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Abstract: Infrared (IR) spectroscopy is a noninvasive and rapid analytical technique that provides
information on the chemical composition, structure, and conformation of biomolecules in saliva.
This technique has been widely used to analyze salivary biomolecules, owing to its label-free ad-
vantages. Saliva contains a complex mixture of biomolecules including water, electrolytes, lipids,
carbohydrates, proteins, and nucleic acids which are potential biomarkers for several diseases. IR
spectroscopy has shown great promise for the diagnosis and monitoring of diseases such as dental
caries, periodontitis, infectious diseases, cancer, diabetes mellitus, and chronic kidney disease, as well
as for drug monitoring. Recent advancements in IR spectroscopy, such as Fourier-transform infrared
(FTIR) spectroscopy and attenuated total reflectance (ATR) spectroscopy, have further enhanced its
utility in salivary analysis. FTIR spectroscopy enables the collection of a complete IR spectrum of the
sample, whereas ATR spectroscopy enables the analysis of samples in their native form, without the
need for sample preparation. With the development of standardized protocols for sample collection
and analysis and further advancements in IR spectroscopy, the potential for salivary diagnostics
using IR spectroscopy is vast.

Keywords: infrared spectroscopy; saliva; non-invasive biomarker

1. Introduction

Traditional methods for collecting diagnostic samples, such as blood or tissue biop-
sies, are invasive, uncomfortable, and time-consuming. Additionally, they may require
specialized equipment and trained personnel for collection and analysis. These limitations
can lead to delays in diagnosis and treatment, which can be detrimental to patient out-
comes. Therefore, there is a need for non-invasive and rapid diagnostic methods that can
provide accurate and reliable results. Saliva is an important diagnostic fluid that is readily
available for non-invasive collection, making it an ideal sample type for disease detection
and monitoring. It contains various biomolecules such as lipids, carbohydrates, proteins,
and nucleic acids, which can provide valuable information about an individual’s health
status. Moreover, saliva-based diagnostics can be particularly useful in settings in which
traditional diagnostic methods, such as remote or resource-limited areas, are not readily
available or feasible. Currently, enzymatic, colorimetric, chromatographic, kinetic, and
mass spectrometric analyses, as well as immunoassays, are used to analyze saliva [1]. In
recent years, various novel techniques including vibrational spectroscopy and biosensors
have been developed for the analysis of salivary biomolecules. Implementing Fourier-
transform infrared (FTIR) spectroscopy (Figure 1) for diagnosis and treatment of diseases
involves a series of steps [2]. First, saliva samples are collected from individuals suspected
of having the disease or from a representative population. The samples are then prepared
by removing the debris through centrifugation or filtration. Next, an FTIR spectrometer
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capable of collecting high-quality infrared (IR) spectra is acquired. The instrument should
be calibrated using appropriate reference standards to establish a baseline for spectral
measurements. FTIR spectra are collected from the prepared saliva samples, aiming to
capture variations associated with the disease. Preprocessing techniques are applied to
enhance the quality of the data, such as improving the signal-to-noise ratio and eliminating
instrumental artifacts or background noise. The preprocessed FTIR spectra are analyzed
to extract relevant information. This analysis includes comparing spectra from different
disease stages, identifying characteristic peaks indicative of, e.g., viral alterations, and
quantifying the concentrations of multiple infections present in saliva samples. Statistical
analysis techniques, such as multivariate analysis, clustering algorithms, or classification
models, are employed to derive insights from the FTIR data. These techniques help to
differentiate between disease stages and identify specific infections. To validate the FTIR-
based disease tracking and detection method, the results are compared with established
diagnostic methods using appropriate reference standards or gold standard tests. Continu-
ous optimization and refinement of the FTIR protocol are important. Feedback and further
research are considered, and advanced data analysis techniques, such as machine learning
algorithms, may be explored to enhance disease tracking and identification capabilities.
Collaboration with experts in spectroscopy, biology, and medical professionals is essential
to ensure the accuracy and clinical relevance of the results.
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Figure 1. The general principle of Fourier-transform infrared spectroscopy. The radiation from a 
polychromatic source is captured and made parallel using a collimating mirror. These parallel rays 
collide in a beam splitter and are split into two beams: one reflected by a stationary mirror and the 
other reflected by a moving mirror. Depending on the distance between the static and moving mir-
rors, the recombined reflections of the beam at each mirror can result in either constructive or de-
structive interference. This procedure results in two beams once more, one of which travels back to 
the power source, and the other is directed at the sample and detected by the detector. An interfer-
ogram of this data is built up in the memory of the computer. Hundreds or thousands of interfero-
grams can be accumulated due to the processʹ rapidity (often less than 1 s) and excellent precision. 
These interferograms can then be combined and translated using Fourier transform to create stand-
ard transmittance (or absorbance) spectra against wavenumbers. 

2. Methodology  
This narrative review is based on a literature search of the online PubMed Database. 

The keywords (“saliva” [MeSH Terms] OR ʺsalivaʺ [All Fields] OR ʺsalivasʺ [All Fields] 
OR ʺsaliva sʺ [All Fields]) AND ʺinfraredʺ [All Fields] AND (ʺspectroscopiesʺ [All Fields] 
OR ʺspectroscopy sʺ [All Fields] OR ʺspectrum analysisʺ [MeSH Terms] OR (ʺspectrumʺ 
[All Fields] AND ʺanalysisʺ [All Fields]) OR ʺspectrum analysisʺ [All Fields] OR ̋ spectros-
copyʺ [All Fields]) AND (ʺmedicinʺ [All Fields] OR ʺmedicinalʺ [All Fields] OR ʺmedici-
nallyʺ [All Fields] OR ʺmedicinalsʺ [All Fields] OR ʺmedicineʺ [MeSH Terms] OR ʺmedi-
cineʺ [All Fields] OR ʺmedicine sʺ [All Fields] OR ʺmedicinesʺ [All Fields]) yielded 74 re-
sults. This search was limited to papers published in English, articles/reviews from the 

Figure 1. The general principle of Fourier-transform infrared spectroscopy. The radiation from a
polychromatic source is captured and made parallel using a collimating mirror. These parallel rays
collide in a beam splitter and are split into two beams: one reflected by a stationary mirror and the
other reflected by a moving mirror. Depending on the distance between the static and moving mirrors,
the recombined reflections of the beam at each mirror can result in either constructive or destructive
interference. This procedure results in two beams once more, one of which travels back to the power
source, and the other is directed at the sample and detected by the detector. An interferogram of
this data is built up in the memory of the computer. Hundreds or thousands of interferograms
can be accumulated due to the process’ rapidity (often less than 1 s) and excellent precision. These
interferograms can then be combined and translated using Fourier transform to create standard
transmittance (or absorbance) spectra against wavenumbers.
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The present review discusses IR spectroscopy-based analytical methods for saliva,
which offer a promising avenue for non-invasive and rapid diagnosis of various diseases.
Salivary biomarkers have been identified for diseases, such as dental caries, periodontitis,
infectious diseases, cancer, diabetes mellitus, and chronic kidney disease, as well as for
drug monitoring.

