
sodium nitroprusside on venous tone and cardiac stroke volume.

The original study data had core hemodynamics (HR, MAP) recorded in 2 s intervals
and advanced parameters recorded in 20 s intervals (SV, CO). In preparation for this
work, the original data was first reduced to 20 s intervals for all hemodynamics. For
each subject, fluid administrations were then added to the data set as total milliliters
given, discriminating between crystalloid and colloid, and then the SNP infusion rate
(recorded as micrograms given per interval) was added using the timings recorded from
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the original study. Next, unadjusted blood volume was calculated at each time point using
the raw crystalloid and colloid inputs, and then the fluid-shift adjusted blood volume was
calculated using Equation (5) above and parameters in Table 1.

Following these calculations, a grid-search fitting process was then performed to
identify optimal parameters for each subject’s data. A grid-search is not a particularly robust
optimization method and may mask an ill-conditioned problem, but it is computationally
easy to implement and understand and despite the limitations and some of the arbitrary
choices in implementation, it was used as an initial exploration of the feasibility of this
approach. The necessary caveat to this approach is that better optimization will be indicated
in future work alongside true validation. The grid-search was conducted as follows:

1. First, using the initial starting parameters shown in Table 1, a plasma SNP concentra-
tion was calculated from the administration rates, ϕ1 (half-life), and ϕ2 (infusion-to-
onset delay).

2. Cardiac stroke volume was calculated using Equation (12b) above and the initial θ1–4
and ϕ5 parameters in Table 1.

3. The root-mean-squared error (RMSE) was then calculated between the measured SV
and the simulated SV. RMSE was used as the minimization criterion as this is the
parameter reported by the authors in the original Bighamian model, so it made a
useful direct comparator.

4. Each of the parameters θ1, θ2, θ3, θ4, and ϕ5 was individually increased and de-
creased by 10%, and the cardiac stroke volume and resulting RMSE from the new
set was recalculated. The modification that resulted in the largest decrease in RMSE
was implemented.

5. Step 4 was repeated until no modification of a parameter resulted in at least a 1%
reduction in RMSE.

6. ϕ1 and ϕ2 were then individually increased and decreased by 10% and the stroke
volume and RMSE recalculated, and the process returned to step 1, calculating new
plasma concentrations using the new values and then repeating the fitting process
in steps 2–5. The change resulting in the largest reduction of RMSE for ϕ1 and ϕ2
was implemented.

7. Step 6 was continued until no change in ϕ1 and ϕ2 parameters resulted in at least a
1% reduction in RMSE.

8. Finally, once the process above was completed, since ϕ3 and ϕ4 affect only MAP, they
were calculated last using a grid search process identical to steps 4 and 5 above but
using a simulated MAP instead of a simulated SV (with said MAP calculated using
the previously calculated simulated SV and the model parameters in Equation (14b))
against recorded MAP to calculate RMSE scores.

The final parameters from this model were then graphed for visual inspection and the
simulated hemodynamics recorded along with the final RMSE.

Following the initial fitting, parameters with a coefficient of variation of ≤10% in the
population would be fixed at their average values and the fitting process re-run to evaluate
partially fit models.

2.5. Statistical Analysis and Reporting

Mean and SD for each fit parameter are reported along with the raw values for each
subject. Root-mean-squared errors are reported for each comparison of experimental
to predicted hemodynamics. Bland–Altman plots were used to calculate 95% limits of
agreement between experimental and predicted hemodynamics.

3. Results

Table 1 shows the starting and individualized model parameters after fitting. Of the
ten parameters fit in the model, three had coefficients of variation less than or equal to 10%:
θ1, θ3, and ϕ5. These parameters were set to their population average values and fixed for
the partially fit models. Table 2 shows the RMSE associated with the fully individualized
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models as well as the partially individualized models in reproducing SV, CO, and MAP. The
individually fit models showed tighter fits than using the population average values did,
suggesting that the fitting process was effective in identifying improved parameters. Use of
the partially fit models after removal of the lowest variance population parameters showed
a very minor decrement in improvement over the fully fit models (Table 2). Ultimately,
the individually and partially fit models met the criteria for <10% RMSE in MAP, but the
population models did not.

