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Abstract: In this article, we introduce a new approach to human movement by defining the movement
as a static super object represented by a single two-dimensional image. The described method is
applicable in remote healthcare applications, such as physiotherapeutic exercises. It allows researchers
to label and describe the entire exercise as a standalone object, isolated from the reference video.
This approach allows us to perform various tasks, including detecting similar movements in a
video, measuring and comparing movements, generating new similar movements, and defining
choreography by controlling specific parameters in the human body skeleton. As a result of the
presented approach, we can eliminate the need to label images manually, disregard the problem of
finding the start and the end of an exercise, overcome synchronization issues between movements,
and perform any deep learning network-based operation that processes super objects in images in
general. As part of this article, we will demonstrate two application use cases: one illustrates how to
verify and score a fitness exercise. In contrast, the other illustrates how to generate similar movements
in the human skeleton space by addressing the challenge of supplying sufficient training data for
deep learning applications (DL). A variational auto encoder (VAE) simulator and an EfficientNet-
B7 classifier architecture embedded within a Siamese twin neural network are presented in this
paper in order to demonstrate the two use cases. These use cases demonstrate the versatility of our
innovative concept in measuring, categorizing, inferring human behavior, and generating gestures
for other researchers.

Keywords: OpenPose (OP); MediaPipe (MP); rehabilitation; tree structure skeleton image (TSSI); tree
structure skeleton color image (TSSCI); variational auto encoder (VAE); Siamese twin neural network;
simulator; human body movements; human pose estimation (HPE); computational imagination;
computational creativity

1. Introduction

This paper is an extended, updated version of the pHealth 2022 conference pub-
lication [1]. It presents a more general and generic approach to the solution based on a
super-object model using a TSSCI image. We improved the model by basing it on variational
auto-encoder (VAE) for generating human movements instead of the generative adversarial
network (GAN) model presented at the pHealth 2022 conference. Additionally, we explain
how to control the skeleton choreography movement in the simulation components.

We present a more effective CNN network compared to the CNN network presented
at the conference. Furthermore, we expand our explanation of the dataset preparations,
pre-processing, data structure, and the meaning of the various database types. We also
refer to various practical challenges, such as normalizing the human skeleton, improving
the loss function, providing more detailed reference to the movement performance scoring,
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and adding analysis and explanation of how the network operates using the t-distributed
stochastic neighbor embedding (t-SNE) algorithm.

We update and expand our experiment descriptions and present better results than
the ones previously presented at the conference. Overall, this article presents a significantly
improved and more comprehensive version of the research presented at the conference,
with additional details, improvements, and explanations.

2. Literature Review

Remote healthcare utilizes human posture and gait for real-time medical rehabilita-
tion [2,3]. The COVID-19 pandemic demonstrated the importance of remote diagnosis and
treatment. This importance of remote healthcare is further emphasized in the introductory
paper of the Frontiers in Medicine Research [4]. The comprehensive view presented in this
paper underscores the significance of lifestyle factors, including exercising, in healthcare
management. By incorporating these principles into remote healthcare practices, healthcare
professionals can enhance patient care and optimize treatment outcomes.

In the modern age, it is now possible to utilize a camera video stream to collect, analyze,
and interpret human emotions in a remotely located 3D environment by using artificial
neural networks [5]. Our objective is to characterize human motion using neural network
architectures such as auto-encoder [6] and Siamese twin [7], in conjunction with human
pose estimation (HPE) techniques such as real-time multi-person key point detection al-
gorithms such as OpenPose [8] and MediaPipe [9]. Remote therapy may be used when
many patients recuperate after movement disorders caused by hip, knee, elbow, or shoul-
der surgery [10,11]. A variety of non-contact medical treatments might be developed by
utilizing a family of neural network designs resulting from this research. This dissertation
proposes a solution to enrich and enhance skeletal data veracity, by providing accurate and
specific data tailored to research requirements using the VAE deep-learning method [12].
In the articles [13–15], some databases contain video clips of human movements divided
into a variety of classes. They start by processing the data using the OpenPose software,
translating the video frames into skeletal pose sequences, which are then analyzed. A three-
dimensional matrix represents each skeletal pose. To preserve the relationship between
the skeletal joints, the authors reordered every pose as part of deep first search (DFS). Our
movement generator is based on skeletal data that provide spatial and temporal informa-
tion. Several studies have investigated the issue of recognizing human movement using
skeleton-based neural networks (CNNs) [13,16]. Therefore, deep convolutional generative
adversarial networks (DC-GANs) use CNN layers as their generator and discriminator [8].
It is proposed in [13,15,17,18] to use an image format (TSSI—tree structure skeleton image)
to generate a tree structure skeleton image based on the collection of N tree structure
sequences. Therefore, we utilized deep first search (DFS) to restructure and create tree
structure skeletons.

3. Materials and Methods

There are six basic physiotherapy exercises in the database, which have been carefully
selected to be suitable for analyzing and processing with a single camera (two-dimensional
processing see [3]), as illustrated in Figure 1.

There are approximately 100 participants in our proprietary database, which is now
open to the public. Each participant performs six exercises. Ten cycles comprise each
exercise (e.g., rotating the right arm). Exercises are performed once with a right tilt and
once with a left tilt (for example, once with a right foot rotation and once with a left foot
rotation). A total of about 7500 motion cycle videos have been tagged and timed in the
database. This study included healthy subjects (volunteers—students) with no disability
identified during tests to control postural stability. The subjects group comprised of 4 men
and 26 women with an average age of 21.1 (standard deviation (SD) 1.2) years, body
weight 64.8 (SD 9.4) kg and body height 170 (SD 9) cm. One single measurement of each
subject was taken during the session. The study was performed in accordance with the
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Helsinki Declaration and the study protocol was approved by the local Ethical Committee,
by the Faculty of Biomedical Engineering, Czech Technical University in Prague. The entire
database has been encoded as skeletons—a skeleton in every frame (see Figure 2).
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Performing exercises creates skeletal structures. The human body is represented by
25 vertices in each skeleton. The vertex has three components: Coordinate X, coordinate Y,
and coordinate C, which indicates the level of certainty about each point in the skeleton
on a scale from 0 to 1 (1—absolute certainty, 0 absolute uncertainty). Collecting data
for training a deep learning model requires careful consideration of various factors that
could potentially affect the quality and reliability of the data. The fact that the students
at Ben Gurion University were photographed independently in their homes simulates
a real-world scenario but also introduces data variability and quality challenges. The
difference in resolution and orientation of the photographs is a significant concern as it
can impact the performance of the deep learning model. The four different orientations
observed—head touching the upper edge of the monitor, a skeleton lying on the right side,
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upside down, and a skeleton lying on the left—could potentially affect the accuracy of
the model predictions (see TRO exercise as example in Figure 3). To mitigate this issue,
we had to perform data pre-processing by rotating the skeletons to a standard orientation
(0 degrees).
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Skeleton Rotation

We extract n key points per skeleton from a single video frame. The frame may contain
more than one skeleton, but we always use the first skeleton.

For the i’th key point Vi = (xi, yi), let xi be the Vi, X component.
The following formula can be used to normalize coordinates to the range −0.5 to +0.5

xni =
xi

(MaxX −MinX)
− MaxX + MinX

2(MaxX −MinX)
(1)

where:

MaxX—max(xi) for i ∈ Z, 0 ≤ i ≤ n
MinX—min(xi) for i ∈ Z, 0 ≤ i ≤ n
xni—The normalized value of the skeleton’s X component key points xni ∈ R, 0 ≤ i ≤ n

The second step is rotation of 90◦, 180◦, or 270◦. Let Vi be the original 2D key point
vector with xi, yi components, which indicates the position of the key point prior to rotation.
Based on the angle of rotation, we can use the following formulas to rotate a 2D vector:
90 degrees counterclockwise rotation: Ki = (yi, −xi); 180 degrees counterclockwise rotation:
Ki = (−xi, −yi); 270 degrees counterclockwise rotation: Ki = (−yi, xi), where Ki is the
rotated vector and xi and yi are the original components of the vector Vi. The third step
is restoring the original coordinates. It is important to note that the frame is rectangular.
Therefore, in a rotation of 270 degrees, X is the long side of the rectangle before the rotation,
while Y is the long side after the rotation:

xRi = (MaxX −MinX)xn +
MaxX + MinX

2
(2)

where xRi is the restored coordinates after rotation.
The Y-axis of the skeleton should be similarly adjusted.
Another challenge introduced by data collection was camera vibrations and move-

ment during training. As a result, we obtained a blurry or unstable image, affecting the
performance of the deep learning model. To minimize the difficulties arising from unsuper-
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vised photography in the patient’s home environment, we recommended ensuring that
the cameras used for data collection are stable and that the physiotherapist instructs the
patients to minimize camera movement during data collection. In conclusion, collecting
high-quality data is crucial for the success of deep learning models in physical therapy
applications. Careful consideration of resolution, orientation, and camera stability are
essential to ensure that the model’s predictions are accurate and reliable.

