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Abstract: Traditional imaging techniques for breast cancer (BC) diagnosis and prediction, such as
X-rays and magnetic resonance imaging (MRI), demonstrate varying sensitivity and specificity due
to clinical and technological factors. Consequently, positron emission tomography (PET), capable
of detecting abnormal metabolic activity, has emerged as a more effective tool, providing critical
quantitative and qualitative tumor-related metabolic information. This study leverages a public
clinical dataset of dynamic 18F-Fluorothymidine (FLT) PET scans from BC patients, extending con-
ventional static radiomics methods to the time domain—termed as ‘Dynomics’. Radiomic features
were extracted from both static and dynamic PET images on lesion and reference tissue masks. The
extracted features were used to train an XGBoost model for classifying tumor versus reference tissue
and complete versus partial responders to neoadjuvant chemotherapy. The results underscored
the superiority of dynamic and static radiomics over standard PET imaging, achieving accuracy
of 94% in tumor tissue classification. Notably, in predicting BC prognosis, dynomics delivered the
highest performance, achieving accuracy of 86%, thereby outperforming both static radiomics and
standard PET data. This study illustrates the enhanced clinical utility of dynomics in yielding more
precise and reliable information for BC diagnosis and prognosis, paving the way for improved
treatment strategies.

Keywords: breast cancer; prognosis; machine learning; radiomics; classification

1. Introduction

Breast cancer (BC) ranks as the second most prevalent cancer worldwide and the most
common disease affecting women. Despite advances in screening programs and early-stage
diagnosis contributing to improved survival rates, BC remains the sixth leading cause
of death among females [1]. Key challenges in BC patient care involve diagnosis, tumor
biology characterization, staging, therapeutic response, and prognosis prediction. Common
diagnostic imaging techniques for breast cancer screening include breast MRI, ultrasound,
and mammography. However, the sensitivity and specificity of these modalities in breast
cancer categorization and prediction are limited due to various clinical and technological
factors [2]. X-ray mammography, considered the gold standard for early breast cancer
detection, suffers from a high rate of false positives [3]. Similarly, MRI faces limitations
stemming from factors such as magnetic field strength, gradient strength, and coil perfor-
mance [2]. While computed tomography (CT) and MRI detect anatomic changes for cancer

J. Pers. Med. 2023, 13, 1004. https://doi.org/10.3390/jpm13061004 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm13061004
https://doi.org/10.3390/jpm13061004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0003-4210-5065
https://orcid.org/0000-0003-1929-5833
https://doi.org/10.3390/jpm13061004
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm13061004?type=check_update&version=2