2. Methodology

This narrative review is based on a literature search of the online PubMed Database.
The keywords (“saliva” [MeSH Terms] OR “saliva” [All Fields] OR “salivas” [All Fields] OR
“salivas” [All Fields]) AND “infrared” [All Fields] AND (“spectroscopies” [All Fields] OR
“spectroscopys” [All Fields] OR “spectrum analysis” [MeSH Terms] OR (“spectrum” [All
Fields] AND “analysis” [All Fields]) OR “spectrum analysis” [All Fields] OR “spectroscopy”
[All Fields]) AND (“medicin” [All Fields] OR “medicinal” [All Fields] OR “medicinally”
[All Fields] OR “medicinals” [All Fields] OR “medicine” [MeSH Terms] OR “medicine” [All
Fields] OR “medicines” [All Fields] OR “medicines” [All Fields]) yielded 74 results. This
search was limited to papers published in English, articles/reviews from the last 15 years,
and articles with available attached files. Following this selection, another narrowing down
of the papers was made based on the full text according to the following inclusion and
exclusion criteria. The criteria for selecting the subjects were as follows:

• Inclusion criteria:

o Publication year: 2008–2023
o Language: English
o Study design: cross-sectional, case-control, and cohort studies
o Participants: humans and animals
o Sample: saliva
o Technique: all types of infrared spectroscopy

• Exclusion criteria:

o Publication year: older than 2008
o Language: Non English
o Study design: no restriction
o Participants: no restriction
o Sample: blood, serum, urine (except in combination with saliva)
o Technique: other spectroscopic techniques (Raman spectroscopy and mass

spectroscopy)

The references for the final selection of papers were also analyzed for relevance
following the inclusion and exclusion criteria described above.

3. Unlocking the Secrets of Saliva: A Comprehensive Analysis of its
Complex Composition

On an average day, a healthy adult generates approximately 600 mL of saliva, which
typically has a pH level that falls within the range of 6.6 to 7.1 [3]. Saliva, a crucial fluid
for oral health and food digestion, is produced by the salivary glands in the mouth. It is a
complex mixture of biomolecules such as water, electrolytes, proteins, lipids, carbohydrates,
and nucleic acids. Water is the main component of saliva, accounting for approximately 99%
of its volume. The remaining 1% consists of various electrolytes, such as potassium, sodium,
chloride, phosphate, and bicarbonate, which help to maintain the pH and osmolarity of
saliva, mucus, proteins/peptides, enzymes, nucleic acids, and hormones. Salivary proteins
are classified into two main categories: secretory and non-secretory. Secretory proteins,
such as mucins, amylase, and proline-rich proteins, are synthesized and secreted by salivary
glands and play important roles in lubrication, protection, and digestion. Non-secretory
proteins such as immunoglobulins and enzymes are derived from plasma and transported
into saliva through a process called transcytosis [4,5]. Thus, salivary biomarkers can be used
for the early detection of certain systemic diseases [3,6–8]. Lipids such as phospholipids,
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glycolipids, and cholesterol are also present in saliva, even at relatively low concentrations.
These lipids may play a role in the maintenance of oral health and prevention of bacterial
colonization. Carbohydrates, such as glucose and fructose, are present in small amounts in
saliva and are derived from diet. Salivary nucleic acids such as RNA and DNA are also
present, although their functions in saliva are not yet fully understood. Saliva collection is
simple, fast, and safe. Collecting saliva is less painful for patients and requires less handling
during diagnostic procedures than blood collection [7,9,10]. Saliva content is not uniform
and undergoes modifications based on factors such as the level of gland stimulation, time
of day, dietary intake, and overall health [11].

4. Illuminating the Chemical Makeup of Saliva: Exploring the Relationship between
Infrared Spectroscopy Techniques and Salivary Composition

IR spectroscopy is a powerful technique that has been widely used to analyze var-
ious biological samples, including saliva. This technique uses the measurement of the
absorption, transmission, or reflection of IR radiation by the molecular vibrations of the
sample. IR spectra convey both quantitative and qualitative information about the na-
ture, structure, and molecular environment of chemical bonds. While the intensities of
the IR spectra provide quantitative data, the frequencies indicate qualitative characteris-
tics. The collective contributions of these aspects comprise an IR spectrum, which serves
as a molecular fingerprint and captures all pathological changes in cells, tissues, or flu-
ids. IR spectroscopy provides information on the chemical composition, structure, and
conformation of biomolecules in a sample and can be used for diagnostic purposes [12].
Conventionally, the IR region is divided into three regions: far-infrared (<400 cm−1), mid-
infrared (MIR, 4000–400 cm−1), and near-infrared (NIR, 13,000–4000 cm−1) [13]. NIR
utilizes endogenous chromophores, such as oxy- or deoxyhemoglobin, lipid or water bands,
or a combination of these diagnostic markers, to detect differences [14]. The most significant
vibrations observed in biological samples are attributed to carbohydrates and nucleic acids
(1225 cm−1), lipids (1750 cm−1), and proteins (amide I: 1550–1600 cm−1 and amide II:
1600–1700 cm−1). [15]. The displacement of spectral bands and strength of spectral modes
are useful spectral parameters that provide significant information about the composition
of the sample. This information can be utilized for monitoring and diagnosing a variety of
diseases [16].

Several IR spectroscopy techniques are available, including attenuated total reflectance
(ATR), FTIR, and micro-attenuated total reflectance (micro-ATR) spectroscopy. ATR-FTIR
spectroscopy is a highly sensitive, globally applicable, and reproducible physicochemical
analytical method that utilizes IR absorption to identify structural molecules [17]. The ATR-
FTIR spectrum of a biomolecule is determined by the specific structural bonds present in
the molecule, which are unique to that particular biomolecule [16,17]. The sample is placed
in a single cell and exposed to IR radiation to obtain its absorption spectrum. ATR-FTIR
spectroscopy is becoming increasingly popular for distinguishing various chronic diseases
because of its numerous advantages, such as being non-invasive, label-free, quick, high-
capacity, economical, and offering comprehensive details on the chemical structure and
molecular makeup of specimens [18,19]. The sample is placed on a diamond or germanium
crystal, and IR radiation is passed through the crystal. ATR detects the amount of IR
radiation absorbed by a sample as it interacts with the crystal. Micro-ATR spectroscopy
is a variation of ATR spectroscopy, and is used for the analysis of small samples. This
technique allows the collection of spectra from microscopic areas of the sample, enabling
the analysis of small volumes and localized regions of interest. FTIR, ATR, and micro-ATR
spectroscopy are powerful techniques that offer advantages such as being non-destructive,
label-free, and rapid. In biological specimens such as saliva, the IR spectral modes can be
associated with biochemical signatures that are directly related to the presence or absence
of diseases. Additionally, these modes form the foundation for quantitatively measuring
several analytes, making them vital for both monitoring and diagnostic purposes [12,20].
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The characteristic IR spectrum of saliva reveals the presence of three primary cate-
gories of macromolecules, including lipids (3000–2800 cm−1), proteins (1700–1600 and
1560–1500 cm−1), and nucleic acids (1250–1000 cm−1) (Figure 2). The amide A band, char-
acterized by a broad peak at 3273 cm−1 and a medium-intensity narrow peak at 2057 cm−1,
corresponds to thiocyanate (SCN−) anions and is characteristic of saliva. The bands lo-
cated at 1649 and 1543 cm−1 are identified as amide I and II, respectively, while the band
observed at 1075 cm−1 can be attributed to sugar fragments. The remaining absorption
bands, which are relatively intense, can be assigned to the methylene groups present in
the side chains of amino acids in proteins and lipids (1452 cm−1), the side chains of amino
acids (1396 cm−1), amide III/phospholipids (1286–1320 cm−1), and various fragments of
sugars, glycosylated proteins, and nucleic acid phosphate groups (1080–950 cm−1). The
bands detected at 1080–950 cm−1 can be linked to various sugar residues present in saliva,
including glycosylated α-amidase. When a standard IR spectrum of saliva was compared to
those of albumin, glucose, and lysozyme, similarities were observed in the 1700–1400 cm−1

range with the albumin spectrum and in the 1100–1040 cm−1 range with the glucose and
lysozyme spectra [21].

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 6 of 22 
 

 

albumin, glucose, and lysozyme, similarities were observed in the 1700–1400 cm−1 range 
with the albumin spectrum and in the 1100–1040 cm−1 range with the glucose and lyso-
zyme spectra [21].  