4. Human Movement as a Static Super Object
4.1. Review of Existing Technics to Describe Human Movements

We can use recorded series of human body positions using motion capture to represent
a series of human body positions. Motion capture refers to recording a person’s movement
while wearing a marker or sensor and then using those data to produce an animation
of that person’s movement (the animation shows the movement of specific dots on the
human body). The animation result may either be a single image or a series of images. Pose
estimation is another method for representing the successions of human body postures
at a specific time, which involves identifying and tracking the body parts and joints of a
person in a video or sequence of pictures and encoding that information as a single image
or a group of images. Motion representation is the representation of the motion of an
object or a succession of moving objects in a meaningful and compact manner. Here are
some examples:

• Optical flow describes the mobility of pixels or points in an image series by estimating
their displacement between consecutive frames [19];

• Researchers use Euler angles and quaternions to represent an object’s orientation in
3D space by establishing rotation angles around the x, y, and z axes [20];

• By charting an object’s position in space at different points in time, researchers can use
a trajectory to describe an object’s passage through time [21];

• In motion fields, researchers store the velocities and accelerations of each point on the
object to represent an object’s motion over time [22].

4.2. Our New Approach-Movement as a Static Super Object

Research literature analyzes the movement as an object in motion, meaning a sequence
of objects’ positions, orientations, and sizes that change over time and space. Our innovative
approach combines objects and represents the entire movement as a single static super
object. Our original approach provides a fresh perspective on human movement. To
begin with, we treat a tree structure skeleton image (TSSI) as a color image (TSSCI), then
generalize movement to a color image as an object. For example, if there are several objects
in the picture (such as three cats in a typical picture), then in our model there are three
movements, and therefore there are three objects within the TSSCI image. By applying
this approach, an object can be small, meaning the object begins and ends simultaneously
within the image. In our representation a small object indicates fast motion as opposed to a
large object, which describes slower motion. As a result of adjusting two object sizes, we
can sync them up. We can locate the object in a specific place in the TSSCI image while
identifying all other pixels as the background. The places where the object does not exist in
the image indicate no movement or an idle movement period before and after the exercise
of interest. Using this concept, we can automatically determine when a movement starts
and ends, and therefore we can use automatic editing to extract specific movements from
long videos. Neural networks can extract unique attributes of objects in the latent space,
thus allowing the network to differentiate between objects in the same way that describing
the movement as a super object allows extracting movement characteristics.
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4.3. Generic Neural Network Implementations with TSSCI

We can use TSSCI images as inputs to all neural networks capable of analyzing and
processing images. For example, a CNN classification network can label objects within a
color image, such as tagging cats. Inserting a TSSCI image into the CNN, the network can
identify and tag different movements. We can generate TSSCI images using variational
auto-encoder (VAE) networks containing new super objects, i.e., simulating new fake
movements. Using the VAE network, TSSCI allows the generation of objects, such as faces.
In addition, the VAE network allows the combination of objects (faces). In order to produce
objects A and B together, one can take a picture of a bald man without glasses (object A)
and combine it with another picture of a man wearing glasses and hair (object B). Thus, it
is possible to produce the man (object A) with hair and glasses that we take from object
B. In the same way, we can take a TSSCI image of a periodic movement of raising hands
up and down (object A) as well as a TSSCI image of a periodic movement of raising a leg
(object B) and then generate a fake combination that describes a skeleton raising its hands
as well as its legs.

4.4. How to Define and Label Specific Movement as a Super Object

Our article has explained the concept of representing motion as a static object within
a TSSCI image. Next, we will examine how super objects are defined and labeled. It is
not easy to classify movements. For example, how do we describe the physical exercise
of raising and lowering hands? Is there one movement for raising and one for lowering
a hand? Could the super object be a combination of two movements? In general, what
does a super object look like? Can we even distinguish it or describe it in the TSSCI image?
The first advantage of our approach is that we can define super objects for each partial
movement and even connect them. However, movement classification and labeling is a
subjective process as opposed to ordinary objects such as cats, which are generally agreed
upon and, therefore, can be labeled. Moreover, the abstract nature of the TSSCI image
makes it difficult to identify, locate, or define an object within the image as a human. For the
same movement, we can obtain many different labels. In order to overcome this problem,
we utilize the motion time domain, that is, by tagging the movement within a movie before
converting it into TSSCI format. In other words, each individual will label the videos based
on their understanding and objectives. We convert these tagged videos into TSSCI images.
Thus, we have a labeled TSSCI image containing a super object that describes movement.
Despite the difficulty of understanding the super object in TSSCI images, it is not necessary
since the neural network can identify it. In summary, the user or the researcher determined
the nature of super objects. Given a video that the user tagged, we converted it into a TSSCI
image, and then we succeeded to tag specific super objects in the TSSCI domain. After
collecting TSSCI images representing a motion or a collection of motions, it is possible to
train the network to perform tasks such as motion tagging, generating new motions, or
other options that the neural networks offer us.

4.5. TSSCI Use Cases Examples Base on Super Objects

For clarity and to demonstrate how extensively relevant our approach is to studying
human body movements, we provide multiple interpretations for referring to the human
movement as a super object using TSSCI. Table 1 illustrates how classical and advanced
neural networks, commonly used for various image processing applications, can be applied
to TSSCI images representing movement as a static super object.

By taking a novel approach to human motion, we show in Table 1 that deep learning
networks can process the TSSCI and have a wide range of practical applications.
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Table 1. TSSCI Applications.

Neural Network Regular Image TSSCI Application

EfficientNet-B7 Object classifier A system for classifying and labeling movements

UNET Semantic segmentation
Colors and marks the super object inside the TSSCI
image. Allows extrapolation between
two movements.

YOLO Object detection and tracking Locating a particular movement in a film. Includes
the option to extract specific movements.

ESRGAN Super-resolution Enhancing motion captured at a low frame rate to
a higher frame rate.

DAE or DnCNN Denoising auto-encoder or a denoising
convolutional neural network Restoration of the skeleton’s missing key points

NST Transfer the style of one image to the
content of another image

Changing dance style from hip-hop to ballet while
maintaining the original movements

DC-GAN Generating fake images Creating fake movements

VAE-based Image Composition Generate new images that combine
features from the two images

Combining two different movements, such as
jumping and clapping, to create a new movement

Transformer-XH Predict the next frame in a video Predict the next movement in a sport game

Grid-CNN Predict a 3D model from 2D images
(stereo reconstruction)

Create a 3D model of the skeleton from a 2D
skeleton (stereo reconstruction)

DALL-E Generate images from natural
language descriptions

Create an all-encompassing choreography based
on natural language descriptions

4.6. Comments Regarding Table 1

• This table presents a proposal for using existing architectures, but some modifications
may be necessary, such as changing the dimensions of the input image. A TSSCI
image typically has smaller dimensions than a typical image input. As an example, in
the examples we present later in this article, the dimensions of the TSSCI image are
49 × 49 × 3, thus using the VGG network for classification was not appropriate since
the image dimensions at the VGG entrance are 240 × 240 × 3, and the depth of the
network exceeds our database size. Therefore, overfitting occurred. For this reason,
we used an EfficientNet-B7 image classification CNN network. Similarly, particular
adaptations will be required to use the architectures listed in the table. We recommend
selecting most suitable networks for performing the desirable task and scaling the
TSSCI dimensions;

• A few propositions require practical proof because they are theoretically logical infer-
ences. We must train the network extensively with diverse TSSCI images tagged with
various texts to formulate a choreography in which DALL-E uses a ritual to control
human skeleton movements;

• We recommend using this table to develop additional ideas based on existing architec-
tures, using the super object method for human movement description.