J. Pers. Med. 2023, 13, 1004 2 of 13

diagnosis, staging, and follow-up, positron emission tomography (PET) captures abnormal
metabolic activity, offering crucial qualitative and quantitative tumor-related metabolic
information [4]. The most frequently used PET imaging tracer, 18F-Fluorodeoxyglucose
(FDG), measures glucose metabolism and correlates with tumor proliferation [5]. The
clinical validity of serial 18F-FDG-PET/CT to monitor therapy response to neoadjuvant
treatment was analyzed in two meta-analyses which show a pooled sensitivity of 82–86%
and a specificity of 72–79%, using histopathology as a reference standard for pathological
(non-)response [6]. However, FDG is also linked to processes such as inflammation, cellular
repair, and apoptosis, resulting in a high rate of false positives [7]. In fact, attempts to
integrate 18F-FDG-PET/CT in the Response Evaluation Criteria in Solid Tumors (RECIST)
criteria have not been successful so far, and 18F-FDG-PET/CT is not routinely used for
response evaluation in BC due to the absence of sufficient clinical validation data [6,8].
These limitations have spurred the investigation of alternative PET imaging agents. 18F- flu-
oroestradiol (FES)-PET/CT enables the visualization of estrogen receptor (ER) expression,
with 18F-FES behaving very similar to estradiol [9]. A meta-analysis of nine studies (all
prospective, except one) involving 238 patients reported a pooled sensitivity of 82% and a
specificity of 95% to detect ER+ tumor lesions by quantitative assessment of 18F-FES uptake.
A similar sensitivity and specificity was found in direct comparison of 18F-FES uptake
and ER expression on biopsy (in five studies including 158 BC patients) [6,10]. However,
consistent data to support the clinical validity and utility of 18F-FES are still lacking [6]. The
89Zr-labeled antibody trastuzumab binds to the human epidermal growth factor (HER2)
receptor and has a relatively long half-life [6]. At present, in a prospective study including
34 HER2+ and 16 HER2− BC patients, a standardized uptake value (SUV)max cut-off
of 3.2 showed a sensitivity of 76% and a specificity of 62% to distinguish HER2+ from
HER2− lesions [11]. 18F-Fluorothymidine (FLT), a labeled thymidine analogue, has gained
interest for its potential in visualizing and quantifying cell proliferation, demonstrating
a correlation with Ki-67 in breast, lung, and brain cancer [12]. Sanghera et al.’s compre-
hensive review highlights the high reproducibility of 18F-FLT-PET scans and the ability to
differentiate between complete response (CR), partial response (PR), and stable disease (SD)
using SUV changes at 90 min and Ki [13]. Additionally, 18F-FLT has been proposed as a
proliferative indicator capable of quantifying tumor cell viability during or upon the onset
of treatment [14]. Typically, these assessments use SUV data derived from static 18F-FLT
PET images, offering only a general overview of uptake [15]. Factors such as metabolism,
hypoxia, necrosis, and cell proliferation cause tracer absorption within a tumor mass to
vary significantly, with this heterogeneity seemingly correlating with prognosis, treatment
response, and tumor aggressiveness [16,17]. In vivo spatiotemporal tracer concentration
maps, obtained from dynamic PET acquisitions, reflect tissue-specific biochemical proper-
ties and encompass information about target interaction and washout effects [18]. Dynamic
PET images are predominantly used for research purposes, with their clinical application
hindered by lengthy acquisition times (potentially uncomfortable for patients) and the
need for compartmental modeling approaches to quantify tracer uptake. These modeling
approaches improve tumor characterization and treatment response monitoring but require
not only a deep understanding of the mathematical models but also invasive measurement
of the arterial input function. Radiomics, an approach that quantifies lesion heterogeneity
using medical imaging, has emerged as a promising research area in breast cancer [19]. Be-
yond traditional quantitative variables employed in radiology and nuclear medicine, such
as dimensions, uptake, or volume factors, radiomics extracts an extensive array of quantita-
tive features from medical images. Machine learning techniques are typically employed
to manage the vast amount of data generated by radiomics. Most studies investigate the
correlation between the texture parameters and immunohistochemical subtypes of breast
cancer. Interestingly, one study reported no discriminative power for PET-derived texture
metrics [20], while another found that radiomic performance improved when combined
with clinicopathological features (AUC 0.80 vs. 0.73, p = 0.007) [20,21]. In this study, we aim
to integrate radiomics with dynamic 18F-FLT PET images to assess the response to neoadju-
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vant chemotherapy (NAC) in BC patients, employing an approach we term “dynomics”,
i.e., dynamic radiomics. While radiomics techniques are commonly applied to static PET
data, we propose that extending these techniques to the time domain can potentially extract
more clinically valuable information from the dynamic PET signal. By applying dynomics
to PET data, we aim to overcome the limitations of standard compartmental modeling
approaches while still capitalizing on the benefits of dynamic 18F-FLT PET acquisition.

