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Abstract: Herein, we present a newborn female with congenital vocal cord paralysis who required
a tracheostomy in the neonatal period. She also presented with feeding difficulties. She was later
diagnosed with a clinical picture of congenital myasthenia, associated with three variants of the
MUSK gene: the 27-month follow-up was described. In particular, the c.565C>T variant is novel
and has never been described in the literature; it causes the insertion of a premature stop codon
(p.Arg189Ter) likely leading to a consequent formation of a truncated nonfunctioning protein. We also
systematically collected and summarized information on patients’ characteristics of previous cases
of congenital myasthenia with neonatal onset reported in the literature to date, and we compared
them to our case. The literature reported 155 neonatal cases before our case, from 1980 to March 2022.
Of 156 neonates with CMS, nine (5.8%) had vocal cord paralysis, whereas 111 (71.2%) had feeding
difficulties. Ocular features were evident in 99 infants (63.5%), whereas facial-bulbar symptoms were
found in 115 infants (73.7%). In one hundred sixteen infants (74.4%), limbs were involved. Respiratory
problems were displayed by 97 infants (62.2%). The combination of congenital stridor, particularly
in the presence of an apparently idiopathic bilateral vocal cord paralysis, and poor coordination
between sucking and swallowing may indicate an underlying congenital myasthenic syndrome
(CMS). Therefore, we suggest testing infants with vocal cord paralysis and feeding difficulties for
MUSK and related genes to avoid a late diagnosis of CMS and improve outcomes.
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1. Introduction

Congenital myasthenia syndromes (CMS) are rare but often treatable disorders charac-
terized by fatigable muscle weakness and associated with incorrect signal transmission at
the motor endplate (EP) that result from defects in single or multiple proteins. Initially, CMS
were classified according to the location of the mutated protein as presynaptic, synaptic
basal lamina-associated, and postsynaptic. The present classification involves CMS due to
defects in protein glycosylation, where the abnormal proteins are located anywhere in the
EP, and other causes of neurotransmission deficiency [1].

Only in recent years, as the genetic knowledge of CMS continues to grow, have disease-
associated mutations been discovered in novel genes producing neuromuscular junction
proteins, expanding the spectrum of this disorder [2].

MUSK (Muscle Specific Receptor Tyrosine Kinase) is a protein-coding gene located on
human chromosome 9q31.3–q32. Mutations of this gene are associated with Fetal Akinesia
Deformation Sequence (FADS) [3] and Congenital Myasthenic Syndrome 9, associated
with Acetylcholine Receptor Deficiency [4]. Indeed, muscle-specific receptor tyrosine
kinase plays a central role in the expression and aggregation of acetylcholine receptors at
the neuromuscular junction (NMJ) level, the synapse between the motor neuron and the
skeletal muscle [5].

Herein, we present a newborn female with congenital vocal cord paralysis who re-
quired a tracheostomy in the neonatal period. She also presented with feeding difficulties.
She was later diagnosed with a clinical picture of congenital myasthenia, associated with
three variants of the MUSK gene. The aim of this manuscript was to describe her follow-up
and compare this case to previously reported CMS cases with neonatal onset.

2. Materials and Methods
2.1. Lung Function Tests

Lung function was assessed using analysis of the tidal-volume and flow-volume loop
using an ultrasonic flowmeter (ndd Medical Technologies, Zurich, Switzerland) connected
to an Exhalyzer D (Eco Medics, Dürnten, Switzerland). Neonatal lung function tests (LFTs)
were performed in a neutral supine position during normal sleep, without any sedation,
recording at minimum 10 consecutive breaths of each patient while also measuring the
following parameters: tidal volume (Vt, mL/kg), respiratory rate (RR), and the ratio of time
to reach peak tidal expiratory flow over total expiratory time (tPTEF/tE), as previously
described [6].

2.2. Genetic Analysis

Genomic DNA was extracted from circulating leukocytes collected from the proband.
Next-generation sequencing (NGS) targeted at genes causing congenital neuropathies/
myopathies was performed using the Trusight ONE kit for clinical exome (Illumina).
DNA capture, enrichment, and paired-end sequencing with a read length of 149 bp were
performed using the Illumina NextSeq 550 platform with a sequencing depth of 100X.
The Illumina VariantStudio 3.0 data analysis software was used to annotate the variants.
Conventional Sanger sequencing was performed using ABI 3130xl capillary sequencer
(Applied Biosystem) to confirm the variants identified by NGS in the proband and in
her parents.

