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Abstract: Objective: A new diagnostic graphical tool—classification maps—supporting the detection
of Age-Related Macular Degeneration (AMD) has been constructed. Methods: The classification
maps are constructed using the ordinal regression model. In the ordinal regression model, the ordinal
variable (the dependent variable) is the degree of the advancement of AMD. The other variables, such
as CRT (Central Retinal Thickness), GCC (Ganglion Cell Complex), MPOD (Macular Pigment Optical
Density), ETDRS (Early Treatment Diabetic Retinopathy Study), Snellen and Age have also been used
in the analysis and are represented on the axes of the maps. Results: Here, 132 eyes were examined
and classified to the AMD advancement level according to the four-point Age-Related Eye Disease
Scale (AREDS): AREDS 1, AREDS 2, AREDS 3 and AREDS 4. These data were used for the creation
of two-dimensional classification maps for each of the four stages of AMD. Conclusions: The maps
allow us to perform the classification of the patient’s eyes to particular stages of AMD. The pairs of
the variables represented on the axes of the maps can be treated as diagnostic identifiers necessary
for the classification to particular stages of AMD.

Keywords: eye disease; age-related macular degeneration; mathematical modeling; molecular
similarity; descriptors

1. Introduction

Age-Related Macular Degeneration (AMD) is the leading cause of central vision loss.
It mainly affects people over 60 years of age and is responsible for about 50% of cases of
blindness in the legal sense [1,2]. It is a chronic, progressive disease of the outer layers of
the central part of the retina and the choroid. The number of people suffering from AMD is
expected to increase. This is related to the extension of life of the human population and
increasing exposure to risk factors for degenerative changes in the macula [1,3].

In the United States, 8 million Americans suffer from early AMD, and more than
1 million will develop advanced AMD in the next 5 years [2]. It is predicted that by 2050,
1 in 10 people over 50 years old in the US will be diagnosed with AMD [3]. It is estimated,
that approximately 1.5 million people suffer from macular degeneration in Poland, of which
130,000 are patients with the more dangerous, exudative form of AMD [4]. Worldwide,
the predicted number of people with AMD will increase to 288 million in 2040 (196 million
in 2020) [5]. Due to the highest incidence of AMD in Europe, it is expected that the number
of cases in this region will, in the future, be second only to Asia [6]. The frequency of
occurrence of AMD in Europe is 12.33%, in Asia it is 7.38% and in Africa it is 7.53% [5,6].
This frequency increases with age—the percentage of patients is 13.4% for people over 60,
and in the group of people aged 40–59, only 2.8%. The frequency of occurrence of advanced
AMD at age 70 is 1.4%, rising to 5.6% at age 80 and 20% at age 90.9 [7].

The development of a breakthrough research method, which is ophthalmoscopy,
i.e., the examination of the fundus of the eye, is considered to be the beginning of the
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science of retinology. It became possible thanks to Herman von Helmholtz, who, in 1851,
built an ophthalmoscope. The macula was first mentioned at the end of the 18th century,
when Samuel Thomas Soemmerring discovered and described in detail the yellowish area
in the posterior pole of the retina. The first to describe symmetrical changes in the fundus
of the eye were two researchers in 1875—Jonathan Hutchinson and Warren Tay. However,
it was only 10 years later that Otto Haab gave these changes the name of a separate disease
entity—senile macular degeneration [8]. Initially, the progress of knowledge about this
disease was slow and concerned risk factors and the first classifications of the disease.
In 1967, J. Donald Gass explained the pathogenesis of central vision loss and described the
stages of AMD development [9,10].

Only in the last 20 years has there been a dynamic development of knowledge
about AMD.