 
Figure 2. A typical MIR spectrum measured with attenuated total reflection-Fourier transform in-
frared (ATR-FTIR) spectroscopy of a saliva sample showing peak assignments from 4000–800 cm−1. 
V: stretching vibrations, δ: bending vibrations, s: symmetric vibrations, as: asymmetric vibrations. 

A study conducted to validate this concept showed the potential to identify distinct 
sources of variability that influence the IR data obtained from salivary samples. Tobacco 
smoking and gender were also investigated. Patients were grouped into three distinct clas-
sifications based on their smoking habits: non-smokers, social smokers, and regular smok-
ers. Various bands were found to be distinguishing factors among the different groups of 
smokers, notably within the wavenumber range of 1950–2150 cm−1 (with a peak around 
2060 cm−1, corresponding to thiocyanates). Additionally, some more scattered bands were 
found to differentiate tobacco, including the amide I band (mainly stretching of C=O) and 
the amide II band (mainly bending of N-H), which were situated in the spectral range of 
1500–1700 cm−1 [22]. The increase in the level of thiocyanates in saliva could be associated 
with a higher frequency and duration of smoking [23]. Another study examined the im-
pact of smoking cessation on the composition of salivary compounds using FTIR spectros-
copy. Despite the small differences in spectral intensity observed between the two groups, 
the smoker group exhibited a slight increase in spectral peaks, particularly in the bands 
associated with DNA, indicating a possible modification of its content or cell necrosis. 
Additionally, mannose-6-phosphate had elevated spectral peaks in the smoker group. In 
contrast, in the group of former smokers, the peak for SCN- decreased while the intensity 
of the collagen band increased, indicating a better tissue regeneration capacity in individ-
uals who have ceased smoking [24]. Wavenumbers between 1735 and 1740 cm−1, which 
are associated with the C=O esters of lipids, indicate sex differences [22]. A different study 
corroborated this finding by showing that ATR-FTIR spectroscopy can identify the gender 
of fertilized unincubated chicken eggs by detecting the symmetric stretching vibration of 
fatty acid esters around 1740 cm−1, which is crucial for this process [25]. The discriminant 
bands were utilized to apply linear discriminant analysis (LDA), resulting in the construc-
tion of a classifier that displayed strong predictive capability. The classification rates 
achieved for females and males were 81.6% and 82.4%, respectively. The biochemical 

Figure 2. A typical MIR spectrum measured with attenuated total reflection-Fourier transform
infrared (ATR-FTIR) spectroscopy of a saliva sample showing peak assignments from 4000–800 cm−1.
V: stretching vibrations, δ: bending vibrations, s: symmetric vibrations, as: asymmetric vibrations.

A study conducted to validate this concept showed the potential to identify distinct
sources of variability that influence the IR data obtained from salivary samples. Tobacco
smoking and gender were also investigated. Patients were grouped into three distinct
classifications based on their smoking habits: non-smokers, social smokers, and regular
smokers. Various bands were found to be distinguishing factors among the different
groups of smokers, notably within the wavenumber range of 1950–2150 cm−1 (with a peak
around 2060 cm−1, corresponding to thiocyanates). Additionally, some more scattered
bands were found to differentiate tobacco, including the amide I band (mainly stretching of
C=O) and the amide II band (mainly bending of N-H), which were situated in the spectral
range of 1500–1700 cm−1 [22]. The increase in the level of thiocyanates in saliva could be
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associated with a higher frequency and duration of smoking [23]. Another study examined
the impact of smoking cessation on the composition of salivary compounds using FTIR
spectroscopy. Despite the small differences in spectral intensity observed between the two
groups, the smoker group exhibited a slight increase in spectral peaks, particularly in the
bands associated with DNA, indicating a possible modification of its content or cell necrosis.
Additionally, mannose-6-phosphate had elevated spectral peaks in the smoker group. In
contrast, in the group of former smokers, the peak for SCN- decreased while the intensity of
the collagen band increased, indicating a better tissue regeneration capacity in individuals
who have ceased smoking [24]. Wavenumbers between 1735 and 1740 cm−1, which are
associated with the C=O esters of lipids, indicate sex differences [22]. A different study
corroborated this finding by showing that ATR-FTIR spectroscopy can identify the gender of
fertilized unincubated chicken eggs by detecting the symmetric stretching vibration of fatty
acid esters around 1740 cm−1, which is crucial for this process [25]. The discriminant bands
were utilized to apply linear discriminant analysis (LDA), resulting in the construction of a
classifier that displayed strong predictive capability. The classification rates achieved for
females and males were 81.6% and 82.4%, respectively. The biochemical composition of
saliva can also be influenced by various other factors, such as oral medication, stress, age,
body mass index (BMI), and comorbidities associated with complex diseases [22].

To examine the unique differences and connections between the MIR spectra of saliva
and oral physiology and behavior (such as saliva flow, fungiform papillae, and oral pro-
cessing time), a study involving 52 participants was conducted to analyze and interpret
these factors. Unstimulated saliva samples were collected from these participants, and
their MIR spectra were analyzed to develop partial least squares (PLS) regression models.
The R2 coefficient of determination and the standard error in cross-validation (SECV) were
calculated for saliva flow rate (R2: 0.65–0.83, SECV: 0.25–0.31), papillae density of tongue
(R2: 0.73–0.83, SECV: 7.4–11.2), and oral processing time (R2: 0.7–0.87, SECV: 1.66–3.04).
Optimal models were obtained when participants were divided into groups based on age
and sex. It is important to mention that diverse PLS loadings were identified in the MIR fin-
gerprint regions among various demographic groups, implying that different constituents
of saliva are linked to variations in oral sensing physiology and oral processing within
distinct demographic groups. These results suggest that salivary fingerprint spectra can
aid in better understanding the consumer eating experience and food selection, making
them a valuable asset for marketing and sensory experiments [26].

5. Shining a Light on Saliva-Based Diagnosis: Exploring the Applications of
Infrared Spectroscopy
5.1. Seeing beyond the Surface: Unraveling the Molecular Changes in Oral Fluid for Enhanced
Diagnosis of Dental Caries and Periodontitis Using IR Spectroscopy

A crucial approach in healthcare is the implementation of precise monitoring methods
for early disease prevention. The primary emphasis is on socially significant illnesses, with
dental caries-related diseases being of particular importance because of their significant
impact on people’s social lives [27]. Alterations in salivary molecular makeup linked to
the development of dental caries can serve as effective tissue markers for tracking the
progression of this condition [28]. It is possible to gain novel insights into the progression of
dental caries by analyzing changes in the salivary molecular composition at various stages
of oral pathology using FTIR (Table 1). The comparison of various features in IR spectra,
as well as the determination of the mineral-organic ratio, the carbon-phosphate ratio, the
Amide II/Amide I ratio, and the protein/thiocyanate ratio in oral fluid from individuals
with and without multiple caries was made possible through the use of FTIR, including
synchrotron radiation [mineral-organic ratio: ratio of the integral intensity of the phosphate
bands in the spectral ranges of 1078–900 cm−1 to the integral intensity of vibration band
1700–1590 cm−1 associated with Amide I; carbon-phosphate ratio: ratio of the C=O and
CH2/CH3 bonds localized in the range of 1430–1360 cm−1 to the integral intensity of
phosphate bands in the region of 1078–900 cm−1; Amide II/Amide I ratio: C-N stretching,
N-H bending vibrations in the range of 1590–1505 cm−1/C=O stretching in the interval of



J. Pers. Med. 2023, 13, 907 7 of 20

1723–1590 cm−1; protein/thiocyanate ratio: ratio of the integral intensities of the amide
bands (Amide I and Amide II) in the range of 1700–1500 cm−1 to the integral intensity
of −N=C=S vibration bands, arranged at 2150–1950 cm−1, associated with thiocyanate]
(Table 1). A comprehensive analysis of the experimental data revealed that in individuals
with multiple caries, there was a shift in the organic–mineral balance in their oral fluid,
which led to a reduction in mineral mixtures and an increase in the carbon-based component.
The increase in the Amide II/Amide I ratio was a crucial factor in these changes in molecular
composition, with the group with multiple caries showing a 120% increase compared to
those without. This suggests that changes in the composition of the organic component,
relative to the proportion of C=O bonds, are caused by an increase in the number of C-N
and N-H molecular groups in the oral fluid [29]. These molecular units are linked to
protein elements, and changes in their concentration can occur owing to the appearance
of pathological microflora in the buccal cavity, as observed in both non-stimulated and
stimulated saliva [28,30,31]. The presence of SCN-, as observed in the IR spectrum at
2150–1950 cm−1, which doubled, was the most prominent indicator of changes in the
composition of oral fluid in individuals with multiple caries [29].