2. Materials and Methods
2.1. Dataset

We utilized a publicly available clinical 18F-FLT PET dataset consisting of 44 breast
cancer patients (for whom a dynamic PET scan was available at baseline and who included
19 partial (PR) and 12 complete responders (CR) to NAC), which is part of the “ACRIN-FLT-
Breast (ACRIN 6688)” collection in the Cancer Imaging Archive (TCIA) (Table 1) [22–24]. No
patient showed lymph node involvement. The inclusion criteria included: pathologically
confirmed breast cancer, determined to be a candidate for primary systemic (neoadjuvant)
therapy and for surgical resection of residual primary tumor following completion of
neoadjuvant therapy; locally advanced breast cancer, not stage IV, and with a tumor
size ≥ 2 cm (as measured on imaging or estimated by physical examination); no obvious
contraindications for primary chemotherapy; the presence of a residual tumor planned
to be removed surgically following completion of neoadjuvant therapy; the ability to lie
still for 1.5 h for PET scanning; age 18 years or older; an Eastern Cooperative Oncology
Group (ECOG) Performance Status ≤ 2 (Karnofsky ≥ 60%); a normal organ and marrow
function as defined below during the first visit (leukocytes ≥ 3000/µL; absolute neutrophil
count ≥ 1500/µL; platelets ≥ 100,000/µL; total bilirubin within normal institutional limits;
AST(SGOT)/ALT(SGPT) ≤ 2.5 times the institutional upper limit of normal; and creatinine
within normal institutional limits or creatinine clearance≥ 30 mL/min/1.73 m2 for patients
with creatinine levels above institutional normal); if female, postmenopausal for a minimum
of one year, or surgically sterile, or not pregnant; and the ability to understand and willing
to sign a written informed consent document and a Health Insurance Portability and
Accountability Act (HIPAA) authorization in accordance with institutional guidelines.
The exclusion criteria included: previous treatment (chemotherapy, radiation, or surgery)
on the involved breast, including hormone therapy; an uncontrolled intercurrent illness
including, but not limited to, ongoing or active infection, symptomatic congestive heart
failure, unstable angina pectoris, cardiac arrhythmia, or psychiatric illness/social situations
that would limit compliance with the study requirements; medical instability; a condition
requiring anesthesia for PET scanning and/or unable to lie still for 1.5 h; a history of allergic
reactions attributed to compounds of similar chemical or biologic composition to 18F-FLT;
age under 18; pregnancy or nursing as the effects of 18F-FLT in pregnancy are not known;
previous malignancy, other than basal cell or squamous cell carcinoma of the skin or in situ
carcinoma of the cervix, from which the patient has been disease free for less than 5 years;
and currently on hormone therapy as the primary systemic neoadjuvant therapy [23].
Dynamic PET images were acquired following a bolus injection of 167 MBq (mean; range,
110–204 MBq) using a General Electric (GE)/Philips Medical System PET/CT system.
Dynamic scans (matrix dimension: 128 × 128 × 35; voxel dimensions in the x, y, and z axis:
3.9, 3.9, and 4.2) consisted of 45 timeframes (16 × 5, 7 × 10, 5 × 30, 5 × 60, 5 × 180, and
6 × 300 s) and a 60-min acquisition duration (mean, 70 min; range, 50–101 min). PET images
were reconstructed using the CT data for attenuation correction with an ordered-subset
expectation maximization iterative reconstruction algorithm (2 iterations and 28 subsets).
All patients were scanned on calibrated and ACRIN-accredited PET/CT scanners, which
underwent image quality review and SUV testing using a uniform phantom [23]. Only
baseline scans were used in this study.
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Table 1. Patients’ demographics.

Demographic Variable Patients (n = 44)

Mean age ± SD (y) 52.5 ± 10.6

Mean tumor size ± SD (cm) 4.6 ± 2.5

Menopausal status Premenopausal 16 (36.4%)
Postmenopausal 28 (63.6%)

Initial diagnosis
Invasive breast cancer NOS 1 (2.27%)

Invasive ductal 39 (88.63%)
Invasive lobular + mixed invasive and lobular 4 (9.09%)

Estrogen receptor status Positive 24 (54.54%)
Negative 20 (45.45%)

Progesterone receptor status Positive 25 (56.81%)
Negative 29 (65.91%)

HER2 status
Positive 12 (27.27%)

Negative 22 (50.00%)

Receptor status Triple negative 9 (20.45%)
Other 35 (79.54%)

Grade at diagnosis
1 1 (2.27%)
2 9 (20.45%)
3 27 (61.36%)

Percentages not adding up to 100% are due to missing data; tumor size was determined using baseline imaging.
HER2 = human epidermal growth factor receptor type 2. SD = standard deviation.

2.2. PET Data Pre-Processing

For each patient, an experienced radiologist manually contoured consecutive regions
of interest around the tumor on the static PET image (obtained as the average of the last five
timeframes of the dynamic PET data). The 18F-FLT radioactivity concentrations within the
volumes of interest were normalized to the injected radioactivity and patient body weight
to obtain SUV values [25]. Additionally, a region of interest was obtained from the centroid
of the healthy contralateral breast, where the same mask obtained from lesion segmentation
was flipped and used for delineating a reference healthy region, as described in [26].