In particular, Optical Coherence Tomography (OCT) [11,12] allowed visualization
of retinal structures in vivo. It is a diagnostic tool that uses low-coherence reflectometry
to obtain images of living tissues. Its current spectral generation (high-resolution OCT)
has expanded the knowledge of the morphological features present in AMD in the retina,
RPE and choroid, thus enabling the further identification of new structural markers of the
disease, such as ellipsoidal zone disorder, hyperreflective foci and drusenoid subretinal
deposits. It is a non-invasive, non-contact method of retinal imaging [13]. The time
delay and intensity of light scattered or reflected from tissues for tomographic imaging
of their internal structure are measured. This is achieved by scanning tissues with high
resolution, higher than in magnetic resonance imaging, computed tomography, or medical
ultrasonography. Although OCT is used, e.g., in cardiology, oncology and gastroenterology,
it has found the greatest application in ophthalmology due to the structure of the eye and
its relationship with light [14–16]. It is used to image the structures of the anterior and
posterior segment of the eyeball. It enables visualization of retinal structures and its
morphology, and the obtained images can be analyzed using algorithms that calculate
the thickness of the retina. The OCT test is also used to monitor the disease over time,
as well as to assess the effectiveness of treatment [17]. A new imaging technology, OCT
Angiography (OCTA), has recently gained popularity and is increasingly used in routine
ophthalmic practice. OCT angiography creates structural images of blood flow in the
retinal and choroid plexuses by combining the properties of the well-known OCT with the
function of motion contrast. It can visualize vessels in different layers of the retina and
choroid, as well as pathological neovascularization. This method allows for a quantitative
assessment of blood flow in the retina and the optic disc [18].

Recently, many articles on the etiology, pathophysiology or treatment of the exudative
form of AMD have been published [19–22]. For example, Tadao Maeda et al. discussed
trends of stem cell therapies in AMD [23]. Jianhang Yin et al. studied safeguarding
genome integrity during gene-editing therapy in a mouse model of age-related macular
degeneration [24]. Wonyoung Jung et al. analyzed a relation between AMD and the risk of
end-stage renal disease by using nationwide, population-based cohort data in Korea [25].
María Sanabria et al. studied the impact of COVID-19 on the quality of life of patients with
AMD [26]. Yeong Choi et al. investigated the roles of miRNAs in the aqueous humor of
patients with typical AMD and polypoidal choroidal vasculopathy using next-generation
sequencing and quantitative PCR [27].

The macula is a circular area in the posterior pole, located between the temporal
vascular arcades, 5–6 mm in diameter. It is responsible for the central field of vision in the
area of 15–20◦, precise close vision, color recognition and a sense of contrast. The inner
layers of the macula contain a yellow pigment—xanthophyll and carotenoids—lutein and
zeaxanthin in a higher concentration than in the peripheral retina. The fovea is a depression
in the inner layer of the retina in the center of the macula with a diameter of 1.5 mm [28,29].

The Retinal Pigment Epithelium (RPE) is made up of a single layer of hexagonal cells
containing numerous melanosomes in the apical pigment layer. At the base, RPE cells
connect to the deeper layer of the retina with Bruch’s membrane, while their appendages
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extend between the photoreceptor layer of the neurosensory retina. In the posterior pole,
in the foveal projection, RPE cells are taller and thinner with more melanosomes. The func-
tion of RPE cells is to create an external blood–retinal barrier thus preventing the passage
of fluid from the choriocapillaries to the subretinal space. RPE cells take part in the active
transport of water and ions from the subretinal space; the transport of nutrients and the
removal of metabolic products; the storage, metabolism and transport of vitamin A; the
facilitation of the metabolic transformation of photoreceptors; maintaining an optimal
environment for the retina; and the RPE dye absorbs the scattered light falling on the
retina [28,29].

Bruch’s membrane separates the RPE layer from the choriocapillaries and partici-
pates in the removal of waste products outside the retina. Its integrity with the RPE is
disturbed by, among others, the presence of drusen or neovascular membrane (Choroidal
Neovascularization—CNV) present in the wet form of the disease [28].

The pathogenesis of AMD is not fully understood. The development of the disease is
influenced by oxidative stress, atherosclerosis-like changes, RPE cell dysfunction, various
genetic variants, neovascularization as well as inflammation and altered immune responses
of tissues [29]. The above processes disturbs the proper functioning of the central retina,
including photoreceptors, RPE cells, Bruch’s membrane and choriocapillaries. Due to the
area of the retina affected by the degenerative process, which is the macula, vision is im-
paired very quickly. Metabolic, functional, genetic and environmental factors overlap with
the onset of the disease and its progression. One of the models for the development of ad-
vanced neovascular AMD suggests that the accumulation of drusen disrupts the connection
between the RPE and the choroid, thereby causing hypoxia. Hypoxia induces the expres-
sion of VEGF-A (Vascular Endothelial Growth Factor—VEGF) and other proangiogenic
factors for the formation of new, pathological vessels [30].