5. Convert a Sequence of Human Skeleton Movements into a TSSI Single Image

Paper [14] presents a method for recognizing human actions in video sequences using
a combination of spatial-temporal visual attention and skeleton image processing. In the
paper, the authors introduce the concept of converting the skeleton image sequences into
tree structure skeleton images, which they refer to as “TSSI” images. TSSI images are a
type of abstract image representation that captures a person’s skeletal structure in a video
sequence and can be used to analyze and recognize human actions (see Figure 4).
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Figure 4. OpenPose Tree structure skeleton to TSSCI: (a) OpenPose skeleton; (b) Skeleton tree for
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structures: pose patterns are tabulated row by row; (e) Visualizing key point locations and confidence
Levels: TSSCI-RGB Image.

The authors show that TSSI images are a more efficient and effective representation
of human actions compared to traditional video or image data, as they capture the critical
aspects of movement and can be processed more efficiently. To recognize actions in TSSI
image sequences, the authors propose a method that combines spatiotemporal visual
attention with a convolutional neural network (CNN) for classification. They used the
visual attention mechanism to focus on relevant parts of the TSSI image sequence and the
CNN to recognize the exercise performed by the athletes. In contrast to the traditional
TSSI perspective, in which TSSI represents a movement within an image, our TSSCI (tree
structure skeleton color image) method first converts the key points into RGB color images
(we normalize the skeleton coordinate values to be between 0 to 1). Converting skeleton key
points to RGB-colored TSSCI images allows for representing multiple human movements
as one super object. X, Y, and confidence level—C coordinates represent each key point in
the skeleton. We grouped the skeletons in three dimensions array. We convert the 3D array
into RGB channels by taking the red color channel to represent the X coordinates, the green
color channel to represent the Y coordinates, and the blue color channel to represent the C
coordinates. We refer to the colored TSSI as TSSCI, which represents the composition of the
exercise from start to finish as an abstracted color image.

5.1. TSSCI Needs a Buffer to Convert Temporal-Spatial Data into Spatial Data

With no prejudice to generality, TSSCI contains a sequence of our human skeletons,
initially presented as time series (e.g., each video frame might contain one or more skele-
tons). To convert video into a TSSCI image, we need a frame buffer containing frames
with or without skeletons. The buffer contains a time mark for the first and last frames.
As a result, when processing skeletons, we have complete information about the entire
movement from beginning to end. Several factors determine the buffer size: the degree
of latency we are willing to accept between real-time (the last frame in the buffer) and
how much historical information we require (the first frame). Image resolution is also a
factor. Our column resolution component is determined by how many key points are in
our skeleton, which we enlarge by the TSSCI skeleton tree. (For example, the OpenPose
body model contains 25 key points. By duplicating some key points following the skeleton
tree scheme, we obtain 49 key points, which constitute 49 columns.). The row resolution
component is determined by how fast the frame rate is and how long the movement (or
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submovement) is. We can break apart any length movement (or submovement) into slices
using our super object approach. Furthermore, with our super object concept, we can pro-
cess each sub-super object separately and then concatenate them to form one super object.
This approach can also accelerate the processing speed leveraging GPU parallel processing.

5.2. Methods for Normalizing Skeleton Coordinates for the Implementation as TSSCI Pixels

As explained in the previous section, we have a buffer that contains all the movement
of the skeletons from the beginning to the end. In order to prevent discontinuities of the
skeletons between frames as a result of normalization, we will simultaneously normalize
the entire buffered group of skeletons. Several normalization methods are described in
the literature. For TSSCI, we can simultaneously measure the reference points of all the
buffered skeletons using any of the following methods.

• Mean and standard deviation: Normalizing the coordinates by calculating their mean
and standard deviation [23];

• Min-Max normalization: We can use it to scale coordinates so that they fall within a
specified range, such as (0, 1). The minimum and maximum values of the coordinates
must be determined first, and then the coordinates must be scaled using the following
formula: (x −min)/(max −min) [24];

• Zero-mean normalization: Center the data around zero by subtracting the mean from
each coordinate. This method helps remove any bias in the data [25];

• Root mean square normalization (RMSE): To ensure that subsequent analyses are not
affected by the scale of the coordinates, this method scales the coordinates so that the
root mean square (RMS) is equal to one [26];

• Scaling to unit norm: Scaling coordinates in this manner ensures that the L2 norm
of the coordinates is equal to one. It ensures that scale does not affect the results of
subsequent analyses [27].

We present several examples of using the super object method in this article. For the
results presented in this article, we used the Min-Max normalization method. We followed
the following formulas:

If i is the row index in the TSSCI and j is the column index in the TSSCI and the
Cij ≥ threshold (if the confidence level is low then the x, y coordinates are considered
as noise):

xmax = max
(
max

(
xij
))

xmin = min
(
min

(
xij
))

xL = xmax − xmin

(3)

x̂ij =
xij

xL
(4)

In the same way we calculate the normalized y component:

ŷij =
yij

yL
(5)

The normalized key point k̂pij is defined as:

k̂pij =
(
x̂ij, ŷij, cij

)
(6)

which used as our TSSCI pixel.
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5.3. TSSCI Dataset Augmentation

The limited amount of video data in our database posed a challenge for training neural
networks effectively. To address this, we applied dataset augmentation techniques to the
videos. The videos were sampled at 30 frames per second, with a 33-millisecond interval
between consecutive frames. This short time frame made it difficult to capture significant
differences in movement from one frame to the next. Each video in the database had a
typical length of 100 s. To ensure that our method for measuring and labeling movements
based on TSSCI was effective, we selected a sample of 49 frames (approximately two
seconds of separate consecutive frames), to obtain meaningful information between frames.
We employed two modeling methods. The first method involved randomly selecting
49 frames out of the total number of frames, allowing for acceleration and deceleration
within the exercise. The second method involved dividing the total number of frames into
49 equal segments and randomly selecting one frame from each segment. This method
smoothed out fluctuations and internal accelerations within the exercise.

5.4. CNN-Based Automatic and Manual Video Editing

In order to improve the accuracy of the initial training of movements, it was necessary
to eliminate unnecessary frames at the beginning and end of each video. To achieve this,
we manually edited the videos and marked the frame numbers for the start and end of
each movement in a separate CSV file. We also demonstrated that the TSSCI method is
robust against the specific start and end location of the movement, as convolutional neural
networks (CNNs) have the ability to identify the movement regardless of its location or
size in the video, in much the same way as a CNN can identify a cat in an image despite
its location or size within the image. To accommodate both approaches, we developed
a code that allows the user to either work with the entire video without editing or with
edited videos by specifying the start and end points using the CSV file, resulting in more
accurate results.

5.5. Treatment of Low Confidence Level Key Points (Missing Key Points)

In some cases, the skeleton key point extraction software may fail to locate a key
point with sufficient accuracy. This can be due to various reasons such as a person being
photographed in profile, where one shoulder is visible while the other is obscured, or poor
lighting conditions that deteriorate image processing quality. To address these missing
key points, we implemented in our algorithm a method termed “complementing from
the left”. This method replaces missing key points with their closest neighbors on the left.
This results in an unrealistic representation of the skeleton where body parts appear to
be suspended in the air without any connections. For example, if the elbow key point is
missing, the algorithm will only show the skeleton up to the shoulder, resulting in a floating
palm detached from the shoulder. Suppose there is a sequence of key points according
to TSSCI description, for example 0, 1, 5, 6, 7, 6, 5, 1, 8, 12..., and key point 6 is missing
(its confidence level is below a given threshold of 0.3). According to the left completion
method, the sequence would be 0, 1, 5, 5, 7, 7, 5, 1, 8, 12... where 5 replaced the missing
6 and then 7 replaced the missing 6.