2.3. Neurophysiology Tests

Intraoperative laryngeal electromyography (LEMG) was performed using laryngeal
reflex (LAR), with transcranial motor evoked potentials (tcMEP) directly applied to the
bilateral posterior cricoarytenoid and thyroarytenoid muscles. Brainstem Auditory Evoked
Potentials (BAEPs), electroneurography (ENG), electromyography (EMG), and ulnar repet-
itive nerve stimulation (RNS) at 3–30 Hz were performed according to standardized
protocols [7–9].
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2.4. Review of the Literature of Neonatal-Onset Congenital Myasthenia

In order to review the literature about the neonatal onset of CMS, an extensive litera-
ture search in the MEDLINE database (via PubMed) has been performed up to 14 March
2022. The following keywords “neonatal onset congenital myasthenia” OR “congenital
myasthenia” AND “neonate” were searched as entry terms as well. All 252 retrieved
articles were screened, and then full texts of records deemed eligible for inclusion were
assessed. References in the relevant papers were also reviewed, and further articles were
added if necessary. Papers written in languages other than English were excluded. In-
formation on patients’ characteristics, with age at onset, clinical forms (ocular/facial-
bulbar/limb/respiratory), vocal cord paralysis, feeding difficulties, and genetic diagnosis
were systematically collected and compared to our case. Parents signed a written informed
consent regarding publishing data of their infant.

3. Case Report
3.1. Clinical Report during NICU Stay

A female infant was born at 38 weeks gestation to a 35-year-old primigravida via
elective caesarean section (because of previous retinal detachment). The parents reported
no miscarriages, neurological disorders, or autoimmune diseases in the family history.
The birthweight was 2845 g (AGA, Z-score: −0.48 SDS), the length was 52 cm (Z-score:
1.98 SDS), and the head circumference was 34.5 cm (Z-score: 0.82 SDS). At birth, she
presented hypotonia, cyanosis, and stridor, with worsening respiratory distress, requiring
nasotracheal intubation and mechanical ventilation. The Apgar scores at 1, 5, and 10 min
were 4, 6, and 8, respectively. A bilateral vocal cord palsy in the adduction was noted. No
dysmorphic features were noted.

At 8 days of life, she was referred under mechanical ventilation to our III-level pediatric
hospital for further examinations. A laryngo-tracheo-bronchoscopy revealed uncoordinated
vocal fold movements, and she could be extubated in spontaneous breathing. LFTs revealed
a decreased respiratory flow, especially during the inspiratory phase.

Her brainstem auditory evoked potentials (BAEPs) were within normal limits.
Therefore, the decision was to perform an Endoscopic Arytenoid Latero-Abduction

(EALA) [10,11]. However, due to the persistence of stridor and progressive respiratory
distress, requiring noninvasive respiratory support, she underwent a tracheostomy at
46 days of life.

Intraoperative LEMG showed reproducibility of motor evoked potentials by a train
of 8 stimuli at 250 Hz at a threshold of 300mA and an activation of the chordal structures
by direct stimulation of the muscles explored using a train of 5 stimuli at 250 Hz, with
an activation threshold at 25 mA. No spontaneous neurotonic activity during LEMG was
noted, while asynchronous activity was detected during spontaneous respiratory activity,
better identified in the left muscles.

The infant quickly improved without requiring respiratory support yet 48 h after
surgery. She had feeding difficulties with good sucking but poor swallow, consequent
breastfeeding failure, and need for nasogastric tube (NGT) feeding for the first weeks of
life. Enteral nutrition was always tolerated, with normal upper gastrointestinal contrast-
enhanced study, gastric emptying scintigraphy, and multichannel intraluminal impedance-
pH monitoring.

An automated auditory brainstem response (AABR) test revealed a bilateral normal
response.

At 3 months of life, she was discharged home and able to be fed via a feeding bottle.

3.2. Genetic Analysis

First-level genetic analysis revealed a normal karyotype and a normal SNP array. NGS
detected the presence of the following variants in the MUSK gene (NM_005592.3): c.565C>T
in exon 5, and c.2287G>A and c.2368G>A in exon 15, leading to the diagnosis of CMS. The
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c.565C>T and c.2287G>A were inherited from the mother and the c.2368G>A was inherited
from the father.

The novel c.565C>T variant has never been described in the literature or reported
in public reference databases (i.e., Genome Aggregation Database: accessible on https:
//gnomad.broadinstitute.org/ (accessed on 5 January 2023); dbSNP: accessible on https:
//www.ncbi.nlm.nih.gov/snp/ (accessed on 5 January 2023); it causes the insertion of a
premature stop codon (p.Arg189Ter) likely leading to a consequent formation of a truncated
nonfunctioning protein.