Increasing the number of pro-angiogenic factors, such as vascular endothelial growth
factor and Platelet-Derived Growth Factor (PDGF), or decreasing the number of anti-
angiogenic factors, such as Pigment Epithelium-Derived Factor (PEDF) and endostatin,
may play a key role in the pathophysiology of the disease and, for this reason, are currently
considered possible therapeutic targets [31,32].

Accumulation of drusen results from an abnormal influx of lipids to and from the
RPE [33,34]. Drusen lipids come mainly from RPE and photoreceptors. The blood supply
from the choroid provides a small amount of them, while the drusen proteins come from
both the choroid vessels and the entire body [35]. The opposite is true for fats that build
atherosclerotic plaques, in which lipids, proteins and lipoproteins come from peripheral
blood [36].

The hemodynamic model of AMD pathogenesis takes into account the similarity
between drusen and atherosclerotic plaques [37]. They have many common elements that
support their common pathophysiology, e.g., Vitronectin (VTN), complement component
3 (C3), amyloid (beta, P), apolipoproteins, esterified and unesterified cholesterol, Matrix
Metalloproteinases (MMP) and calcium [35,36].

Lipids deposited in the sclera increase its rigidity and choroidal vascular resistance,
reducing choroidal blood flow and increasing vascular-capillary pressure, which leads to
the formation of CNV. At the same time, the deposition of lipids in Bruch’s membrane
causes the degeneration of elastin and collagen, as well as the formation of deposits of
the basal lamina and drusen. Degeneration of elastin and collagen leads to calcification,
increased VEGF-A concentration and, ultimately, the formation of CNV [37–39].

Currently, a greater share of chronic inflammation, endothelial dysfunction and oxida-
tive stress in the pathogenesis of AMD is recognized in the deposition of lipid deposits [40].
Activation of the immune system in AMD patients causes pathological accumulation of
lipids [41]. The accumulation of deposits under the neurosensory retina itself is a normal
process of retinal aging. It becomes pathogenic only if the function of the complement
system is disturbed (probably as a result of oxidative stress) and uncontrolled thus con-
tributing to cell damage and apoptosis [36]. The pro-inflammatory environment of the



J. Pers. Med. 2023, 13, 1074 4 of 17

retina, which is promoted by the RPE response to heterogeneous loads, seems to be a
key modulator of CNV development and progression. Active factors of the complement
system C3a and C5a are strong chemotactic substances that recruit leukocytes to the choroid
and stimulate RPE cells to secrete pro-angiogenic VEGF [42]. The oxidative stress of the
RPE caused by the products of photo-oxidation activates the complement components
in the RPE. An autoimmune reaction induced by oxidative damage causes complement
deposition in the retina [43,44].

The initial clinical symptoms of AMD are characterized by the presence of drusen,
i.e., deposits of extracellular matrix and pigment, which most often form in the macula on
the border of the choroid and the RPE. Based on the size and number of drusen, the pres-
ence of atrophy or neovascularization, AMD is divided into four stages of increasing
severity [45,46]. Early and intermediate AMD is characterized by the presence of small or
large drusen and RPE irregularities. Forms of late AMD include geographic atrophy and
neovascularization, both of which can lead to severe central visual impairment and legal
blindness due to degenerative and neovascular changes in the macula. Currently, neovas-
cular AMD can be controlled with anti-angiogenic agents that block vascular endothelial
growth factor. Despite this, most treated patients still suffer from visual impairment as
they develop fibrosis and atrophy, and more than one-third of patients show long-term
resistance or loss of response to the drug.

In this article, we propose a non-standard approach to deriving information about
AMD. We demonstrate that a graphical representation of the considered data, constructed
in this work (classification maps), is a new tool supporting the diagnosis of AMD.