2.3. Radiomic Feature Extraction

Radiomic features were extracted within the lesion and reference tissue VOIs using
Python software and the Pyradiomics module. The features included first order, shape (2D),
shape (3D), gray level cooccurrence matrix (GLCM), gray level size zone matrix (GLSZM),
gray level run length matrix (GLRLM), neighboring gray tone difference matrix (NGTDM),
and gray level dependence matrix (GLDM). A total of 107 features were extracted from
the static PET image (static radiomics) and within each frame of the dynamic 18F-FLT
PET acquisition (dynamic radiomics). In the latter case, the median and median absolute
deviation (MAD) across time were computed. The full list of extracted features is included
in Supplementary Materials, Table S1.

2.4. Machine Learning Models

We employed an XGBoost model in a five-fold stratified and nested cross-validation
manner. This included hyperparameter optimization (maximum depth of a tree, minimum
sum of instance weight needed in a child, and subsample ratio of columns for each tree)
within the inner loop and performance quantification (outer loop) for two classification
tasks: (1) tumor vs. reference tissue and (2) CR vs. PR. Within each inner fold, principal
component analysis (PCA) was employed to reduce the dimensionality of the dataset after
a standardization step (all transformations were computed on the training set and applied
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onto the test set). The extraction through PCA was set to account for 90% of the total
variance in each dataset.

The input for the XGBoost model in each classification task was an (n × m) matrix
of radiomic features, with n being the sample size (n = 88 for tumor vs. reference tis-
sue classification, and n = 31 for CR vs. PR classification) and m being the number of
features (principal components resulting from PCA) when using static radiomics, and
median, MAD, and (median + MAD) dynamic radiomics feature values. For the latter,
the median and MAD feature values were concatenated in an (n × 2 m) matrix. The
performance of the XGBoost model was also compared to the deep learning models that
we tested and validated in [26], which used static and dynamic PET images for the same
classification tasks. For static PET images, we employed the CONV3D model based
on three-dimensional convolutional filters, taking an (n × im_x × im_y × im_z) ma-
trix as input, with im_x, im_y, and im_z being the dimensions of the static PET image
(reduced to a box with dimensions im_x = 30, im_y = 30, and im_z = 10, as detailed
in [26]). For dynamic PET images, we combined three-dimensional convolutional layers
with long short-term memory (LSTM) filters in the CONV3D + LSTM model, which took an
(n × im_x × im_y × im_z × t) matrix as input, with t representing the number of frames
in the dynamic PET image (t = 45). In addition, the performance of the XGBoost model
employing “summary” dynamic radiomics features (median, MAD feature values) was
compared to a deep learning model based on mono-dimensional convolutional layers (the
CONV1D model) to extract meaningful information from the time evolution of each feature.
The input to the CONV1D model was an ((n ×m) × t) matrix, where the time evolution
of each feature was labeled individually. Model performance is reported in terms of the
area under the receiver operating characteristic (ROC) curve (AUC), accuracy, precision,
and recall [27]. To examine the unique contributions of each feature to the final prediction,
we calculated the SHapley Additive exPlanations (SHAP) values for each model [28]. All
experiments were conducted using Python version 3.8, the Keras deep learning library,
with TensorFlow as the backend. A Linux machine and two Nvidia Pascal TITAN V GPUs
with 12 GB RAM each were employed. The workflow for image acquisition, segmentation,
feature extraction, and classification model assessment is shown in Figure 1.
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Figure 1. Radiomics Workflow. Beginning with the acquisition of medical images, volumes of interest
(VOIs) are manually segmented on both the lesions and a healthy reference tissue. Radiomic features
are subsequently extracted from these VOIs and superimposed onto the static 18F-FLT PET image (a 3D
image derived from averaging the final five time-frames of the dynamic acquisition), thus establishing
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the basis for static radiomics. For our novel dynomics approach, these features are extrapolated from
each frame of the dynamic 18F-FLT PET acquisition. In this process, summary values—including
median and median absolute deviation (MAD)—are evaluated for each feature and analyzed in
conjunction with their temporal evolution (dynamic features). The features encapsulate information
about the tumor’s shape, first-order statistical features (derived from the image intensity histogram),
and second-order statistical features (texture features). To optimize the data for interpretation,
radiomics features undergo redundancy correction via principal component analysis (PCA), enabling
the analysis of only non-redundant, meaningful features. These streamlined features are then
processed through a machine learning model (XGBoost), generating a clinically interpretable outcome
(lesion vs. reference tissue and complete vs. partial responders’ classification).