During pathological processes in humans, the level of SCN- in saliva, which possesses
antibacterial properties, can be increased [32]. Although thiocyanate is an important marker
of saliva and an antimicrobial agent, it is insufficient for the in vivo diagnosis of future caries
because it is only weakly associated with dental caries. Thus, an all-inclusive examination
that takes into account both quantitative and qualitative information on the molecular
makeup of oral fluid has the possibility to enhance the precision of detecting forthcoming
carious processes and boost the preventative diagnosis of this ailment. Additionally, the
presence of carboxyl groups in esters, lipids, and carbohydrates (IR spectra within the
range of 1765–1725 cm−1) in mixed saliva is characteristic of caries development. The
characteristics of the IR spectra of oral fluid described earlier, along with the shifts in
molecular composition indicated by the ratios, suggest that people with multiple cavities
have an altered organic–mineral balance in their oral fluid. This leads to a decrease in the
presence of mineral groups and complexes and an increase in the organic component [29].

Periodontitis is a common oral disease that affects the supporting structures of teeth,
including the gums, periodontal ligament, and alveolar bone. This disease is characterized
by inflammation and tissue destruction around the teeth, which can lead to tooth loss if left
untreated. Early detection and diagnosis of periodontitis are essential for effective treat-
ment and prevention of further damage. IR spectroscopy has emerged as a valuable tool
for diagnosing and monitoring periodontitis. Studies have shown that IR spectroscopy can
be used to detect changes in the concentration and composition of salivary biomolecules in
patients with periodontitis. A cross-sectional study was conducted to evaluate the capabil-
ity of infrared attenuated total reflection (IR-ATR) spectroscopy to identify variations in the
composition of saliva supernatants between individuals without periodontitis and those
with generalized aggressive periodontitis. The prominent variation in absorbance between
the two groups was observed within the spectral range of 1230–1180 cm−1. The observed
absorption variation in the region around 1200 cm−1 could be attributed to the overlapping
wings of the two robust PO2

− stretching vibration bands, or it could be due to an unas-
signed feature. Principal component analysis (PCA) and analysis of variance (ANOVA)
confirmed a significant distinction (as high as 99.8% based on PCA) in the spectral profiles
of saliva supernatants between the control group and patients with generalized aggressive
periodontitis [33]. In other studies, it was possible to distinguish between patients with
gingivitis and periodontitis and those with a healthy periodontium by analyzing the lipid
and protein content in the discriminant wavenumber range of 2800–3000 cm−1 (CH2 and
CH3 stretching vibrations) [34]. It is worth noting that lipid oxidation is significantly
elevated in patients with inflammatory conditions such as gingivitis and periodontitis, as
indicated by the presence of an olefinic C-H stretching band at approximately 3000 cm−1.
Lipid oxidation is known to increase considerably during periodontal inflammation [35].
Several additional distinguishing bands were detected, such as protein bands (amide I at
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1652 cm−1 and DNA bands at 1713 cm−1, indicative of base-paired DNA strands) [34]. No-
tably, the bands at 950 cm−1 and 1190 cm−1 distinguished periodontitis [18,22]. The sugar
components of glycosylated proteins, including α-amylase (the most prevalent enzyme in
saliva), exhibit significant variations in the spectral range of 950–1080 cm−1 [36]. As the
severity of periodontitis increases, the spectral spots shift farther away from those observed
in the less infected or healthy patients.

5.2. Saliva Analysis by Infrared Spectroscopy: A Non-Invasive and Accurate Approach for
Cancer Diagnosis

Oral cancer is a significant health concern worldwide, with high mortality rates
owing to late-stage diagnoses. Early detection and diagnosis of oral cancer are crucial for
successful treatment and improved patient outcomes. IR spectroscopy has emerged as a
valuable tool for the diagnosis and monitoring of oral cancer (Table 1). It provides detailed
information on the chemical composition and structure of salivary biomolecules, which
can serve as potential biomarkers for disease. Studies have shown that IR spectroscopy can
be used to detect changes in the concentrations and compositions of salivary biomolecules
in patients with oral cancer. IR spectroscopy can detect changes in the ratio of protein
secondary structures, such as alpha-helices and beta-sheets, which are indicative of tumor
progression. IR spectroscopy can also detect changes in the concentration of nucleic acids
such as DNA and RNA, which are indicative of cell proliferation and turnover. Furthermore,
IR spectroscopy can provide real-time monitoring of disease progression and treatment
responses. Changes in the chemical composition and structure of salivary biomolecules
can be detected immediately after treatment, providing important information on the
effectiveness of the treatment and the need for further intervention. To determine the
diagnostic potential of salivary exosomes, a cross-sectional investigation was performed
on the FTIR spectra of salivary exosomes from patients with oral cancer (OC) and healthy
individuals. Nucleic acids at 1072 cm−1, membrane lipids at 2924 and 2854 cm−1, and
transmembrane proteins at 1543 cm−1 were consistently altered in the IR spectra of OC
patients compared to controls. With a sensitivity of 100%, specificity of 89%, and accuracy
of 95%, the PCA-LDA discrimination model successfully identified the data, whereas the
support vector machine (SVM) displayed 100% training accuracy and 89% cross-validation
accuracy [37].

The ATR-FTIR spectra comparison of saliva samples between healthy control subjects
and patients with salivary gland tumors revealed that the most noticeable changes mani-
fested in the region ranging from approximately 900 to 1300 cm−1, which is regarded as
a highly diagnostic region for studying various cancer types [38]. The band observed at
approximately 1078 cm−1 corresponds to the stretching of both asymmetric and symmetric
PO2