6. Movements Classification with Google CNN EfficientNet

We have explored our novel approach to analyzing human movements—the super
object method. This method aims to provide a generic solution for a wide range of human
movement analysis problems. To validate our theory, we experimented with demonstrating
the effectiveness of the super object method. We used a convolutional neural network
(CNN) optimized for small images with a resolution of 49 × 49. We used for our CNN
classification model the EfficientNet-B7 classifier architecture, which has achieved state-of-
the-art results in image classification tasks. EfficientNet is a new method for scaling CNNs
that considers both the depth and width of the network and the resolution of the input
image. This method balances the trade-offs between accuracy, computational cost, and the
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amount of data required, making it a promising approach for improving the performance of
CNNs in various tasks. We employed several techniques to improve our model learning and
prediction performance, including data augmentation and transfer learning. In the transfer
learning approach, we trained only the last layers of the EfficientNet network while freezing
the first three layers. It allowed us to achieve improved performance while minimizing
the risk of overfitting to the limited data available. We set the final model to have six
classes corresponding to the six different human movements that we have in our dataset:
“AFR,” “ARO,” “LBE,” “LFC,” “SLL,” and “TRO.” We present, in Figure 5, the results of the
classification and the training progress. Part A and Part B show the progression of the loss
function and accuracy function, respectively, as a function of the number of epochs. Using
a pre-trained network and a clean data set significantly contributed to fast and accurate
learning. The rapid decline of the loss function and the steady increase in the accuracy
function demonstrate the effectiveness of the super object method in human movement
analysis. We summarized the classification results in the confusion matrix illustrated in
Figure 5 The results of our experiment provide evidence that the super object method is a
viable and practical approach to analyzing human movements.
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As a final note, it is essential to highlight that for simplicity, we used only the dataset
of the Czech students in this experiment. These students made exercise recordings in a
controlled manner and under laboratory conditions, providing a clean and consistent data
set for demonstration purposes. The goal was to demonstrate the principle of operation
using the super object method and not to focus on extreme cases that may require more
training and possibly use more complex architectures. Using the Czech students data set
allowed for a clear and straightforward demonstration of the super object method and its
potential for human movement analysis.

7. Variational Auto Encoder (VAE)

A variational auto-encoder (VAE) is a non-supervised artificial neural network (see
Figure 6). We design VAEs to learn a compressed representation of high-dimensional data,
such as images or audio, and then utilize it to generate new data samples. As a generative
model, VAEs can generate new instances of the input data distribution that they were
trained on. In paper [12] Kingma and Welling describe the VAE framework as a Bayesian
way to learn latent variable models. They offer a way to train the VAE by combining the
encoder-decoder network with a variational inference objective.
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The encoder network takes a sample as input and creates parameters that determine
a probability distribution over the latent space. The decoder network takes a sample
from this distribution and builds an output similar to the original input. The goal of
variational inference is to find the parameters of the encoder and decoder networks so that
the distribution in the latent space matches a distribution from before and the reconstructed
output matches the original input. Another benefit of VAEs is that we can use the learned
distribution over the latent space to generate new samples. By taking samples from the
distribution it has learned, the VAE may be able to make new outputs that are identical to
the original data. The ability of VAEs to generate new samples from the learned distribution
makes them an efficient tool for creating images and sounds. Another feature of VAEs is
their ability to learn deconstructed representations of incoming data. The fact that each
dimension of the latent space corresponds to an essential feature of the input data, such
as the position of an object in a photograph, demonstrates the usefulness of VAEs. This
property makes VAEs useful for data compression and visualization applications. VAEs can
learn compressed representations of high-dimensional data, generate new samples of the
input distribution, and learn unconfused representations of the input distribution. Because
of its capacity to combine encoder and decoder networks with a variational inference
objective, the architecture presented in Kingma and Welling’s study [12] has become a
popular method for training VAEs.

8. Demonstration of How to Measure Gesture Mimics Via Siamese Twin
Neural Network

The neural network chosen for this project is the Siamese twin neural network [7]. The
reason for selecting the Siamese twin network is its one-shot learning capability. The result
is that once the network has been properly trained, it is possible to classify a new image into
a class that was not included in the initial training. Using TSSCI technique, we managed
to capture the entire motion of the human body in one image as a super object. It is not
necessary to use all of the frames within a time window to create a good representation
of TSSCI. We conclude that different gestures require different time windows for optimal
TSSCI representation.

The input to the network (see Figure 7) consists of a pair of TSSCIs with dimensions of
49 × 49 pixels each. Inputs are fed into the same convolutional and pooling layers and the
output is a tensor with 4096 elements for each input, which can be considered as a type of
code or latent of the TSSCI. For the CNN block in the Siamese twin model we have used the
EfficientNet-B7 [28] classifier architecture embedded within a Siamese twin neural network.
“EfficientNet-B7 achieves state-of-the-art 84.4% top-1/97.1% top-5 accuracy on ImageNet,
while being 8.4× smaller and 6.1× faster on inference than the best existing ConvNet.” [28].
These latent codes are fed into the differentiation layer, which computes their L1 distance.
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EfficientNet Transfer Learning

To improve the learning and prediction performance of our model with limited data,
we employed several methods. One method was data augmentation. Another method
was taking advantage of the pre-trained EfficientNet network for image classification by
performing transfer learning. In our approach, we kept the parameters of the first three
layers of the network, as we considered that these layers are responsible for learning the
background information of the objects, which is common across different object types.
This allowed us to focus the training on the last layers, which were tasked with learning
the specific features of our motion object. By doing this, we aimed to achieve improved
performance while minimizing the risk of overfitting to the limited data available. We
can train the Siamese twin neural network using two different methods. The first is a
complete training of the entire network from start to finish, which is suitable for adding a
new movement to the database that does not require any relation or connection to other
movements. The second method is a particular case of the first, which we term the partial
Siamese twin network. This method calculates an accuracy score when comparing a
reference movement (performed by a trainer/therapist) to the patient movement. The
Siamese twin network is a classic approach to measuring similarity between a pair of
images, and this is an unsupervised problem, as the training is based solely on labeling
similar and dissimilar movements. The second method is a classic supervised problem,
where the movements are known in advance and labeled according to the recognized
movement the patient is performing. In this case, we only train the CNN as a closed
classification system to classify the known movements.

L1 = D = f latten(|T1 − T2 |) (7)

where T1, T2 are the tensors obtained from the convolutional and pooling layers (latent
feature vectors), respectively. There is only one neuron in the final dense layer that has a
sigmoid activation function. We can model this layer mathematically:

L1 = σ(bias + ∑
i
(wiCi)

Loss = (1−Y) 1
2 (Dw)

2 + (Y) 1
2{max(0, m− Dw)}2

(8)

where:

• σ is the sigmoid function:

σ(x) =
1

1 + e−x (9)
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• Ci is the i’th element of the input vector C = Concat(T1, T2) = [T1, T2];
• wi is the corresponding i’th weight.

Loss = (1−Y)
1
2
(Dw)

2 + (Y)
1
2
{max(0, m− Dw)}2 (10)

where:

• Loss: overall loss that the model incurs in making predictions for a binary classifica-
tion problem;

• Y: label for a particular data point. It takes a value of 0 or 1 depending on whether the
data point belongs to class 0 or class 1;

• Dw: difference between the predicted value and the actual label. It represents how
well the model is performing on a particular data point;

• (1 − Y): error incurred by the model when it predicts the negative class;
• (Dw)

2: square of the difference between the predicted value and the actual label. It is
used to penalize larger differences;

• (Y): error incurred by the model when it predicts the positive class;
• max(0, m − Dw): margin between the predicted value and the actual label. The max

function ensures that this value is always non-negative;
• (1/2): term used to normalize the loss.

Accordingly, the output of the network is a number between 0 and 1, which correlates
to the degree of similarity between the two inputted TSSCIs. The closer the output value
is to zero, the higher the level of similarity predicted. Our Siamese twin network output
termed L1, ranges from 0 to plus infinity. Therefore we converted the L1 into an accuracy
score S, which ranges from 0 to 1, with 0 being a complete mismatch and 1 being an exact
match. We used the following formula to normalize the L1 score to the S score:

S = 1− L1/‖T2‖ (11)

where:

• ‖T2‖ is the therapist’s latent norm, our reference movement that the CNN converts
from the TSSCI exercise image into a latent vector.