Classification studies are a valuable source of information in various fields of sci-
ence [47]. The classification problem is related to similarity studies [48]. The similarity
between objects is not unique if they are described by several different characteristics [49].
The degree of similarity depends on the selected characteristics, the number of characteris-
tics considered, and the mathematical measure that determines the relationship between
different characteristics. In computational science we deal with characteristics expressed
numerically. In the theory of molecular similarity, such characteristics are called “descrip-
tors” [50,51]. The descriptors are applied in methods used in the theory of molecular
similarity. The assumption “The molecules that are similar in certain aspects have simi-
lar properties” is a cornerstone of the methods of Quantitative Structure-Activity/Property
Relationships (QSAR/QSPR) [52–54]. Such techniques are applied to predict the activity,
reactivity or properties of new molecules.

It is not obvious how to represent the molecular structure by introducing the decsrip-
tors and how to define the similarity measure. For example, we have used frequencies and
intensities of molecular spectra to construct new kinds of molecular descriptors [55]. We
have shown that the new descriptors correctly represent the molecular structure. An anal-
ysis of the infrared spectra of chloronaphthalenes illustrated this theory. As a graphical
representation of these results, we have introduced classification maps. By analyzing
the patterns of these maps, the similarities between the objects can be easily observed.
Additionally, the correlations between the descriptors represented on the axes of the maps
can be revealed [56].

An analogous methodology was applied to derive the information in other fields of
science, i.e., in social science studying groups of individuals [57,58] or in bioinformatics
characterizing the biological (DNA, RNA, protein) sequences [59,60]. Similarity studies of
the sequences using graphical techniques are commonly used approaches. Each method
reveals different aspects of similarity and still new approaches are being constructed in
bioinformatics [61–71]. For example, we created Spectral-Dynamic Representation of DNA
Sequences [65] or 4D-Dynamic Representation of DNA/RNA Sequences and applied this bioin-
formatics method to studies on the origin of the SARS-CoV-2 virus [60].

In this work, we extend the applications of such an approach by constructing the
classification maps for AMD. Variables such as CRT (Central Retinal Thickness) [72–74],
GCC (Ganglion Cell Complex) thickness [75,76], MPOD (Macular Pigment Optical Den-
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sity) [77,78], ETDRS (Early Treatment Diabetic Retinopathy Study), Snellen and Age have
been used as the descriptors and are represented on the axes of the maps. There are
numerous charts used for visual acuity testing, but the most common are Snellen and
ETDRS charts. A detailed comparison between the two charts can be found in [79]. The
classification maps represent a new graphical diagnostic aid for the detection of age-related
macular degeneration.

2. Materials and Methods

A total of 132 eyes (66 patients) were examined and classified to the AMD advancement
level based on the four-point Age-Related Eye Disease Scale (AREDS) [80]. AREDS is the
most widely used classification among many classification systems of AMD. According to
this scale, AMD can be classified as follows:

• AREDS 1 group (as a control group)—no or only a few small drusen with a diameter
of <63 µm;

• AREDS 2 group—early form of AMD—the co-occurrence of numerous small drusen
with a diameter of >15 µm, several drusen with a diameter of 63–125 µm or RPE
abnormalities in the form of increased pigmentation or depigmentation;

• AREDS 3 group—moderate AMD—numerous medium-sized drusen, at least one
large druse > 125 µm in diameter, geographic atrophy not occupying the center of
the macula;

• AREDS 4 group—advanced form of AMD—geographic atrophy of the RPE with in-
volvement of the macula, neovascular maculopathy, which includes: CNV, i.e., patho-
logical vessels originating from the choroid, serous or hemorrhagic retinal detachment
or RPE, exudation and hard, fibrovascular proliferations under the retina and under
the RPE, discoid scar (choroidal fibrosis) [45,81].

The AREDS 1 group constituted 32 eyes without features of AMD. Due to the lack of
changes in the eye fundus, patients from the AREDS 1 group constituted the control group.
AREDS 2 constituted 37 eyes, and AREDS 3 constituted 33 eyes. The group with the most
advanced form of AMD, AREDS 4, constituted 30 eyes.