3. Results

Figure 2 displays the correlation matrices of both the static radiomics features and
the median and MAD dynamic feature values. Due to the significant intercorrelation
among the variables, as mentioned above, we leveraged principal component analysis to
reduce the dimensionality of static radiomics to eight and five principal components in
the tumor vs. reference tissue and CR vs. PR classification tasks, respectively. Similarly,
for the median, MAD, and median + MAD feature values derived from dynomics, the
dimensionality was reduced to 7, 9, and 10 (tumor vs. reference tissue) and 5, 5, and 6 (CR
vs. PR) principal components. In all PCA procedures, extraction was set to account for 90%
of the total variance in the respective dataset.
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(A) and median (B) and mean absolute deviance (MAD) (C) of the dynamic radiomic features.

3.1. Tumour vs. Reference Tissue Classification

Table 2 provides a summary of the results obtained when classifying tumor tissues using
static and dynamic radiomic features. The performance of the XGBoost model, which uti-
lized static and dynamic radiomics, was compared to the CONV3D and CONV3D + LSTM
models, which employed static and dynamic PET images for classification. Table 2 also
presents the results obtained when utilizing median, MAD, and median + MAD computed
across time (input to the XGBboost model) or the temporal evolution of each extracted
feature (input to the CONV1D model) for classification under the dynamic radiomics
framework. Our results indicate that radiomics, both static and dynamic, outperforms
standard PET image use, achieving an impressive 94% accuracy (AUC: 0.94), in contrast
to 61% accuracy (AUC: 0.59) and 75% accuracy (AUC: 0.81) obtained with 3D and 4D
PET data, respectively (Table 2). Additionally, the performance of the XGBoost model
(which utilized median (94% accuracy, 0.94 AUC), MAD (89% accuracy, 0.89 AUC) and
median + MAD (94% accuracy, 0.94 AUC) dynamic radiomics feature values) was superior
to the CONV1D model, which achieved 49% accuracy and an AUC: 0.49 (Table 2).
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Table 2. Summary of model performances when discriminating tumors from the reference tissue
using static and dynamic radiomic features and images.

AUC Accuracy Precision Recall

PET
Acquisition Input Data Model Lesion Reference Lesion Reference

Static
PET image CONV3D 0.59 (±0.09) 0.61 (±0.99) 0.56 (±0.13) 0.61 (±0.21) 0.67 (±0.17) 0.48 (±0.15)

Radiomics XGBoost 0.94 0.94 1.00 0.90 0.89 1.00

Dynamic

PET image CONV3D +
LSTM 0.81 (±0.08) 0.75 (±0.09) 0.69 (±0.09) 0.91 (±0.09) 0.96 (±0.03) 0.55 (±0.17)

Dynomics—
Median XGBoost 0.94 0.94 0.90 1.00 1.00 0.89

Dynomics—
MAD XGBoost 0.89 0.89 1 0.82 0.78 1.00

Dynomics—
Median +

MAD
XGBoost 0.94 0.94 1 0.90 0.89 1

Dynomics CONV1D 0.49 (±0.05) 0.49 (±0.05) 0.49 (±0.03) 0.48 (±0.02) 0.84 (±0.11) 0.15 (±0.10)