9. Results
9.1. Creating the Extended Database Using Normalization and Augmentation

We utilized the EfficientNet-B7 network to classify six pre-defined movements from a
database containing 100 students, each performing six movements. We used OpenPose to
extract the skeleton vectors from the video frames into NumPy arrays (the skeleton key
points vector extracted from a video frame is a line in the array) and performed a centering
operation to place the skeleton in the center of the frame. The x and y coordinates were
normalized to values between 0 and 1, while the level of confidence c remained between 0
and 1. Due to the low confidence level values for some key points, we could not rely on the
position evaluation values provided by OpenPose. Instead, we used the “complementing
from the left” algorithm. For instance, if the elbow key point were missing, the algorithm
would only display the skeleton up to the shoulder, resulting in a floating palm in the air
separate from the body. We selected 49 random lines from each normalized NumPy file for
augmentation. Those 49 lines are equivalent to 49 frames with an interval between frames
of approximately two seconds. We used them to create a TSSCI tensor, an RGB color image
where the red channel represents x values, the blue channel represents y values, and the
green channel represents the confidence level c. We repeated this operation 2004 times
to generate a total of 2004 tagged TSSCI images. We used 1603 images for training (80%)
and the remaining 401 (20%) for evaluation. Figure 8 contains some examples from our
extended dataset using normalization and augmentation. The following table shows TSSCI
and one of its single skeletons. We took the examples provided here from the videos of the
physiotherapist. The expert is our source of reference when performing a correct exercise.
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Figure 8. Extended database using normalization and augmentation.

Figure 8 shows TSSCI images for six exercises: TRO—trunk rotation; SLL—side leg lift;
LBE—backward leg extension; LFC—lifting from the chair; ARO—arm rotation; AFR—arm
full range; In TSSCI images that describe exercises ARO and AFR, there is a central contrast
line. There is a separation of tones between the upper and lower portions of the image.
This is due to the fact that the movements in these two exercises are performed in two parts:
the first involves exercising the right side of the body cyclically, while the second involves
exercising the left side of the body cyclically. There are 10 consecutive movements cycles in
each part.

9.2. Train and Evaluate the EfficientNet-B7 Model on TSSCI Images

We utilized the pre-trained EfficientNet-B7 network for image classification by per-
forming Transfer Learning. We set the network to have six outputs corresponding to the
six movements, with an evaluation set that contains: 70 images for AFR, 66 images for
ARO, 74 images for LBE, 70 images for LFC, 67 images for SLL, and 54 images for TRO. The
EfficientNet-B7 network yielded a probability vector with six components for each move-
ment, summarized into one (100%). We converted a movement video into a TSSCI image
to perform the movement detection, which was then input into the trained EfficientNet-B7
network. We determined the predicted movement label by selecting the output with the
highest probability. The classification performance was measured using an evaluation set
of 401 samples. The results were presented in a confusion matrix, as shown in Figure 9.

We conducted classification of a noisy data set consisting of exercises performed by
students from Ben Gurion University in a home environment. The BGU students recorded
these exercises under challenging conditions with varying cameras, shooting distances,
camera movement, and lighting. We did not edit the BGU student videos; therefore, each
exercise starts and ends at different times. We evaluated the results by presenting them
in a confusion matrix, which summarizes the network predictions for each exercise (see
Figure 10). The network output is a probability vector for each of the six exercises, and
the chosen exercise has the highest probability. The diagonal of the matrix shows how
many times the network correctly predicted the exercise. Despite the difficult conditions
and although each exercise begins and ends in a different frame, the results show that the
network was able to classify the exercises successfully since the diagonal of the matrix
is dominant. When using the super object method, we treat the movement as an object,
allowing the network to classify movements effectively even in diverse shooting conditions.
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While it is possible to continue training and improving the network to achieve better
results, that is beyond the scope of this article. The goal is to demonstrate the effectiveness
of the super object method in referring to movement.

9.3. Results with Variational Auto Encoder

As a demonstration that our method is general and does not depend on the algorithm
of a particular generator, we are presenting results from another movement generator, this
time using variational auto-encoder (VAE). The results prove that our method is general
and does not depend on the algorithm of a particular generator. This architecture was
presented by Kingma and Welling in their paper [12]. The authors describe VAE as a
generative model trained using variational principles, which presents an unsupervised
learning approach. There are two main components to the VAE architecture: an encoder
and a decoder. It is possible to illustrate the architecture using diagrams, as shown in
Figure 6: The encoder converts input data into a latent representation, and the decoder
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converts that latent representation back into the original data space. With our TSSCI images
dataset, we trained the VAE and generated several fake TSSCI images (see Figure 11).
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Figure 11. 32 Fake TSSCI images that were generated with AVE.

Using the VAE, we were able to produce 32 TSSCI images (Figure 11). Out of 32 images,
we randomly selected three (see Figures 12–14). We converted the three images back
into the time domain to reproduce the skeleton movement generated by the network. In
Figures 15–17, we present a frame sample containing one skeleton from each TSSCI. We
converted each skeleton vector (each line in the TSSCI image) into a video frame sequence
that contained one skeleton. In each one of the three pictures we preset one frame from
the movement sequence. In Figure 15, we see a small skeleton performing two hand
movements over a sequence of frames. Each TSSCI generated by the network is essentially
another exercise that describes skeletal movement over a sequence of frames. In Figure 16
we can observe a tall skeleton performing a right-hand movement, and in Figure 17 another
tall skeleton performing a hands-up movement. According to the method of representing
the skeletons based on the tree structure skeleton image, some key points in the skeleton
appear more than once in the vector representing the skeleton. As a result of applying the
TSSCI method, some key points appear twice when compared to the original 25 OpenPose
key points skeleton. This results in a skeleton vector consisting of 49 key points instead
of the original 25 OpenPose key points skeleton. This structure is designed to ensure the
connections between the points and preserve a structure of the logical human movement.
In our case, we generate new TSSCI images; therefore, we generate new key points, but
although initially some of the points are duplicated and identical, in our fake images, we
obtain differences between the location of the identical points. As can be seen in the photos
Figures 15–17, the differences are minor. We can combine key points into one point, as we
showed in VAE products (see [1]), but we chose to emphasize this point for the explanation.

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 17 of 31 
 

 

is general and does not depend on the algorithm of a particular generator. This architec-

ture was presented by Kingma and Welling in their paper [12]. The authors describe 

VAE as a generative model trained using variational principles, which presents an unsu-

pervised learning approach. There are two main components to the VAE architecture: an 

encoder and a decoder. It is possible to illustrate the architecture using diagrams, as 

shown in Figure 6: The encoder converts input data into a latent representation, and the 

decoder converts that latent representation back into the original data space. With our 

TSSCI images dataset, we trained the VAE and generated several fake TSSCI images (see 

Figure 11). 

Using the VAE, we were able to produce 32 TSSCI images (Figure 11). Out of 32 im-

ages, we randomly selected three (see Figures 12–14). We converted the three images 

back into the time domain to reproduce the skeleton movement generated by the net-

work. In Figures 15–17, we present a frame sample containing one skeleton from each 

TSSCI. We converted each skeleton vector (each line in the TSSCI image) into a video 

frame sequence that contained one skeleton. In each one of the three pictures we preset 

one frame from the movement sequence. In Figure 15, we see a small skeleton perform-

ing two hand movements over a sequence of frames. Each TSSCI generated by the net-

work is essentially another exercise that describes skeletal movement over a sequence of 

frames. In Figure 16 we can observe a tall skeleton performing a right-hand movement, 

and in Figure 17 another tall skeleton performing a hands-up movement. According to 

the method of representing the skeletons based on the tree structure skeleton image, 

some key points in the skeleton appear more than once in the vector representing the 

skeleton. As a result of applying the TSSCI method, some key points appear twice when 

compared to the original 25 OpenPose key points skeleton. This results in a skeleton vec-

tor consisting of 49 key points instead of the original 25 OpenPose key points skeleton. 

This structure is designed to ensure the connections between the points and preserve a 

structure of the logical human movement. In our case, we generate new TSSCI images; 

therefore, we generate new key points, but although initially some of the points are du-

plicated and identical, in our fake images, we obtain differences between the location of 

the identical points. As can be seen in the photos Figures 15–17, the differences are mi-

nor. We can combine key points into one point, as we showed in VAE products (see [1]), 

but we chose to emphasize this point for the explanation. 