− groups, which originate from inorganic phosphates [39] and the phosphate group
present in phospholipids [40]. Studies have demonstrated that this specific spectral charac-
teristic is associated with the involvement of phosphates in various diseases [41]. In addi-
tion to the previously mentioned bands, vibration arising from the phosphate group was
also apparent in the spectra at approximately 1159, 1239, 985, and 936 cm−1 [39]. The peaks
detected within the 1000–1200 cm−1 range could potentially be linked to C-O stretching
vibrations from carbohydrates, leading to the suggestion that the bands observed at ap-
proximately 1021, 1040, and 1078 cm−1 originate from sugar moieties [21,40,42]. Given that
a large portion of salivary proteins is glycosylated, it is reasonable to attribute these peaks
to the vibrations of glycosylated α-amylase, mucins, or other sugar residues [39,42–44]. In
the tumor mixus spectrum, there was a noticeable increase in the significant enhancement of
the spectral signal at ~1119 cm−1, which is attributed to the vibrations of carbohydrates’
ν(C–O) and ν(C–O–C), when compared to the non-cancerous spectrum [45,46]. The peak
at 1119 cm−1 is often regarded as a distinctive feature in the IR spectrum and serves as
a spectroscopic indicator of salivary gland tumors [47]. Most of these vibrations exhibit
significant enhancement during disease development. There were also notable differences
in the secondary structure of the proteins observed between the ATR-FTIR spectra of the
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control and salivary gland tumor patients. The maximum peak frequency of the α-helix
decreased for the tumor mixus spectrum (1634–1640 cm−1) in comparison to the control
group spectrum (1644 cm−1), whereas the β-sheet maximum (1543 cm−1) band frequency
increased for the patients with salivary gland tumors [16,42,46,48–51]. This could be due
to changes in the extent of intermolecular hydrogen bonding in the α-helical and β-sheet
structures [52]. Additionally, the most intense band at 1648 cm−1 attributed to ν(C=O),
ν(CN), and δ(NH) vibrations from α-helix upon deconvolution was split into two addi-
tional bands at 1664 and 1641 cm−1 due to the disordered structure-solvated [νs(C=O)]
and unordered structure [ν(C=O)], respectively. The content of α-helical conformation
was also significantly lower in tumor mixus patients, which could be related to the forma-
tion of the β-sheet structure. [53]. It is also noteworthy that the relative intensity of the
1631 cm−1 band due to the β-sheet structure [ν(C=O)/ν(C=C)] significantly decreased
with cancer development. Conversely, the composition of the 1615 cm−1 spectral signal
ascribed to the β-sheet formation [ν(C=C)] increased considerably for tumor mixus spectral
data [16,42,46,48–51]. Additionally, the peaks observed at ~1403 [νs(COO–), ρb(CH3)] and
1450 cm−1 [ρb(CH3)/δ(CH2/CH3)] exhibited higher intensities in the tumor mixus patients.
Other prominent spectral features assigned to proteins can be observed at 1543 [ρb(NH),
ν(CN), amide II], 1515 (tyrosine ring, α-amylase, albumin, cystatins, mucins, proline-rich
proteins, sIgA), and 1315 cm−1 [ν(CN), ρb(NH), amide III (α-amylase, albumin, cystatins,
mucins, proline-rich proteins, sIgA)]. An additional FTIR signal, which was absent in the
control group spectrum, appeared at 1527 cm−1 [ρb(NH), ν(C=N), ν(C=C), amide II] [38].

According to the World Health Organization’s (WHO) World Cancer Report, breast
cancer is the most common and deadly cancer among women worldwide, irrespective
of their geographic location or level of development [54]. The rising global incidence
of breast cancer, combined with the lack of reliable, cost-effective, and high-throughput
detection methods, necessitates the search for alternative diagnostic tools. Therefore,
ATR-FTIR spectroscopy has been used to detect breast cancer fingerprints in saliva. The
study group consisted of 30 participants: 10 with confirmed breast cancer, 10 with benign
breast disease, and 10 controls. The absorbance levels at 1041 cm−1 in the saliva of breast
cancer patients were significantly higher (p < 0.05) than those in the saliva of benign
patients. Although no significant difference was observed between breast cancer patients
and controls, the identified potential biomarker based on spectral analysis showed a
remarkable diagnostic value with an AUC of 0.7700, indicating its potential use in breast
cancer diagnosis. Using the ROC curve, this resulted in a sensitivity of 80% and specificity
of 70% for breast neoplasms vs. control patients, as well as sensitivity of 70% and a
specificity of 70% for breast neoplasms vs. benign subjects. The 1041 cm−1 vibrational
mode is caused by higher levels of PO2

− symmetric stretching [vs. (PO2
−)], which are

found in nucleic acids and glycogen. The 1433–1302.9 cm−1 band area in the saliva of
patients with mammary carcinoma was significantly higher (p < 0.05) than that in the
control and benign patients. The vibrational mode was similar in both the benign and
control patients. The area of the salivary ATR-FTIR spectrum has been pre-validated as a
potential diagnostic indicator of breast cancer. The AUC of the 1433–1302.9 cm−1 salivary
band area was 0.835 for breast tumor vs. control and 0.770 for breast tumor vs. benign
patients. The higher level in the 1433–1302.9 cm−1 region is due to the higher levels of
COO− symmetric stretching [vs (COO−)], which is found in proteins and lipids [55]. Given
the higher expression of PO2

− symmetric stretching [νs. (PO2
−)] and COO− symmetric

stretching [νs(COO−)] in the saliva of breast tumor patients, these molecules may originate
in the blood and enter the saliva via passive diffusion of lipophilic molecules (e.g., steroid
hormones) or active transport of proteins via ligand–receptor binding [4]. With a sensitivity
and specificity of 90% and 80%, respectively, this spectral biomarker could distinguish
human breast neoplasms from controls. Furthermore, with sensitivity and specificity of
90% and 70%, respectively, it was able to distinguish breast cancer from benign disease [55].
As conventional techniques used in clinical practice, such as mammography, ultrasound,
and MRI, have sensitivities of 67.8%, 83%, and 94.4%, and specificities of 75%, 34%, and
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26.4% [56], respectively, ATR-FTIR spectroscopy has the potential to enhance the precision
of breast cancer diagnosis.

5.3. Advances in Saliva Analysis: Infrared Spectroscopy as a Promising Technique for Infectious
Disease Diagnosis
5.3.1. Catching COVID-19 with Infrared Eyes: How Spectroscopy Is
Revolutionizing Diagnosis

Several studies have demonstrated the potential of IR spectroscopy in the detection of
infectious diseases through saliva analysis (Table 1). Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), responsible for the current global health crisis, has recently
become one of the most severe pandemics. Although reverse transcription polymerase
chain reaction (RT-qPCR) is widely recognized as the primary diagnostic method, its effec-
tiveness has been compromised by the overwhelming demand for testing. Implementation
of this method requires the availability of laboratory resources and chemical reagents. The
test typically requires 4–6 h to complete [57]. Diagnostic tests using monoclonal antibodies
against SARS-CoV-2 antigens, such as the N protein and S1 or S2 domains of the S protein,
can be utilized to detect viral infection through antigen-based testing. However, these tests
are less sensitive than RT-PCR [58]. Consequently, vibrational spectroscopy techniques,
such as IR spectroscopy, have been suggested as viable options for testing because of
their ability to produce reproducible results, require minimal or no sample preparation,
and are free of reagents, making them a noninvasive alternative. RT-qPCR analysis was
conducted on a set of 237 saliva samples from symptomatic patients, including 138 individ-
uals diagnosed with COVID-19 and 99 without COVID-19. The dataset consisted of MIR
spectra, which were assessed using an unsupervised random forest (URF) and classification
models. By utilizing both unsupervised and supervised frameworks, it became feasible
to effectively emphasize the spectral regions linked to positive samples. These regions
include lipids (1785–1729 cm−1; stretching C=C and C=O of ester groups), proteins (1680
and 1718–1705 cm−1: stretching C=O and C–N; 1600–1250 cm−1: amides I, II, and III), and
nucleic acids [1612–1606 cm−1: adenine vibration in DNA; 1244–1100 cm−1: stretching PO4
of phosphodiester groups; 1025–1021 cm−1: C–O stretching (carbohydrates); 961 cm−1:
deoxyribose; and 930–909 cm−1: phosphodiester stretching bands]. The individual models
demonstrated impressive performances. However, the consensus class achieved even better
validation results with 85% accuracy, 93% sensitivity, 83% specificity, and a Matthew’s corre-
lation coefficient of 0.69. The improved performance was attributed to the incorporation of
information from various spectral regions. By offering a swift and noninvasive diagnostic
technique, this methodology represents a significant resource for reducing expenses and
enabling the implementation of risk reduction strategies [57].