Figure 3A–C presents the feature importance as determined by SHAP for static ra-
diomics, which demonstrated optimal performance related to tumor vs. reference tissue
classification. As indicated in Figure 3A,B, the first principal component (PC1) derived from
PCA consistently holds the greatest explanatory power. Figure 3C’s table enumerates the
top five original features that significantly influence the primary contributing component
(PC1), along with the eigenvalues. These features all exhibit positive eigenvalues, implying
a direct proportionality with the component’s score. They fall within first-order statistics
and include the root mean square, the 90th percentile, and the mean uptake of 18F-FLT. The
final two crucial features for classification are GLCM joint average and sum average, which
elucidate the lesion’s texture. GLCM features encapsulate the second-order statistical data
of gray levels between adjacent pixels in an image [29]. Joint and mean averages denote
the average gray level sum distribution of the image. Collectively, these top five features
suggest that the average proliferative activity of the tumor, as signified by the uptake of
18F-FLT and quantifiable by first and second order statistics, sufficiently distinguishes the
varying thymidine activity between the tumor and healthy tissue.

3.2. Complete vs. Partial Responders Classification

Table 3 consolidates the results obtained when classifying treatment response using
static and dynamic radiomic features. The performance of the XGBoost model, which
utilized static and dynamic radiomics, was once more compared to the CONV3D and
CONV3D + LSTM models. These models respectively used static and dynamic PET images
for classification, akin to the previous set of analyses. Table 3 also elucidates the results
obtained when using the median, MAD, and median + MAD computed across time for
dynamic radiomics (input to the XGBboost model), or the temporal evolution of each
extracted feature (input to the CONV1D model), for PR vs. CR classification. Our results
show that dynamic radiomics achieved the highest performance, attaining 86% accuracy
(AUC: 0.83). This approach significantly outperformed both static radiomics (71% accuracy,
AUC: 0.67) and standard PET data (static: 59% accuracy, AUC: 0.51; dynamic: 60% accuracy,
AUC: 0.59). Remarkably, the performance of the XGBoost model, which utilized median
(71% accuracy, AUC: 0.67), MAD (57% accuracy, AUC: 0.58) and median + MAD (86%
accuracy, AUC: 0.83) dynamic radiomics feature values, surpassed the CONV1D model,
which achieved 52% accuracy and an AUC: 0.50.
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Figure 3. PCA and SHAP analysis for radiomics and median + MAD dynomics. Given the substantial
intercorrelation among variables, principal component analysis (PCA) was employed to condense
the dimensionality of static radiomics to eight principal components for tumor vs. reference tissue
comparison and median + MAD dynomics to six principal components for CR vs. PR classification.
For all PCA procedures, extraction was configured to account for 90% of the total variance in the
respective dataset. SHapley Additive exPlanation (SHAP) was utilized to quantify the contribution
of each principal component, derived through PCA, to the classification model. (A,D) The heatmaps
illustrate, for each principal component used to classify tumor vs. reference tissue using radiomics
(A) and PR vs. CR employing median + MAD dynomics (D), the clustered eigenvalues evaluated for
each feature. (B,E) These are variance importance plots detailing the most significant principal com-
ponents, listed in descending order, contributing to the classification of tumor tissues using radiomics
and PR using median + MAD dynomics. PC1 and PC6 were the most substantial contributors to each
classification task, respectively. (C,F) These depict the top five features that load the highest on the
component contributing the most to the classification task (radiomics—PC1 for tumor vs. reference
tissue classification, and median + MAD dynomics—PC6 for CR vs. PR classification), along with the
total explained variance.

Figure 3D–F delineates feature importance as computed by SHAP for median + MAD
dynomics, the best-performing method related to partial vs. complete responders’ classifi-
cation. As indicated in Figure 3D,E, the sixth principal component (PC6) derived from PCA
consistently holds the greatest explanatory power. The table in Figure 3F identifies the top
five original features that significantly influence the primary contributing component (PC6),
accompanied by the eigenvalues. Notably, the Median GLSZM Size Zone Non-Uniformity
and Low Gray Level Zone Emphasis features, along with the Median NGTDM Contrast,
exhibit positive eigenvalues, whereas the Median GLCM Idn and the MAD GLDM Depen-
dence Non-Uniformity Normalized features have negative eigenvalues. A Gray Level Size
Zone measures gray level zones in an image, defined as the number of connected voxels
with identical gray level intensity (specifically, the uptake of 18F-FLT in our case). High
values of Size Zone Non-Uniformity and Low Gray Level Zone Emphasis features suggest
less homogeneity in size zone volumes and a larger proportion of lower gray-level values
and size zones in the image, respectively. GLCM Inverse Difference Normalized (IDN)
offers another measure of an image’s local homogeneity by normalizing the difference
between neighboring intensity values via division over the total count of discrete intensity
values. These features, in conjunction with NGTDM Contrast, which relies on the overall
gray level dynamic range of the image, suggest that the heterogeneous distribution of
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18F-FLT uptake, mirroring the activity of thymidine within the lesion, serves as the key
differentiator between partial and complete responders.