It should be noted that in some cases, AMD changes were detected only in one eye or
each eye the disease was of different AMD advancement level according to AREDS.

All patients underwent outpatient examinations in the years 2016–2017 at the UCK
Ophthalmology Clinic in Gdańsk. The diagnosis of AMD was based on the current stan-
dards and recommendations of the Polish Society of Ophthalmology, in accordance with
the guidelines of the American Academy of Ophthalmology (AAO) [82]. Data on the stage
of the disease and the general health of the patients were obtained on the basis of: medical
history, STARS form (Simplified Théa AMD Risk-assessment Scale), measurement of resting
blood pressure and pulse and detailed ophthalmological examination, including SOCT
macula (Spectral Optical Coherence Tomography) and macular pigment optical density.
Each patient was informed about the essence of these tests.

The criteria for inclusion in the group of patients with AMD and in the group of
patients without AMD features were age > 55 years and age-related macular degeneration
in the grades qualifying them according to the AREDS scale according to the guidelines of
the Polish Society of Ophthalmology.

The calculations were performed using R programming language [83,84].
The median, minimum and maximum values were used to describe quantitative vari-

ables. Differences in the examined variable value distributions for the AMD advancement
groups were analyzed using the non-parametric Kruskal–Wallis test. In the case of obtaining
statistically significant results for this test, appropriate post-hoc tests were performed.

In this work, an ordinal regression is applied, implemented using a generalized linear
model. The method can predict the value of an ordinal variable, a variable for which only
the relative ordering between its different values is important. This method can also be
regarded as a kind of classification. In the examined example, the ordinal variable (and
simultaneously the dependent variable) is the degree of advancement of AMD. Quantities



J. Pers. Med. 2023, 13, 1074 6 of 17

such as CRT, average GCC thickness, MPOD, ETDRS, Snellen and Age were used in the
analysis. The measurements were performed using Zeiss Cirrus HD-OCT model 400 (Carl
Zeiss Meditec, Inc., Dublin, CA, USA).

As a consequence, a tool indicating the degree of development of AMD was created.
Due to a small number of patients, the construction of multivariate ordinal regression

models was limited to designing models containing two independent variables. The article
presents only those pairs of independent variables for which the fitting coefficient vectors
were statistically significant. For these pairs, Odds Ratios (OR) and Confidence Intervals
(CI) were determined, as well as thresholds for individual values of ordinal variables. Based
on the created theoretical models and calculated probability values, classification maps
were created. The two-dimensional maps show the values of the independent variables
represented on the axes of the maps. The model-predicted probability of classification
to a specific value of the ordinal variable is marked on the map with a specific color (see
subsequent section).

The assumed significance level was α = 0.05. (The significance level α is the pre-
determined acceptable risk of making an error of type I (the recognition of a true null
hypothesis as false). This value is used to determine the threshold in the values of devia-
tions above which the test selects an alternative hypothesis. This means that each p-value
with the significance level lower than α allows us to conclude that the obtained result is
statistically significant).

3. Results and Discussion

Clinical and ophthalmological characteristics of patients with AMD according to
AREDS and the control group are summarized in Table 1.

Kruskal–Wallis test results for all variables shown in Table 1 are statistically significant.

Table 1. Characteristics of patients (the median, minimum and maximum values of variables for each
of the groups).

Variable Control Group AREDS 2 AREDS 3 AREDS 4

CRT (µm) 253.5 (214–306) 240 (194–286) 233 (131–307) 314.5 (93–660)
GCC (µm) 82.5 (74–88) 78 (63–92) 75 (62–88) 61.5 (22–89)
ETDRS 70 (50–85) 80 (35–85) 65 (35–85) 40 (5–76)
Snellen 0.50 (0.15–1) 0.8 (0.1–1) 0.4 (0.1–1) 0.125 (0.01–0.60)
MPOD (d.u.) 0.36 (0.10–0.62) 0.36 (0.0–0.7) 0.555 (0.0–0.9) 0.00 (0.00–0.72)
Age (years) 67.5 (61–85) 70 (62–92) 75 (61–84) 77 (59–87)