Additionally, ATR-FTIR spectroscopy has been used to identify unique COVID-19 bio-
logical fingerprints, enabling the differentiation between COVID-19-positive and healthy
patients. Saliva contains viral particles that are shed from both the upper and lower respira-
tory tract as well as the salivary glands. Because saliva is in direct contact with both the oral
mucosa and salivary glands, which express a high amount of the angiotensin-converting
enzyme 2 (ACE2) receptor that binds with SARS-CoV-2, it is considered a reliable biological
fluid for testing [59]. Numerous studies have demonstrated that FTIR spectroscopy, particu-
larly when utilizing ATR crystals, can be used to detect this virus [60–64]. A novel approach
utilizing ATR-FTIR spectroscopy, which is superfast, reagent-free, and nondestructive, cou-
pled with chemometric analysis, was developed for the prescreening of virus-infected
samples. The IR spectra of artificially prepared saliva samples containing inactivated
γ-irradiated COVID-19 virus particles were generated at levels as low as 1582 copies/mL,
yielding a favorable signal-to-noise ratio. Tentative identification of the primary virus
spectral peaks was performed in relation to nucleic acid bands such as RNA. The IR spec-
tral signature of saliva is altered by the presence of viral particles with RNA-associated
wavenumbers, which play a key role in discrimination. Discrimination was also achieved
through ATR-FTIR spectral analysis of swabs immersed in saliva spiked with varying
levels of virus. In a clinical environment with 70 COVID-19-positive and 111 COVID-19-
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negative swab samples, a sensitivity of 95% and specificity of 89% were achieved. Of
the five molecular RNA assignments, four were higher in the negative group than in the
positive group. One possible explanation is that the increase in the 1429 cm−1 region is
associated with a virus such as a simple RNA virus. The corresponding decreases in the
1220, 1084, 1069, and 1041 cm−1 regions may be related to the carrier response to viral
infection. The suggested approach is not designed to substitute conventional techniques,
such as RT-qPCR; instead, it functions as a fast preliminary screening method [61]. In
another study, ATR-FTIR spectroscopy was used to analyze saliva samples obtained from
both COVID-19 patients (n = 255) and healthy individuals (n = 1209). Multivariate analysis
revealed that the most effective regions for distinguishing between COVID-19 patients and
healthy controls were Amide I (1700–1600 cm−1) and IgG (1560–1464 cm−1). By utilizing
both subregions, the highest metrics of sensitivity (99.2%), specificity (100%), and accuracy
(99.6%) were achieved.

After a detailed analysis of the outcome data produced by the multivariate linear
regression model, it was evident that using this model, relying on the vibrations of the
Amide I area, yielded better outcomes when applied to a larger sample size. This was due
to the fact that the variation in the output values for both the COVID-19 and healthy groups
was less than the variations in the IgG region [58]. The underlying pathophysiology of the
proposed technology was investigated through controlled infection experiments using Vero
E6 cells in vitro and K18-hACE2 mice in vivo to explore its biological basis. In both cell
and mouse models, SARS-CoV-2 infection induced additional FTIR signals compared with
UV-inactivated SARS-CoV-2 infection. These signals correspond to aggregated proteins
and RNA [63]. In comparison to ATR, a new transflection approach resulted in greater
absorbance and less noise, resulting in 93% sensitivity and 82% specificity based on the
selection of a threshold of 0.6 [64].

IR spectroscopy has several applications in personalized medicine for infectious dis-
eases because it provides valuable information about pathogens, host responses, and
therapeutic interventions. By analyzing spectral changes in infected tissues or body flu-
ids before and after treatment, clinicians can evaluate the treatment response and make
informed decisions about treatment adjustments. This can help personalize treatment
regimens and optimize therapeutic outcomes for individual patients. Furthermore, by inte-
grating artificial intelligence and machine learning with IR spectroscopy, we can effectively
track disease progression and detect alterations in the chemical composition of viruses
based on their unique spectral features. Moreover, this advanced technique enables the
identification of the concentration of multiple infections present in saliva [59]. This can be
particularly useful in situations in which conventional methods may be time-consuming or
limited in their ability to identify emerging or drug-resistant pathogens. It can facilitate
timely intervention, reduce reliance on laboratory infrastructure, and improve patient
outcomes, particularly in resource-limited settings.

5.3.2. Beyond the Naked Eye: Unveiling the Hidden Clues of Neonatal Sepsis with
Infrared Spectroscopy

Neonatal sepsis continues to be a significant global challenge, as it remains one of
the leading causes of mortality in newborns. It is estimated that neonatal deaths account
for over 40% of deaths among children under the age of five, resulting in the loss of
approximately 3.1 million neonatal lives each year worldwide [65]. Despite being the gold
standard for diagnosing neonatal sepsis, blood cultures have many limitations [66]. In a
prospective cross-sectional study [67], saliva samples were collected from 60 newborns,
of which 30 were considered to be at risk of sepsis, while the remaining 30 were healthy
newborns serving as the control group. The mean absorbance values at wavenumbers 970,
1037, 1051, 1240, 1301, 1545, and 1640 cm−1 were lower in the sepsis group than in the
control group. The observed difference in absorbance could be attributed to alterations
in the salivary biochemical composition of newborns at risk of sepsis. The measured
absorbance at specific wavenumbers indicates changes in the DNA and protein composition
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in the saliva of these newborns, which can be linked to an inflammatory process. This
finding is consistent with that of a previous study showing protein damage in neonatal
sepsis via the oxidative stress pathway [68].

5.4. Diabetes Mellitus Diagnosis via Infrared Spectroscopy of Saliva: A Non-Invasive and
Reliable Approach

Diabetes mellitus is one of the top five noncommunicable diseases that kill the most
people worldwide, according to the WHO, with type 2 diabetes (DM2) being the most
common [69]. Blood glucose monitoring is an invasive, painful, and expensive procedure.
Several studies have demonstrated the potential of IR spectroscopy in the detection of
diabetes mellitus through saliva analysis (Table 1). DM frequently reduces salivary flow,
alters salivary protein expression, and increases salivary glucose levels [70–72]. Specific
salivary biomarkers for DM, such as glucose, alpha-amylase, ghrelin appetite hormone, im-
munoglobulins, glycated end products, myeloperoxidases, and other markers of oxidative
stress (e.g., salivary peroxidase) have been identified [3,73–75].

FTIR spectroscopy was used to analyze saliva samples from individuals with diabetes
mellitus and healthy controls. In a first study of 1040 patients with 540 type 2 diabetics
and 500 control subjects, the authors proposed a novel approach to diagnose DM2 based
on saliva analysis using ATR-FTIR spectroscopy. The objective was to establish a strong
foundation for future studies that can utilize this dataset to suggest alternative methods
to the current gold standard for non-invasive diagnosis and management of DM2. They
collected and measured the IR spectra of saliva samples from diabetic and healthy individ-
uals and performed a statistical analysis to distinguish between them. They showed that
ATR-FTIR spectroscopy could accurately detect diabetes mellitus using saliva samples in a
non-invasive way and provided raw and processed data files and R scripts as supplemen-
tary materials for future research [15]. Another cross-sectional research using 23 patients’
saliva samples (2 healthy controls, 9 patients with diabetes mellitus, and 12 patients with
both diabetes mellitus and periodontitis) showed that the fingerprint region between 600
and 1300 cm−1 (including the peak at band centered at 1076 cm−1 corresponding to the
vibrational mode of skeletal cis conformation of DNA), 1403 cm−1 band of symmetric CH3
bending modes of protein methyl groups and symmetric CH3 bending of collagen, and
1451 cm−1 band of asymmetric CH3 bending modes of protein methyl groups may differ
between control and diabetic patients [76].