Table 2. Model errors for hemodynamics by fit type.

Individually Fit Models Population Models Partially Fit Models
Subject SV CO MAP SV CO MAP SV CO MAP

1 9.6 0.8 5.5 13.2 1.1 9.5 10.7 0.9 5.4
2 4.7 0.4 3.7 26.9 1.9 7.8 9.3 0.7 4.4
3 7.5 0.6 5.2 13.3 0.9 9.3 7.9 0.6 4.3
4 7.4 0.6 4.5 8.6 0.7 8.4 7.4 0.6 4.6
5 12.1 1.0 8.6 15.0 1.3 20.4 13.7 1.2 9.4
6 15.1 1.3 6.5 16.3 1.3 11.9 16.8 1.3 6.5
7 18.6 1.6 4.4 17.5 1.7 9.3 16.5 1.5 4.9

Mean 10.7 0.9 5.5 15.8 1.3 11.0 11.8 1.0 5.7
SD 4.9 0.4 1.6 5.7 0.4 4.4 3.9 0.4 1.8

Error values are the root-mean-squared errors between the model-predicted values and the observed values.
Individually fit models were markedly superior to using the mean population values. Partially fit models were
generally comparable to fully individualized models.

Figure 1 shows the graphs for the fully individualized models for SV, CO, and MAP.
Figure 2 shows Bland–Altman plots for the fully individualized model fits for SV, CO,

and MAP. Bias was near zero for each, and 95% limits of agreement were ±23, ±2.0, and
±10, respectively.
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Figure 1. Comparison plots of stroke volume, cardiac output, and mean arterial pressure in indi-
vidually fit models. Each row of plots represents a single validation subject’s data. In the stroke
volume and cardiac output graphs, gold lines indicate the clinical data, and blue lines represent the
simulation model data predicted from fluid volumes given, SNP concentration, and heart rate after
individual fitting of model parameters for that subject. For the mean arterial pressure graphs, red lines
indicate experimental data, and the purple line indicates the model-predicted values. CO—cardiac
output; MAP—mean arterial pressure; SV—stroke volume.
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Figure 2. Bland–Altman plots for error between model prediction and experimental data.
Bland–Altman analyses of predicted and experimental agreement for SV, CO, and MAP. Dotted
blue lines mark the 95% confidence intervals for average difference, and the solid blue line—the
average difference in measurement between predicted and experimental data. CO—cardiac output;
MAP—mean arterial pressure; SV—stroke volume.

4. Discussion

In the present project, a computational model for blood volume, stroke volume, and
mean arterial pressure was expanded to include the pharmacologic effects of SNP and
calibrated against previous animal data. Predictive ability error for MAP as measured
by root-mean-squared error was <10% as desired at the outset, while the error values for
SV and CO were higher at 12–15%. One notable limitation in the present study in that
regard, however, is that the CO and SV were measured by a minimally invasive arterial line
using a non-calibrated hemodynamic monitor (FloTrac transducer, Hemosphere monitor,
Edwards Lifesciences, Irvine, USA). Minimally invasive and non-calibrated cardiac output
monitoring is known to have up to 2 L-per-minute limits of agreement with invasive
central monitoring methods (e.g., Swan-Ganz catheterization), and in particular was not
developed for porcine physiology. Despite these known limitations, we felt it was important
to include these parameters in the modeling as part of the overall model and considered a
better alternative than simply abandoning any attempts at fidelity in flow-based prediction.
Finally, the fixing of the crystalloid and fluid-shift mechanism parameters to population
values instead of individual fitting as in the original work may have further reduced
accuracy in SV and CO output.