Table 3. Summary of model performance when discriminating complete from partial responders
using static and dynamic radiomic features and images.

AUC Accuracy Precision Recall

PET
Acquisition Input Data Model CR PR CR PR

Static
PET image CONV3D 0.50 (±0.00) 0.59 (±0.18) 0.30 (±0.37) 0.20 (±0.26) 0.40 (±0.48) 0.60 (±0.48)

Radiomics XGBoost 0.67 0.71 1.00 0.67 0.33 1.00

Dynamic

PET image CONV3D +
LSTM 0.50 (±0.00) 0.59 (±0.18) 0.30 (±0.37) 0.29 (±0.27) 0.40 (±0.49) 0.60 (±0.49)

Dynomics—
Median XGBoost 0.67 0.71 1.00 0.67 0.33 1.00

Dynomics—
MAD XGBoost 0.58 0.57 0.50 0.67 0.67 0.50

Dynomics—
Median +

MAD
XGBoost 0.83 0.86 1.00 0.80 0.67 1.00

Dynomics CONV1D 0.50 (±0.00) 0.52 (±0.11) 0.37 (±0.30) 0.15 (±0.19) 0.60 (±0.49) 0.40 (±0.49)

4. Discussion

In the realm of locally advanced breast cancer treatment, the established therapeu-
tic strategy involves neoadjuvant chemotherapy followed by surgery, with an objective
response rate hovering around 70% and a complete pathological response rate of nearly
30% [14,30]. Typically, the response evaluation rests on the histopathological examination of
the surgical specimen. However, no universal consensus exists regarding the premier imag-
ing method for early response assessment. Generally, morphological imaging techniques
are employed, interpreted according to the Response Evaluation Criteria in Solid Tumors
criteria (RECIST v1.1) [31]. Functional imaging methods are also utilized to evaluate the
early response to therapy. The most widely used method to monitor therapeutic response
in breast cancer is 18F-FDG, but it lacks high tumor-specificity as it also accumulates in acti-
vated macrophages and other inflammatory cells [14]. Thus, 18F-FLT has been suggested
as a proliferation marker, enabling the quantification of the tumor’s proliferative activity
and improving the assessment of tumor cell viability during or upon the commencement
of treatment [12,15]. Typically, these evaluations are conducted using semi-quantitative
SUV statistics, particularly SUVmax [15]. However, these SUV indices provide only a
broad overview of uptake and fail to identify the presence of an uneven uptake distribu-
tion [14,26]. It is important to note that tracer absorption within a tumor mass is known
to exhibit significant variability due to numerous factors, such as metabolism, hypoxia,
necrosis, and cell proliferation, and this heterogeneity appears to be associated with prog-
nosis, treatment response, and tumor aggressiveness [17]. These limitations warrant a more
sophisticated approach, integrating dynamic PET data with radiomics.

Dynamic PET acquisition, which commences at the point of radiotracer injection and
includes continuous acquisition of a PET bed position for several minutes to an hour or more,
supplements the limited information gleaned from static PET acquisition [32–35]. Dynamic
PET provides in vivo mapping of the spatiotemporal tracer concentration, accounting for
the drug’s contact and washout effects with the target. The current role of PET radiomics
in breast cancer has been recently summarized by Urso and colleagues, who identified
81 studies, of which 43 (81.1%) were retrospective and 10 (18.9%) were prospective [36]. In
these studies, radiomic data were extracted exclusively from static PET images [36].
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Our study introduces a novel concept of extending radiomic techniques to the time do-
main to extract more clinically pertinent information from the dynamic PET signal. Within
our cohort of primary breast cancer patients undergoing NAC, we extracted radiomic
features from both standard static PET images and each frame of the dynamic PET image.
We were able to perform two classification tasks, achieving accuracy of 94% (0.94 AUC) for
tumor tissue classification and 86% accuracy (0.83 AUC) for partial vs. complete response
to treatment, outperforming both static radiomics and standard PET image use.