 

Figure 11. 32 Fake TSSCI images that were generated with AVE. 

 

Figure 12. The display of TSSCI A image out of 32 generated by VAE. 
Figure 12. The display of TSSCI A image out of 32 generated by VAE.



J. Pers. Med. 2023, 13, 874 18 of 32

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 18 of 31 
 

 

 

Figure 13. The display of TSSCI B image out of 32 generated by VAE. 

 

Figure 14. The display of TSSCI C image out of 32 generated by VAE. 

 

Figure 15. A small skeleton performs movement A (two hands). 

 

Figure 16. A tall skeleton performs movement B (right hand movement). 

 

Figure 17. A tall skeleton performs movement C (hands up). 

We show, for instance, how we can fix the same key points if we treat the motion in 

the image as an object (see Figures 18 and 19). 

Figure 13. The display of TSSCI B image out of 32 generated by VAE.

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 18 of 31 
 

 

 

Figure 13. The display of TSSCI B image out of 32 generated by VAE. 

 

Figure 14. The display of TSSCI C image out of 32 generated by VAE. 

 

Figure 15. A small skeleton performs movement A (two hands). 

 

Figure 16. A tall skeleton performs movement B (right hand movement). 

 

Figure 17. A tall skeleton performs movement C (hands up). 

We show, for instance, how we can fix the same key points if we treat the motion in 

the image as an object (see Figures 18 and 19). 

Figure 14. The display of TSSCI C image out of 32 generated by VAE.

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 18 of 31 
 

 

 
Figure 13. The display of TSSCI B image out of 32 generated by VAE. 

 
Figure 14. The display of TSSCI C image out of 32 generated by VAE. 

 
Figure 15. A small skeleton performs movement A (two hands). 

 
Figure 16. A tall skeleton performs movement B (right hand movement). 

 
Figure 17. A tall skeleton performs movement C (hands up). 

We show, for instance, how we can fix the same key points if we treat the motion in 
the image as an object (see Figures 18 and 19). 

Figure 15. A small skeleton performs movement A (two hands).



J. Pers. Med. 2023, 13, 874 19 of 32

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 18 of 31 
 

 

 

Figure 13. The display of TSSCI B image out of 32 generated by VAE. 

 

Figure 14. The display of TSSCI C image out of 32 generated by VAE. 

 

Figure 15. A small skeleton performs movement A (two hands). 

 

Figure 16. A tall skeleton performs movement B (right hand movement). 

 

Figure 17. A tall skeleton performs movement C (hands up). 

We show, for instance, how we can fix the same key points if we treat the motion in 

the image as an object (see Figures 18 and 19). 

Figure 16. A tall skeleton performs movement B (right hand movement).

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 18 of 31 
 

 

 
Figure 13. The display of TSSCI B image out of 32 generated by VAE. 

 
Figure 14. The display of TSSCI C image out of 32 generated by VAE. 

 
Figure 15. A small skeleton performs movement A (two hands). 

 
Figure 16. A tall skeleton performs movement B (right hand movement). 

 
Figure 17. A tall skeleton performs movement C (hands up). 

We show, for instance, how we can fix the same key points if we treat the motion in 
the image as an object (see Figures 18 and 19). 

Figure 17. A tall skeleton performs movement C (hands up).

We show, for instance, how we can fix the same key points if we treat the motion in
the image as an object (see Figures 18 and 19).
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Figure 19. By adding the KPMSE to the loss function, key points are combined.

Since we consider human motion an object in the image, we can use the loss function to
constrain the network during training. In the VAE network, the loss function is composed of
two components: the mean squared error (MSE) and the distance between the distribution
of the training group and a normal distribution with mean 0 and variation 1, which we call
the DKL.

Loss = MSE + βDKL (12)
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Noting that a key point is a vector of three components (a 3D vector). It contains the
coordinates X, Y, and confidence level C.

vi = (xi, yi, ci) (13)

It is, therefore, possible to determine a vector distance between two key points in
the skeleton, particularly between two key points that are supposed to be identical. A
KPMSE is the sum of distances between key points in TSSCI images that are assumed to
have identical values. We calculate the KPMSE as follows:

KPMSE =
row

∑
r=1

col

∑
i=1

ide

∑
j=1

(
xri − xrj

)2
+
(
yri − yrj

)2
+
(
cri − crj

)2 (14)

where:

row—Number of rows in the TSSCI image;
col—Number of columns in the TSSCI image;
ide—Number of identical key points in TSSCI.

It is decided to add the KPMSE to the original VAE loss function while using alpha
and beta as weights to achieve a balance between the loss function components. Our new
loss function, which helps to merge identical key points, is described in the formula below:

Loss = MSE + βDKL + αKPMSE where 0 ≤ α, β ≤ 1 (15)

The VAE training loss progress is illustrated in Figure 20.
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Figure 21 shows an example of restoring a TSSCI image by compressing until we
obtain a latent vector (encoding) and then reconstructing (decoding) the vector back into a
TSSCI image.

Our goal is to create synthetic motions similar to the six movements found in our
TSSCI picture database, which contains 2004 photos labeled with one of the six movements.
We used the TSSCI pictures to train a VAE to recreate each movement. The VAE produces
a latent vector for each TSSCI picture, yielding a probabilistic space of latent vectors.
We describe the probabilistic space as a cloud of points in an N-dimensional space as a
spherical distribution, with a mean of 0 at the center and a standard deviation radius
of 1. This spherical distribution encompasses the six motions, and because the TSSCI
pictures were successfully separated, we wish to represent the probabilistic space in a
two-dimensional graph to demonstrate the apparent distinction between the movements.
We used the dimensionality reduction approach t-SNE (t-distributed stochastic neighbor
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embedding) [29] to visualize and explore high-dimensional data. t-SNE is very good for
depicting complicated, non-linear interactions between data points. The t-SNE algorithm
maps high-dimensional data points to a lower-dimensional space (usually 2D or 3D) while
keeping data point commonalities. The method achieves this by generating a probability
distribution over the data points in the high-dimensional space and then mapping the
points to the lower-dimensional space while preserving as many similarities as feasible.
In more detail, t-SNE starts by computing the pairwise similarities between all the data
points in the high-dimensional space (the latent space dimension in our case). We use these
similarities to define a probability distribution over the data points, where the probability
of a selected point is proportional to the similarity with its neighbors. The algorithm then
maps the data points to the lower-dimensional space by optimizing a cost function that
measures the difference between the high- and lower-dimensional space probabilities.
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Figure 21. TSSCI encoding and decoding using VAE t-SNE (t-distributed stochastic neighbor embed-
ding) to visualize and explore high-dimensional data.

As demonstrated in Figure 22, the probability space of the latent vectors representing
the characteristics of human movements, or TSSCI image properties, exhibits excellent
separation. The separation is centered around the origin, resulting in a symmetrical
distribution. This indicates that the VAE has generated a probability space that resembles a
normal distribution. Therefore, we can extract a vector from a normal distribution, pass it
through the VAE, and obtain a novel movement.
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representation of t-SNE.