The results of the post-hoc tests showed that for the CRT variable, differences in the
distributions of the variable values occur between all groups. In the case of the GCC
variable, a statistically significant result was discovered only between the control group
and AREDS 3. For ETDRS, only in the case of the distributions of the variable values
in the control group and AREDS 3, the result of the post-hoc test was not statistically
significant. An identical result was obtained for the Snellen variable, i.e., there was no
statistical significance between the distributions of values of this variable in the control
group and AREDS 3. In the case of the MPOD variable, there were differences between the
distributions of the variable values in the AREDS 4 and the other groups. Other relations
between groups for this variable were not statistically significant. For the Age variable, only
differences in the distributions of the variable values between the control group, AREDS 3,
and AREDS 4 were statistically significant.

If the CRT value increases by 1 unit, the odds that the patient’s eye will have a higher
stage of AMD is about 0.7% higher (Table 2). If the ETDRS value increases by 1 unit, the
odds that the patient’s eye will be in a higher stage of AMD is about 6.4% lower (Table 2).
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Table 2. Ordinal regression model coefficients for independent variables CRT and ETDRS.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

CRT 0.006839 0.024910 1.006862 1.001133 1.013316
ETDRS −0.066421 <0.000001 0.935736 0.912743 0.957144

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

−4.171311 −2.748292 −1.046439

If the CRT value increases by 1 unit, the odds that the patient’s eye will have a higher
stage of AMD is about 0.7% higher (Table 3). If the Snellen value increases by 0.1 units, the
odds that the patient’s eye will be in a higher stage of AMD is about 23.5% lower (Table 3).

Table 3. Ordinal regression model coefficients for independent variables CRT and Snellen.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

CRT 0.007693 0.006367 1.007722 1.002561 1.013819
Snellen −2.676137 0.000007 0.068829 0.020959 0.216983

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

−0.884703 0.50022 2.035632

If the CRT value increases by 1 unit, the odds that the patient’s eye will have a higher
stage of AMD is about 1.1% higher (Table 4). If the Age value increases by 1 unit, the odds
that the patient’s eye will be in a higher stage of AMD is about 8.4% higher (Table 4).

Table 4. Ordinal regression model coefficients for independent variables CRT and Age.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

CRT 0.011008 0.000301 1.011069 1.005563 1.017702
Age 0.080225 0.000337 1.083531 1.038016 1.133463

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

7.34911 8.713175 10.0887

If the GCC value increases by 1 unit, the odds that the patient’s eye will have a higher
stage of AMD is about 8.7% lower (Table 5). If the ETDRS value increases by 1 unit, the
odds that the patient’s eye will be in a higher stage of AMD is about 9.5% lower (Table 5).

Table 5. Ordinal regression model coefficients for independent variables GCC and ETDRS.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

GCC −0.091017 0.012630 0.913002 0.846850 0.978064
ETDRS −0.099617 0.000005 0.905184 0.863657 0.942014

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

−16.201571 −13.466137 −10.26158

The ordinal regression model for the GCC and Snellen values is analogous to the
model for the GCC and ETDRS: if the GCC and Snellen values increase, the odds that the
patient’s eye will have a higher stage of AMD decreases. If the GCC value increases by
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1 unit, the odds that the patient’s eye will have a higher stage of AMD is about 7.8% lower
(Table 6). If the Snellen value increases by 0.1 units, the odds that the patient’s eye will be
in a higher stage of AMD is about 35.2% lower (Table 6).

Table 6. Ordinal regression model coefficients for independent variables GCC and Snellen.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

GCC −0.081473 0.013013 0.921758 0.860098 0.976664
Snellen −4.343067 0.000060 0.012997 0.001337 0.096795

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

−11.06145 −8.338816 −5.754173

If the GCC value increases by 1 unit, the odds that the patient’s eye will have a higher
stage of AMD is about 6.4% lower (Table 7). If the Age value increases by 1 unit, the odds
that the patient’s eye will be in a higher stage of AMD is about 12.6% higher (Table 7).