Despite this limitation, we see excellent visual agreement with the prediction graphs
in all evaluated hemodynamics, with a significant portion of the error coming from
“faster dynamics” in the physiology data—minute-to-minute variations. The significance
of missing these rapid dynamics may need to be evaluated further depending on the
model applications; slow-control applications may be insensitive since the trends follow
closely, but for rapid-control applications, they could be significant deviations in predic-
tion of control performance from the true physiology. No data cleaning was performed
(i.e., smoothing or moving averages) prior to comparing to the model outputs. There was a
significant heart rate spike in subject 7 that was poorly accounted for in the CO model (note
large uptick in predicted CO compared to drop in measured CO in bottom middle panel
of Figure 1); this may indicate a need to revisit the heart-rate feedback mechanism in the
original model, but as noted may also be a limitation of the cardiac output measurement
modality. Mean arterial pressure also deviated significantly in this animal, however, further
suggesting that the model may benefit from additional parameterization for high heart
rates. Another possibility is that the SNP onset and/or metabolism times were too delayed,
but manually reducing the onset time worsens error in all subjects.

We did not perform a parameter sensitivity analysis as extensive as was performed
in the original model development. In that study, however, parameter θ1 was found to
have low impact in the final model, which the present work supports, as it had low percent
variation relative to that of other model parameters. Additionally, the initial results of the
present study indicated that both θ3 and φ5 were low-variance model parameters and may
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be set at population averages with minimal impact on model output, which our partial
model fittings supported.

As noted previously, the use of computational models to support medical research,
device development, and safety testing is now routine. In all models there is a trade-off
between model complexity and predictive capacity. The present model was able to expand
on the original core fluid-shift and hemodynamics model with the addition of a response
to SNP using six new parameters to define the drug response. If the partial model fit is
used, only a net of three new parameters are needed relative to that in the original model.
In modeling new pharmacologic agents one convenience is that when the agents are not
present, the parameters reduce to zero and become silent in the model; this makes the
addition of other agent effects easier in isolation. Complexity may increase rapidly as
multiple simultaneous effects are modeled, however, and the experimental data necessary
for validation may become more challenging to obtain. In the original animal model
experiment from which the calibration data came, half of the animals received SNP alone
as a control group, and the other half received norepinephrine (NE) titrated by a closed
loop. With the SNP model in place, the NE-treated animals in that original study may serve
as useful data for work with an NE model as a potential next step in the development of
the present work. Additional directions may also include other vasodilators (nitroglycerine
and nicardipine).

4.1. Limitations

One limitation is the use of minimally invasive cardiac output monitoring. As the
primary interest of this model is MAP, however, and MAP error was reduced compared to
that in the original work, the loss of accuracy in SV and CO may be allowable. Another
potential limitation is that while the grid-search approach to model individualization was
effective relative to using starting parameters or mean parameters for the cohort, it is
possible that other mathematical optimization methods may be superior. A grid search
may identify a local minimum, for example, where other approaches may be more robust.
Moreover, the parameters in Table 1 have larger inter-subject variability, which suggests
that there may be opportunity for improvement of the model, or perhaps additional
parameterization may be of benefit. This will need to be explored in future work. The
grid search has the benefit, however, of being readily understood and computationally
straightforward. An additional limitation of the implementation of the pharmacologic
effects of SNP is that φ2 includes several factors that contribute to onset delay: infusion
line delay (the time it takes for a change in drug to be carried through the IV fluid to the
subject), circulation time, and pharmacologic onset. While for the present study there is
only one drug being evaluated, if more than one drug was included in the model, several
of these features would need to be the same for all such drugs, and thus it might make
sense to break this parameter out into individual components in a future model. Finally, the
present model does not include specific central venous, right-sided cardiac, or pulmonary
components. These could be added in a future expansion as we have done with previous
work [22].

Despite the model’s limitations, it may still be useful (paraphrasing George Box’s
famous adage). We have used relatively rudimentary and even unvalidated models (some
mechanistic, some lumped parameter) in some of our other original work creating physio-
logical sandboxes for development of closed-loop controllers [23,24], and what often occurs
is a cyclical process of refinement of the controller alongside the model, where both slowly
improve the other as additional data is collected and incorporated [25–30].

4.2. Conclusions

A previously validated computational model for fluid shift, cardiac output, and mean
arterial pressure was expanded to include a response to SNP in the model. The model was
calibrated against experimental data and showed lower root-mean-squared error for MAP
compared to that of the original model at the cost of higher SV and CO error.
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