9.3.1. Synthesizes a New Movement by Combining Two Foreign Movements TRO + SLL

After employing t-SNE to visualize the distributions of six exercise groups, we seek to
showcase the effectiveness of using a super object, specifically TSSCI, to merge two distinct
movements into a single, combined motion. Our demonstration involves merging the SLL
and TRO movements, which we can characterize by leg and hand-to-chest movement,
respectively. Recall that the latent vectors representing the dominant characteristics of
each object, in this case, a super object describing a movement, are crucial to our method.
Each TSSCI image is transformed into a latent vector using VAE, with each vector serving
as a point in an N-dimensional space, where in our example N is 16. VAE converts the
distribution of the latent vectors to a normal distribution, meaning that it maps each original
latent vector to an equivalent point in a normal distribution. We then choose a latent N-
dimensional vector from the normal distribution space belonging to the SLL movement
vSLL−i and one from the TRO movement vTRO−j. We create a vector origin between them
(the average of the two vectors) and obtain a new synthetic vector vmerge in the normal
distribution space (see Figure 23). This vector represents the combined motion we want to
generate. We then inject this vector into the VAE decoder and use it to reconstruct a new
movement—the joint movement—which combines the hand and leg movements of the
SLL and TRO movements, respectively.
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Using t-SNE, TSSCI, and VAE allows us to merge the distinct characteristics of two
movements and generate a new, unique synthetic movement (see Figure 24).
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9.3.2. Generator of Synthetic Movements for Specific Types Using Super Object Method

Our previous demonstrations have showcased the power of the super object method
in classifying, compressing, reproducing, and merging movements. We introduce a new
capability: a generator that creates a specific type of movement from the six pre-defined
movements. The generator operates by converting the latent vector distribution to a normal
distribution. Each subgroup of movements has a different mean and variance, and to
produce a new movement of a specific type we create a sub-distribution corresponding
to the requested subgroup. We then generate a series of latent vectors from each sub-
distribution and pass them through the VAE Decoder to obtain a new TSSCI image depicting
a sequence of skeletons in certain positions, which, when played in order, produce a new
synthetic skeleton movement of the requested type.

Figure 25 showcases our ability to generate a new AFR (arm full rotate) movement
using the super object method. Notably, the TSSCI image features a dividing line in its
center, which reflects the combined performance of the exercise, with the right arm working
in the first half and the left arm in the second half. However, our reconstruction only
includes the right-arm movement. Hence there is no line in the center. As a reminder,
we opted to play the synthetic movement in a mirror image of the original to distinguish
between the two. The TSSCI image used to generate the synthetic movement describes
a skeleton using 49 points, while the original skeleton uses 25 points. We preserved this
format to demonstrate the refinement and authenticity of the synthetic reconstruction using
VAE on the TSSCI image. We previously demonstrated how to train the network to generate
a skeleton of only 25 points by adding a constraint to the loss function. It provides further
evidence of the authenticity of our synthetic movements and their potential applicability in
real-world settings.
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Figure 25. Generator of synthetic AFR movements using super object method.

We pass the synthetic movements through an EfficientNet-B7 CNN network-based
movement classifier to validate the generator effectiveness and present a confusion matrix
(see Figure 26). The matrix diagonal clearly illustrates the classifier near-perfect success in
classifying all the new fake movements. Overall, this new capability of the super object
method allows us to enrich our dataset with more tagged movements of the same type,
which is an advanced form of augmentation. Additionally, we can use the movement
merging algorithm to create a new set of movements different from the original six.
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9.3.3. Utilizing a Siamese Twin Neural Network to Score the Quality of Physical Therapy
Exercises Performed by Student Relative to Expert Physical Therapists

In this section, we highlight the effectiveness of the super object via the TSSCI method
in providing a score for the quality of exercise performance compared to an expert physio-
therapist. Given that our research framework focuses on demonstrating the effectiveness of
the super object method, our dataset consists solely of examples from healthy individuals
and does not include patients with movement disorders. To validate the effectiveness of our
method, we rely on a set of exercises performed by an expert physiotherapist as a reference
point. We developed a Siamese twin network based on the EfficientNet network to provide
a score for exercise performance. This network features two channels: a reference channel
that receives the specialist TSSCI and an identical parallel channel that receives the TSSCIs
of all students performing a mix of exercises. Each channel produces a latent vector, and
we measure the Euclidean distance between the vectors of the expert and the student
performing a particular exercise. The smaller the distance between the vectors, the higher
the score, with a score of 100 indicating a perfect mimicked exercise (performing similar
movements). Conversely, the greater the distance, the lower the score, with 0 indicating
completely different exercise movements.

For scoring we define the variable f as follow:

f = a
100
D

(16)

where:

D—Euclidean distance between the reference and student latent vectors
α—Scaling factor alpha; we empirically chose alpha as 30.

Finally we obtain a score between 0 and 100 by the following formula:

s =

{
f if f < 100

100 if f ≥ 100
(17)

where:

s—score, where 0 ≤ s ≤ 100

The Euclidean distance method, commonly used for measuring the similarity between
two vectors, suffers from the challenge of an unlimited maximum distance, making it
difficult to define a final scale between 0 and 100. To address this challenge, we developed
an empirical scoring method that demonstrates the effectiveness of using the super object
method rather than focus on providing an accurate score. Our empirical method involves
using the inverse of the Euclidean distance and setting a threshold for the maximum value
beyond which any similarity score would be considered 100. Specifically, we define a
threshold distance of 100, such that any inverse Euclidean distance between the reference
and student vectors greater than or equal to 100 is capped at a score of 100. Conversely, any
distance less than 100 is multiplied by a scaling factor alpha (in our case, we empirically
chose alpha as 30) to obtain a score between 0 and 100. Using this method, we can
provide a qualitative score that effectively demonstrates the advantages of the super object
method while accommodating the upper unbounded limit challenges of the Euclidean
distance method.

To validate the effectiveness of our method, we consider an incorrect movement as
one that differs from the reference movement performed by the expert physiotherapist.
Specifically, we compare the performance of each student movement to the reference
movement of the AFR exercise and expect to obtain a high score for those who accurately
perform the AFR exercise and a low score for those who perform a different exercise
from the expert. To achieve this, we repeat this process six times, using each of the six
reference movements performed by the expert as the reference channel. We compare
each student movement to the corresponding reference movement and calculate the score
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using our empirical scoring method. We summarize the scoring results in a confusion
matrix, which provides an overview of the accuracy of each type of exercise the students
perform (see Figure 27). The matrix rows represent the reference exercise performed by
the expert physiotherapist, while the columns represent the type of exercise performed by
the students. In each cell, we present the average score obtained for each type of exercise,
enabling us to evaluate the effectiveness of our method in accurately classifying different
types of movements. The effectiveness of our method is evident from the confusion matrix,
which shows that the average score is high for most exercises, except for the LBE exercise.
Interestingly, the LBE and the SLL exercises, for which the average score was also lower,
share a common characteristic: the dominant movement is related to leg motion. In the
LBE exercise, the leg motion is backward, while in the SLL exercise, it is sideways, which
explains the system confusion during the scoring process. To address this limitation, we can
continue the training process or explore alternative methods, such as using the EfficientNet
network as a whole classifier to output a vector of probabilities for each student exercise.
We can use this vector of probabilities as a score for the movement or calculate the Euclidean
distance between the probability vectors of the expert and the student. However, since
our study aims to demonstrate the effectiveness of the super object method for human
movement classification, we believe that our empirical scoring method is sufficient to prove
the effectiveness of our approach.
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Figure 27. Score of the quality of physical therapy exercises performed by students relative to expert
physical therapists.

9.3.4. Comparing the Quality of Synthetic Exercise Generated by VAE to That Provided by
Experts Using a Siamese Twin Neural Network

We repeat the scoring process to complete our evaluation using the synthetic exercises
we created with VAE. It enables us to demonstrate the quality of the synthetic movements
and the effectiveness of our scoring method based on Siamese twin networks. Siamese
twin networks have proven efficient for measuring the similarity between images and
objects in various contexts. We aim to illustrate that any existing algorithm designed for
analyzing the content of an image, particularly object recognition, can be used for analyzing
movements based on the super object method. It shows the versatility and applicability of
our approach beyond the scope of movement classification.

The effectiveness of our method is evident from the confusion matrix presented in
Figure 28, which shows that the average score is high for most exercises in the diagonal
as expected.
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Please note that the majority of the outcomes detailed in this chapter were achieved
using Python code, which is available in the Supplementary Materials section of this article.