Table 7. Ordinal regression model coefficients for independent variables GCC and Age.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

GCC −0.065804 0.027764 0.936315 0.877389 0.987024
Age 0.118874 0.006711 1.126228 1.035529 1.231370

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

1.60897 3.884524 6.114169

If the ETDRS value increases by 1 unit, the odds that the patient’s eye will have a
higher stage of AMD is about 6.7% lower (Table 8). If the Age value increases by 1 unit, the
odds that the patient’s eye will be in a higher stage of AMD is about 5.3% higher (Table 8).

Table 8. Ordinal regression model coefficients for independent variables ETDRS and Age.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

ETDRS −0.069013 <0.000001 0.933315 0.910198 0.954920
Age 0.051857 0.021138 1.053225 1.008440 1.101663

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

−2.335994 −0.832369 0.804257

Analogous to the previous cases, if the Snellen value increases by 0.1 units, the odds
that the patient’s eye will have a higher stage of AMD is about 24% lower (Table 9). If the
Age value increases by 1 unit, the odds that the patient’s eye will be in a higher stage of
AMD is about 5.7% higher (Table 9).

The data presented in Tables 2–9 were used to create classification maps (Figures 1–8),
in particular: the classification maps CRT–ETDRS (Figure 1) correspond to Table 2, CRT–
Snellen maps (Figure 2) to Table 3, CRT–Age maps (Figure 3) to Table 4, GCC–ETDRS maps
(Figure 4) to Table 5, GCC-Snellen maps (Figure 5) to Table 6, GCC–Age maps (Figure 6)
to Table 7, ETDRS–Age maps (Figure 7) to Table 8, and Snellen–Age maps (Figure 8)
correspond to Table 9.
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Table 9. Ordinal regression model coefficients for independent variables Snellen and Age.

Variable Coefficient p-Value OR 2.5% CI 97.5% CI

Snellen −2.746244 0.000003 0.064168 0.019643 0.200547
Age 0.055591 0.013359 1.057166 1.012328 1.105757

Threshold coefficients

Control group/AREDS 2 AREDS 2/AREDS 3 AREDS 3/AREDS 4

1.150177 2.610493 4.065317

Classification maps show the probability (greater than 50%) of the occurrence of
the stages of AMD depending on the variables (“descriptors” in the theory of molecular
similarity). Probability intervals are denoted by different colors in the figures. The pair
of descriptors represented on the axes of the maps classify the patient’s eyes to particular
stages of AMD (control group, AREDS 2, AREDS 3 or AREDS 4).

Figures 1–3 show classification maps only for the control group and AREDS 4. This
means that pairs of descriptors representing the map axes are good identifiers for both cases.
The diagnosis of AREDS 4 can be made on the basis of descriptor pairs: (CRT, ETDRS),
Figure 1; (CRT, Snellen), Figure 2; or (CRT, Age), Figure 3. Using these descriptor pairs,
intermediate AMD stages (AREDS 2 and AREDS 3) cannot be diagnosed.

Patterns in Figures 1 and 2 are similar, suggesting a correlation between ETDRS
and Snellen.

The pairs (GCC, ETDRS), (GCC, Snellen) and (GCC, Age) can be used to diagnose
all stages of AMD: Control group, AREDS 2, AREDS 3 and AREDS 4. The corresponding
classification maps are shown in Figures 4, 5 and 6, respectively.

In Figures 7 and 8, similarly to the maps shown in Figures 1–3, the conditions for
probabilities higher than 50% were met only in the cases of the control group and AREDS
4. This means that the pairs of variables, (ETDRS, Age) in Figure 7 and (Snellen, Age) in
Figure 8, diagnose these two stages of AMD.
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Figure 1. Classification maps CRT–ETDRS.
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Figure 2. Classification maps CRT–Snellen.
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Figure 3. Classification maps CRT–Age.

The quality of the model is very high if an area representing a probability greater than
90% appears on the map (purple color in the figures). The following stages of AMD can be
diagnosed with high precision:

• AREDS 4 using (CRT, ETDRS) variables—Figure 1;
• AREDS 4 using (CRT, Snellen) variables—Figure 2;
• AREDS 4 using (CRT, Age) variables—Figure 3;
• AREDS 4 using (GCC, ETDRS) variables—Figure 4;
• AREDS 4 using (GCC, Snellen) variables—Figure 5;
• AREDS 4 using (GCC, Age) variables—Figure 6;
• AREDS 4 using (ETDRS, Age) variables—Figure 7.