In an animal study evaluating the saliva of normoglycemic, diabetic, and insulin-
treated diabetic rats using ATR-FTIR spectroscopy, diabetic rats were classified with a
sensitivity of 100% and an average specificity of 93.33% and 100%, respectively, using
bands at 1452 cm−1 and 836 cm−1, respectively. The 1452 cm−1 (area for asymmetric
CH3 bending modes of protein methyl groups) and 836 cm−1 (C2 endo/anti-B-form helix
conformation) spectral bands were robust spectral biomarkers that were highly correlated
with glycemia (R2: 0.801 and 0.788, respectively; p < 0.01). It is critical to remember that
the C2 conformation of sugars at 836 cm−1 does not indicate the presence of glucose. The
aldehyde structure for the conversion of glucose into a cyclic hemiacetal (glucopyranose)
occurs at the C4-C5 bond [77], resulting in a peak at 1375 cm−1 [78]. In ROC analysis,
these salivary spectral bands demonstrated 100% sensitivity and 100% specificity. Both
PCA-LDA and hierarchical cluster analysis (HCA) classifications achieved an accuracy of
95.2% in discriminating non-diabetic, diabetic, and insulin-treated diabetic rats based on
their salivary spectra. The ability of these two salivary ATR-FTIR bands to distinguish
and differentiate indicates that they may serve as diagnostic and monitoring tools for DM.
Insulin treatment reversed the salivary spectra observed in patients with hyperglycemia.
The identification of salivary biomarkers using univariate and multivariate analyses offers
a promising and environmentally friendly approach for diabetes monitoring [79]. This
method allows for the analysis of other molecules in addition to glucose, which could
indicate metabolic control in saliva. Although glucose is the primary molecule for assessing
metabolic control in the blood, the discovery of glucose transporters in salivary ductal cells
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highlights the potential of salivary analysis for evaluating other biomarkers. Overall, IR
analysis of salivary biomarkers could provide a new, reliable, and non-invasive option for
diabetes monitoring. IR spectroscopy can highlight the molecular changes associated with
the development and progression of diabetic complications, such as diabetic retinopathy,
neuropathy, or nephropathy. This information can aid in personalized risk assessment, al-
lowing for early detection and intervention to prevent or mitigate complications. Moreover,
IR spectroscopy can be used to assess nutritional status and guide personalized dietary
recommendations for individuals with diabetes mellitus [80].

5.5. Real-time Drug Monitoring Using Infrared Spectroscopy of Saliva: A Promising Approach for
Personalized Medicine

IR spectroscopy can be used to analyze the composition of saliva and detect changes
associated with drug metabolism. Drugs can affect the levels of certain biomolecules in
the saliva, including proteins and lipids, which can be detected using IR spectroscopy. In
addition, this technique can be used to monitor drug levels in saliva. Several studies have
demonstrated the potential of IR spectroscopy for drug monitoring using salivary analysis
(Table 1).

Saliva can contain traces of heroin for a few hours after consumption. When heroin
is smoked, the concentration of the drug can reach 20 mg/mL in the first few minutes
following administration [81]. Heroin displays distinctive absorbance characteristics in
the range of 1800–750 cm−1 [82]. Within the range of 1700–1000 cm−1, codeine exhibits
characteristic absorbance properties [83]. Spectroscopy can simultaneously detect various
cocaine metabolites owing to their similar absorption ranges. Studies indicate that the
1710–1800 cm−1 spectral region is ideal for detecting cocaine, even in the presence of
commonly consumed substances such as diluents, adulterants, medications, and drinks. Al-
though mouthwash and alcohol consumption affect saliva spectra, they do not significantly
interfere with the critical cocaine absorption range. By using the dried sample technique
to minimize water absorption, cocaine can be detected in saliva at a limit of 0.02 mg/mL
without the need for additional sample preparation. Although this limit is sufficient for
real-life scenarios, it can be lowered by using a quantum cascade laser, a higher responsivity
detector, and an improved interaction zone design between the laser beam and sample to
increase the evanescent field absorption. This non-invasive and straightforward technique
could be an effective means of detecting cocaine use [84].

5.6. Early Detection of Chronic Kidney Disease using Infrared Spectroscopy Analysis of Saliva

Chronic kidney disease (CKD) can be difficult to diagnose in its early stages because
the symptoms are often nonspecific or may not be present. At present, the clinical detection
of CKD involves a persistent elevation in the urinary albumin excretion rate and/or a reduc-
tion in the glomerular filtration rate. Consequently, there is a need for the development of
cost-effective, non-invasive, and accurate diagnostic platforms for CKD. A study involving
14 patients with CKD and 14 healthy control subjects matched for age and gender was con-
ducted to compare salivary components using ATR-FTIR spectroscopy. The study identified
several salivary components, of which four exhibited significantly different expression
(p < 0.05) between CKD patients and control subjects. Among these, thiocyanate (SCN−,
2052 cm−1, C-N stretching) and the vibrational modes of phospholipids/carbohydrates
(924 cm−1, C-O, C-C stretching, C-O-H, and C-O-C deformation) using the original and
second-derivative spectra via ATR-FTIR have the potential to serve as salivary biomarkers
for distinguishing CKD patients from healthy subjects [85]. SCN− is a common pseudo-
halide thiolate, which is small and acidic in nature and is present in various extracellular
fluids, such as saliva and plasma. It is synthesized from cyanide either by mitochondrial
rhodanese or by entering the bloodstream through the diet [86]. Patients with CKD exhibit
elevated levels of plasma SCN− due to a reduction in kidney elimination [87]. The concen-
tration of SCN− in saliva is primarily dependent on the active transcellular transport of
SCN− in acinar cells rather than on the plasma concentration of SCN− [86]. The combina-
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tion of the original and second-derivative spectra by ATR-FTIR of the 924 cm−1 vibrational
modes demonstrated 92.8% sensitivity and 85.7% specificity for CKD detection with an
AUC of 0.88. The pathophysiological effects of this wavenumber, which are associated
with phospholipids and carbohydrates, are not fully understood. However, despite the
inability to identify the exact molecule, the 924 cm−1 peak in the second derivative ATR-
FTIR spectra has clear potential as a diagnostic tool [85]. IR spectroscopy can contribute to
personalized medicine for CKD by providing valuable information about kidney function,
metabolic changes, and disease progression based on specific spectral features (Table 1).
IR spectroscopy should be used in conjunction with existing diagnostic tools and clinical
evaluations to ensure an accurate diagnosis and appropriate treatment decisions.

Table 1. Overview of the most important wavenumber regions, assigned compound classes, assigned
bands, and suggested pathophysiological biomarkers/function.

Pathology Most Important
Wavenumber Regions Compound Class Band Assignment

Suggested
Pathophysiological
Biomarker/Function

References

Dental caries

2150–1950 cm−1 Thiocyanate N=C=S stretching Antibacterial
properties [28–31]

1765–1725 cm−1 Esters, lipids, and
carbohydrates C=O stretching [28–31]

1700–1590 cm−1 Protein

C=O stretching
(Amide I)
C-N stretching
(Amide I)

Pathological
microflora [28–31]

1590–1505 cm−1 Protein N-H in-plane bending
(Amide II)

Pathological
microflora [28–31]

1430–1360 cm−1 Carbon-phosphate C=O and CH2/CH3
bonds [28–31]

1078–900 cm−1 Phosphate PO2
−-stretching [28–31]

Periodontitis

2800–3000 cm−1 Lipids CH2 and CH3
stretching Lipid oxidation [34,35]

1713 cm−1 Lipids C=O stretching [34]

1652 cm−1 Protein C=O stretching
(Amide I) [34]

1230 to 1180 cm−1 Phosphate PO2-stretching Base-pared DNA
strand [33]

950–1080 cm−1 Carbohydrates CO-O-C- stretching Glycosylated
proteins (α-amylase) [36]

Oral cancer

2924 and 2854 cm−1 Membranous lipids

Asymmetric and
symmetric C-H
stretching of CH2 and
CH3 methylene groups

Fatty acids within
cellular membranes [37]

1543 cm−1 Transmembrane
proteins Amide II α-helix [37]

1072 cm−1 Nucleic acids Phosphate bonds DNA [37]

Salivary gland
tumors

1664–1641 cm−1 Protein C=O stretching
(Amide I) α-helix [53]

1648 cm−1 Protein

C=O stretching
(Amide I)
C-N stretching
(Amide I)
N-H bending (Amide I)

α-helix [16,42,46,48–52]

1631 cm−1 Protein

C=O stretching
(Amide I)
C=C stretching
(Amide I)

β-sheet structure [53]
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Table 1. Cont.