10. Discussion

Our method enables the representation of a series of human movements as one object
by converting multi-person key point detection algorithms to RGB-colored TSSCI images.
X, Y, and confidence level—C coordinates are used to represent each of the 25 key points
in the skeleton. All skeletons are grouped together in three dimensions (3D arrays—x, y,
and confidence level c), obtained by multiplying the number of frames by the number
of key points. In order to represent the array in RGB, it is converted into the red color
channel, which represents the X coordinates, the green color channel, which represents the
Y coordinates, and the blue color channel, which represents the C coordinates. Thus, the
TSSCI represents the composition of the exercise from beginning to end as an abstracted
color image. This new approach allows us to consider a human exercise as an object within
a TSSCI image. As an example, in a typical image containing a cat object, a CNN network
trained to tag cats will successfully tag most of the cats in a set of images, regardless of
where they are within the image, how large they are, and whether they are rotated. In most
cases, the video clip of the therapist will contain the entire exercise from the beginning to
the end. As a result, the exercise (which is our super object) takes the entire TSSCI (every
raw in the image belongs to this exercise), as if the image contained a large cat. In order to
prepare for and repeat the exercise, patients normally prepare themselves prior to and after
the actual exercise. The TSSCI image reflects this as an object (exercise) situated in the image
center, whereas the top and bottom of the image are irrelevant (similar to a background
in a typical image). As a result of this mode, the cat appears small and in the center of
the picture, while the rest of the image contains mostly background, as if it were taken
from a distance. CNNs extract feature vectors (latent vectors) that are representative of the
properties of the object being classified, while filtering out other objects and backgrounds
and disregarding the dimensions or orientation of the object. Using this new approach of
treating the human motion as an object in a TSSCI image, we are able to use a CNN network
to extract the latent vector of the human motion. By extracting a latent vector, which distills
the characteristics of a movement into a one-dimensional vector, a variety of actions can be
accomplished. The latent vector can be injected into a fully connected network, allowing us
to classify and label movements. Another option is to inject the latent vector into a Siamese
twin network, allowing us to compare therapist and patient and score the patient exercise
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relative to the therapist. We can create a probabilistic space of various latent vectors by
using a CNN network with many patients who try to mimic the same exercise. Keeping in
mind that a vector is by definition a point in an N-dimensional space, our latent vector is
also a point in an N-dimensional space. As a result, creating multiple latent vectors from
many patients produces a cloud of points in the N-dimensional space that represents our
probability space of a specific exercise. While the number of points in the probability space
for this specific movement is infinite, we have created only a finite collection of points.
These points are referred to as “existence points” or “existence,” whereas the probability
space between the existing points is referred to as “nothing.” Using the VAE network,
we are able to add synthetically virtual existence points to the “nothing” based on the
“existence” points. The creation of the new virtual points allows us to create a completely
new fake TSSCI image from each new point utilizing VAE generator, thus enriching the
number of points in our probabilistic space for this particular exercise. Therefore, we
can generate from the faked TSSCI image a video showing the movement of skeletons,
describing the movement performed by a fake person, which will increase our dataset for
training other neural networks able to perform more complex tasks.

10.1. Dataset

We divided our dataset into three parts. The division of it into three parts provides
a comprehensive understanding of the different types of environments. The exercises
performed by students from the University of Prague under laboratory conditions provide
a controlled environment for evaluating the performance of the exercises. It allows for a
clear understanding of the effect of the exercises on the students and provides a sterile
environment baseline for comparison. On the other hand, the exercises performed by
students from Ben Gurion University in an uncontrolled environment provide a real-
world scenario of how patients may perform the exercises in the home environment. It
provides valuable insights into the practicality and effectiveness of the exercises in a more
natural setting. Finally, the exercises the expert physiotherapist performs under controlled
laboratory conditions serve as the ground truth, allowing for comparing and measuring
the other exercises performed. It provides a benchmark for evaluating the performance
of the exercises and allows for a thorough understanding of the efficacy of the exercises.
Dividing the dataset into these three parts provides a comprehensive and well-rounded
understanding of the exercises and their performance in different scenarios. We felt it
appropriate to expand a little beyond the scope of the discussion of this paper and point out
that “existence,” “nonexistence,” or “nothing” are central philosophical themes. According
to Plato, non-physical ideas, or Forms (“nothing”), are more real than the physical world we
perceive (“existence”). According to him, physical objects (in our case, actual movements)
are imperfect copies of these non-physical Forms (movements performed by a fake person
or merely fake movements), and that the Forms are eternal and unchanging. This technique
of creating virtual points within the space of “nothing” by using the points of “existence”
could be called “computational imagination” or “ computational creativity”.

10.2. Efficient TSSCI Processing with Negligible Resource Consumption

The low resource consumption of TSSCI is a significant advantage that can have a
notable impact on human movements analysis. The technique efficiently combines a series
of frames into one image, which can be also processed by programs such as OpenPose and
MediaPipe that extract the skeletons from the video. These programs typically process
30 frames per second. An average human exercise consists of thousands of frames, say 1000,
for this discussion. From the tests we conducted, the TSSCI image processing time using
the EfficientNet network is approximately 20 milliseconds. In comparison with a video
frame, which has at least 512 × 512 pixels, TSSCI has a small image size of 49 × 49 pixels.
Additionally, the abstract structure and image orientation, primarily in the y direction, can
enhance network convergence. Assuming the time required to extract a skeleton from a
frame is T, according to our measurements the TSSCI calculation time is only a quarter
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of T. We need to process only one TSSCI per exercise. Consequently, for an exercise, it
would take 1000T to extract all the skeletons and only a quarter of T to process TSSCI with
a neural network. It is worth mentioning that the creation of TSSCI is insignificant as it
only aggregates skeletal data into a single array. In summary, using TSSCI as a super object
approach has a negligible impact on the total processing time, accounting for only 0.025% of
the total processing time compared to the time required to extract the exercise skeletons. It
highlights the efficiency and potential of TSSCI to enhance human body movement analysis
while minimizing resource consumption. Our results are promising and have implications
for various sectors, such as healthcare and fitness, where efficient video analysis can make
a significant difference.

11. Conclusions

In this work, we presented a novel and versatile approach to reference human move-
ments, based on super object in the form of a TSSCI image. Our solution provides a generic
method for analyzing and processing human movements, using standard deep learning
network architectures, allowing for a variety of tasks such as classification, measurement,
prediction, completion, and improvement of movements. To demonstrate the effectiveness
of our method, we utilized the open-source code from OpenPose [8] and MediaPipe [9],
generously provided by the respective authors. This code enabled us to extract a human
skeleton graph from a video and consolidate the results into a TSSCI image. We focused
on measuring physiotherapy exercises using a dataset of approximately 100 students who
performed six physical therapy exercises prescribed by an expert physiotherapist. The data
set was divided into three types: exercises performed by an expert, exercises performed in a
controlled environment and under laboratory conditions, and a third group who performed
the exercises freestyle at home. We demonstrated the versatility of our approach by injecting
identical TSSCI images into three different networks (EfficientNet, variational auto-encoder,
and Siamese twin networks) for performing different tasks. We successfully classified
human movements performed under laboratory conditions and with high accuracy for
movements performed under uncontrolled, noisy conditions, except for cases where there
were not enough examples for training. Furthermore, we demonstrated the use of a VAE
architecture to generate new synthetic skeletons and even merged different movements to
create a unique synthetic movement. We explained the VAE architecture using the t-SNE
algorithm to present the N-dimensional distribution space of the latent vectors in two di-
mensions. Finally, we presented the use of the TSSCI method in assessing the performance
of physical therapy exercises compared to a specialist physiotherapist using a Siamese
twin network. We proposed an empirical scoring method for the quality of the exercise
performance and summarized the results in two confusion matrices. Our experiments
demonstrate the effectiveness of our super object method in human movement analysis.
In conclusion, the combination of convolutional neural networks (CNNs), OpenPose, and
MediaPipe can be effectively utilized to evaluate physical therapy exercises performed by
patients in a home setting relative to the performance of a remote therapist. The study
demonstrates the potential of computer vision techniques in physical therapy and the
significance of precise and timely evaluations in enhancing patient results. The super object
method was shown to be a practical approach to analyzing human movements, and the
Siamese twin network based on the EfficientNet network provided a score for exercise
performance. The results of the experiment provide evidence of the method viability and
effectiveness, as demonstrated by the confusion matrix. The study can be used as a basis
for further research and development in computer vision and physical therapy. Careful
consideration of resolution, orientation, and camera stability is essential to ensure that
model predictions are accurate and reliable.

Supplementary Materials: The following supporting python code examples and some general
explanations can be downloaded from: https://github.com/yoramse/TSSCI.git, https://bit.ly/bgu_
pyhton_code_example and from https://bit.ly/BGU_Extra_Info, (accessed on 6 March 2023).
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