Figure 3 delineates the feature importance calculated via SHAP for the best-performing
model for each task. The efficacy of static radiomics (or simply radiomics) in tumor
tissue classification was significantly influenced by the first principal component (PC1),
computed through PCA. Particularly, first and second order statistical features, reflective of
the increased proliferative activity of a breast lesion compared to healthy reference tissue,
were key. For the task of classifying complete vs. partial responders, the sixth component
accounted for the highest explained variance. Specifically, features describing the level of
heterogeneity within the lesion emerged as the most critical for this classification task. This
finding implies that the presence of lesion heterogeneity, due to subregions characterized
by distinct proliferative activity, is a hallmark of tumors that partially responded to NAC
compared to complete responders. This result corroborates numerous published studies
asserting that tumor heterogeneity is the primary challenge in cancer therapy. Further
comprehension of both non-genetic and genetic aspects of tumor heterogeneity may provide
a pathway to overcome therapeutic resistance and enhance cancer treatment [37].

Despite these promising results, one limitation of our study is the small sample size. To
address this, we reduced the data dimensionality using PCA. Unfortunately, we could not
perform any pharmacokinetic analysis or provide any comparison with kinetic parameters
as the database we used did not include information about the percentage of the metabolite
FLT-glucuronide present in the blood after the injection of the 18F-FLT tracer [38,39]. Hence,
the parent plasma (metabolite-corrected) input function necessary for pharmacokinetic
fitting was not available. An additional limitation of our study is related to the extraction of
radiomic features from images acquired using different scanners. In fact, radiomic features
are susceptible to variation across scanners, acquisition protocols, and reconstruction
settings [40]. In addition, in the second prediction tasks, the slight class imbalance may
have influenced our results, and due to the uniqueness of the dataset, we were not able
to perform external validation on an equivalent set of data. Additional challenges which
may have impacted the quality of the breast lesion segmentation could be image noise and
artifacts as well as the heterogeneity of breast tumors themselves, also given that we did not
have access to an additional specialist to verify user-dependent segmentation variability. In
addition, due to the heterogeneity of techniques and data types/shapes, we chose not to
use any data augmentation techniques.

Future studies with larger cohorts, multimodal imaging [41], and prospective designs
are warranted to validate the results observed in this study. Moreover, incorporating other
imaging modalities such as MRI [41,42] and CT, along with PET [43], may further improve
the performance of radiomics in assessing tumor response to therapy. In addition, machine
learning algorithms and deep learning models can be employed to refine feature extraction
and data analysis, potentially leading to even better prediction accuracy [44,45]. Still, the
concept of applying radiomics to the time domain has the potential to revolutionize the way
we evaluate treatment response in breast cancer patients. By extracting meaningful features
from both static and dynamic PET images, we can more accurately predict patient outcomes
and tailor therapeutic interventions to individual needs. Furthermore, we would possibly
investigate the potential role of preoperative 18F-FLT PET/CT dynomics in predicting
hormone receptor (HR) positivity, as compared to the standard approach with 18F-FDG
which showed unfavorable results [46].

In conclusion, this study represents a pioneering effort in the application of dynamic
radiomics to 18F-FLT-PET data for the assessment of treatment response in breast cancer pa-
tients. Our findings demonstrate the superiority of this approach compared to conventional
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static radiomics, suggesting that dynamic radiomics holds great promise as a valuable tool
in the management of breast cancer. By providing more accurate and detailed information
regarding tumor response to therapy, dynomics can potentially lead to improved patient
outcomes and the optimization of individualized treatment strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13061004/s1. Table S1: List of the extracted radiomic features.
The radiomic features were extracted within the lesion and reference tissue volumes of interest
using Python software and the Pyradiomics module. The features included first order, shape (2D),
shape (3D), gray level cooccurrence matrix (GLCM), gray level size zone matrix (GLSZM), gray level
run length matrix (GLRLM), neighboring gray tone difference matrix (NGTDM), and gray level
dependence matrix (GLDM).
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