Pathology Most Important
Wavenumber Regions Compound Class Band Assignment

Suggested
Pathophysiological
Biomarker/Function

References

Salivary gland
tumors

1543 cm−1 Protein

N-H bending
(Amide II)
C-N stretching
(Amide II)

[16,42,46,48–52]

1515 cm−1 Protein Tyrosine ring

α-amylase, albumin,
cystatins, mucins,
proline-rich
proteins, sIgA

[38]

1315 cm−1 Protein

C-N stretching
(Amide III)
N-H bending
(Amide III)

α-amylase, albumin,
cystatins, mucins,
proline-rich
proteins, sIgA

[38]

1000 to 1200 cm−1 Carbohydrates C-O stretching
Glycosylated
α-amylase, mucins or
other sugar residues

[21,39,42]

1119 cm−1 Carbohydrates C-O stretching
C–O–C-stretching

Glycosylated
α-amylase, mucins or
other sugar residues

[45–47]

1078 cm−1 Phosphate PO2
−-stretching Inorganic phosphates

and phospholipids [39,40]

Breast cancer
1433–1302.9 cm−1 Proteins and lipids COO− stretching [55]

1041 cm−1 Nucleic acids and
glycogen

Symmetric
PO2

−stretching [55]

COVID-19

1785–1729 cm−1 Lipids C=O stretching
C=C stretching [57]

1718–1705 cm−1 Protein C=O stretching
C-N stretching [57]

1680 cm−1 Protein C=O stretching
C-N stretching [57]

1600–1200 cm−1 Protein Amide I, II and III [57]

1612–1606 cm−1 Nucleic acid Adenine vibration
in DNA [57]

1560–1464 cm−1 Protein C=O stretching
C-N stretching IgG [63]

1429 cm−1 Nucleic acid CH2-bending RNA virus [61]

1220 cm−1 Nucleic acid PO2-stretching
Host organism’s
response to viral
infection

[61]

1084 cm−1 Nucleic acid
Symmetric
PO2-stretching in
nucleic acids

Host organism’s
response to viral
infection

[61]

1069 cm−1 Nucleic acid C-O stretching in ribose
Host organism’s
response to viral
infection

[61]

1041 cm−1 Nucleic acid
Symmetric
PO2-stretching in
nucleic acids

Host organism’s
response to viral
infection

[61]

1025–1021 cm−1 Carbohydrates C-O stretching [57]

961 cm−1 Nucleic acid Desoxyribose [57]

930–909 cm−1 Nucleic acid PO2-stretching [57]



J. Pers. Med. 2023, 13, 907 16 of 20

Table 1. Cont.

Pathology Most Important
Wavenumber Regions Compound Class Band Assignment

Suggested
Pathophysiological
Biomarker/Function

References

Neonatal sepsis

1640 cm−1 Protein
C=O stretching
(Amide I)
N-H bending (Amide I)

Changes in protein
linked to
inflammatory process

[67]

1545 cm−1 Protein

C-N stretching (Amide
II)
N-H bending
(Amide II)

Changes in protein
linked to
inflammatory process

[67]

1301 cm−1 Protein

C-H stretching (Amide
III)
N-H bending
(Amide III)

Changes in protein
linked to
inflammatory process

[67]

1240 cm−1 Protein

C-N stretching (Amide
III)
N-H bending
(Amide III)

Changes in protein
linked to
inflammatory process

[67]

1051 cm−1 Nucleic acid C-O stretching
Changes in DNA
linked to
inflammatory process

[67]

1037 cm−1 Nucleic acid C-O stretching
Changes in DNA
linked to
inflammatory process

[67]

970 cm−1 Nucleic acid C-O stretching
Changes in DNA
linked to
inflammatory process

[67]

Diabetes mellitus

1452 cm−1 Protein Asymmetric CH3
bending

High correlation
with glycemia [77]

1451 cm−1 Protein Asymmetric CH3
bending [76]

1403 cm−1 Protein

Symmetric CH3
bending
Symmetric CH3
bending

[76]

1076 cm−1 Nucleic acid Skeletal cis
conformation of DNA [76]

836 cm−1 Carbohydrates
C2 endo/anti-B-form
helix conformation of
sugar

High correlation with
glycemia [77]

Chronic kidney
disease

2052 cm−1 Thiocyanate C-N stretching

Increased SCN−

concentration in
plasma transported
to the saliva via
acinar cells by active
transcellular
transport

[85]

924 cm−1 Phospholipids
carbohydrates

C-O stretching
C-C stretching
C-O-H deformation
C-O-C deformation

Unknown [85]

6. Conclusions

In the future, we expect to see further advancements in IR spectroscopy, which will
enhance its utility in salivary analysis. Salivary analysis with IR spectroscopy is a powerful
tool in personalized medicine, as it allows for non-invasive and accurate analysis of a
patient’s chemical composition, providing valuable insights into their health status and
enabling personalized treatment plans. By analyzing the chemical composition of saliva
using IR spectroscopy, personalized medicine can create individualized treatment plans for
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patients. For example, patients with DM may have specific salivary biomarkers that indicate
poor glycemic control. Salivary analysis using IR spectroscopy can detect these biomarkers,
enabling personalized treatment plans that may include changes in diet, exercise, and
medication. This is also valuable for drug development and personalized drug therapy.
IR spectroscopy can be used to identify the chemical composition of drugs and their
metabolites in saliva, allowing the development of personalized drug therapies based on a
patient’s unique metabolic profile. It is important to note that while IR spectroscopy holds
promise in personalized medicine, further research, validation, and standardization are
necessary to establish its clinical utility across different stages and subtypes of the disease.

Further investigations involving a larger number of patients, including those with
complex diseases, are necessary to establish a comprehensive methodology that accounts
for the diversity of saliva in the human population. The development of standardized
protocols for sample collection, preparation, and analysis can further enhance the utility of
salivary diagnostics and pave the way for personalized medicine.

Another area of development is the use of portable IR spectrometers that can be
used in point-of-care testing. These devices can be used for the rapid and non-invasive
diagnosis of diseases using saliva samples, making them ideal for use in clinical settings.
There is ongoing research on the use of new IR spectroscopy techniques such as surface-
enhanced infrared absorption (SEIRA) spectroscopy and sum frequency generation (SFG)
spectroscopy. These techniques can provide higher sensitivity and specificity for the
analysis of salivary biomolecules, allowing the detection of diseases at an earlier stage.
Overall, the use of IR spectroscopy for salivary analysis is promising. With continued
research and development, we expect to see further advancements in IR spectroscopy
techniques that will enable a more accurate and rapid diagnosis of various diseases using
saliva samples. Moreover, it has the potential to revolutionize disease treatment, thereby
rendering personalized medicine a reality for many patients.
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