Since the maps for which the probabilities were smaller than 50% are not shown, all
other maps presented in this article can also be used to diagnose the stages of AMD with
a good precision.

It should also be noted that large areas on the maps, representing the probabilities
of the occurrence of stages of AMD, mean large ranges of values of variables that classify
these stages. Diagnosis may be easier in the cases of the large areas (high precision of the
variable value measurement is not required).
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Figure 4. Classification maps GCC–EDTRS.
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Figure 5. Classification maps GCC–Snellen.
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Figure 6. Classification maps GCC–Age.
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Figure 7. Classification maps EDTRS–Age.
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4. Conclusions

It should be noted that the given odds and their impact on the change of the dependent
variable values are correct if the second variable is constant. The ranges of the values of
all independent variables in the computational models are restricted to the collected data
(Table 1).

The quality of all classification models considered in this work is approximately the
same. However, the models containing the GCC variable better estimate the probability
of classification to all four groups of AMD than the other models. Models not containing
the GCC variable can indicate with a high probability the control group and the AREDS 4
group, only. Among these models, the one with a paired CRT and Age variables is better
than the others.

Although the result of the Kruskal–Wallis test for MPOD variable grouped according to
the AREDS scale was statistically significant, it was not possible to create a two-dimensional
ordinal regression model containing the MPOD variable with statistically significant fit-
ting coefficients.

Summarizing, the classifications maps constitute a new supporting diagnostic graph-
ical tool for the detection of the Age-Related Macular Degeneration. The values of the
variables presented on the axes of the maps classify the patient’s eyes to particular groups
(control group, AREDS 2, AREDS 3 or AREDS 4) (Figure 9). Using this alternative compu-
tational approach, all stages of AMD can be diagnosed with high or good accuracy.

In the framework of the created model, we try to predict stages of AMD in cases with
rather limited data. We are looking for the dependence of AMD stages on various variables.
Due to the limited data, we could only create the two-dimensional models. We consider
this method to be a pilot study for multidimensional models. The map shapes indicate
correlations between variables—this suggests that a modification of norms and deriving
some analytical mathematical formulas describing this issue can be feasible.

The presented method both diagnoses the AMD stage and predicts (on the basis of the
collected data) a change of this stage as a function of the values of the variables used.

A new method is always an added value that allows us to verify more complex and
precise methods. In our method, we use simple analytical functions in explicit form. This
description facilitates the interpretation of the obtained results and creates a platform to
understand more complicated processes.
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Figure 9. Flowchart of the method.

The values of some variables have been collected using simple methods and simple
and cheap devices. It is important that mathematical models could be created using these
variables, while more advanced tools and methods are not available.

Personalized medicine is based on using specific features of individual patients in
order to make optimized decisions about their treatment. Frequently, the differences
between these features are small. Therefore, high precision mathematical models are
a prerequisite for their potential usefulness in solving problems arising in the applications
of personalized medicine. The computational approach presented in this work, in particular
the classification maps, constitutes an example of such a model.
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61. Randić, M.; Novič, M.; Plavšić, D. Milestones in graphical bioinformatics. Int. J. Quant. Chem. 2013, 113, 2413–2446. [CrossRef]
62. Aram, V.; Iranmanesh, A.; Majid, Z. Spider representation of DNA sequences. J. Comput. Theor. Nanosci. 2014, 11, 418–420.

[CrossRef]
63. Jin, X.; Jiang, Q.; Chen, Y.; Lee, S.J.; Nie, R.; Yao, S.; Zhou, D.; He, K. Similarity/dissimilarity calculation methods of DNA

sequences: A survey. J. Mol. Graph. Model. 2017, 76, 342–355. [CrossRef] [PubMed]
64. Hu, H.; Li, Z.; Dong, H.; Zhou, T. Graphical Representation and Similarity Analysis of Protein Sequences Based on Fractal

Interpolation. IEEE/ACMTrans. Comput. Biol. Bioinform. 2017, 14, 182–192. [CrossRef] [PubMed]
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