The c.2287G>A variant, which causes the aminoacidic change p.Ala763Thr (rs199507468),
is reported as a “variant of uncertain significance” (VUS, ClinVar Variation ID:839724),
while the c.2368G>A variant, leading to the missense change p.Val790Met (rs199476083), is
reported as pathogenic (ClinVar Variation ID:8239).

3.3. Follow-Up

At 8 months of life, a laryngo-tracheo-bronchoscopy was repeated, with the finding
of laryngeal dyskinesia and moderate tracheomalacia. Intraoperative LEMG showed the
absence of spontaneous neurotonic activity, a reduced threshold of stimulation of motor
evoked potentials, and the absence of a laryngeal reflex.

At 10 months of life, ENG and RNS were normal. EMG revealed a myopathic pat-
tern with a small amplitude and short duration polyphasic motor unit action potentials
(MUAPs), especially from an upper limbs examination.

The last polysomnography was performed at the age of 21 months in spontaneous
breathing, showing normal O2 and CO2 levels. Salbutamol therapy was started at the
lowest dosage, given the young age of the patient, at the age of 15 months. Currently, she is
taking 0.4 mg twice a day, the treatment is well tolerated, and the baby showed significant
motor improvement.

At the time of writing, the baby is at 27 months of life. She has normal ocular motility
with mild bilateral ptosis in the context of mild facial hypomimia. She’s still a carrier of
tracheostomy, but she is on spontaneous breathing even at night. She has good head and
trunk control.

She is able to maintain an upright position even without support, she gets up from the
squatted position without upper limb support, and she takes a few steps with the support
of the upper limbs. Osteotendinous reflexes are normally evoked in the four limbs. She
has a ligamentous hyperlaxity. She regularly follows motor physiotherapy sessions for the
motor delay. Regular cardiac assessments are being performed. The baby has started to
pronounce some words.

4. Results

In Table 1 we summarized cases of congenital myasthenic syndrome with neonatal
onset previously described and compared them to our case. The literature reported one
hundred fifty-five neonatal cases before our case, from 1980 to March 2022 [4,12–60].
Therefore, of 156 neonates with congenital myasthenic syndrome, nine (5.8%) had vocal
cord paralysis, whereas 111 (71.2%) had feeding difficulties. Seventy-seven/135 infants
(57.0%) were males. Ocular features were evident in 99 infants (63.5%), whereas facial-
bulbar symptoms were found in 115 infants (73.7%). In one hundred sixteen infants (74.4%),
limbs were involved. Respiratory problems were displayed by 97 infants (62.2%).

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
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Table 1. Cases of congenital myasthenic syndrome with neonatal onset reported in the literature. A: Ambenomium; AChEI: Acetylcholinesterase Inhibitor;
Alb: Albuterol; DAP: Diaminopyridine; E: Ephedrine; EALA: Endoscopic Arytenoid Latero-Abduction; F: Fluoxetine; N: Neostigmine; N/A: Not available; P:
Pyridostigmine; PF: Plasmaferesis; S: Steroids; SA: Salbutamol.

First Author, Year Sex Onset
Clinical Forms

(Ocular/Facial-Bulbar/Limb/
Respiratory)

(+ Present, − Absent)

Vocal Cord
Paralysis or

Stridor
Feeding

Difficulties Gene Involved
Medical Treatment
(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

1 Smit, 1980
[12] M At birth −/+/+/+ + − N/A P+ N/A

2 Hageman, 1986
[13] M At birth −/+/+/− − + N/A P+ Gastrostomy,

Tracheostomy

3 Roach, 1986
[14] M At birth +/+/−/+ − + N/A P+ N/A

4 Roach, 1986
[14] M At birth +/+/−/+ − − N/A P+ N/A

5 Roach, 1986
[14] M At birth −/−/−/+ − − N/A P−, S−, PF− N/A

6 Engel, 1990
[15] F At birth −/+/+/− − + N/A P− N/A

7 Engel, 1990
[15] F At birth +/+/+/+ − − N/A P+ N/A

8 Engel, 1990
[15] F At birth +/+/−/+ − + N/A P+ N/A

9 Vial, 1991
[16] M At birth +/−/−/− − − N/A N/A N/A

10 Vial, 1991
[16] M At birth +/−/−/− − − N/A N/A N/A

11 Vial, 1991
[16] F At birth +/+/+/+ − + N/A N/A N/A

12 Ohno, 1997
[17] M At birth +/+/−/− − + CHRNE P+/− N/A

13 Quiram, 1999
[18] F At birth −/+/−/+ − + CHRNB1 N/A Gastrostomy

14 Mullaney, 2000
[19] M At birth −/+/+/− − − N/A P+, S+ N/A

15 Brownlow, 2001
[20] M At birth −/+/+/+ − + CHRND P- N/A
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Table 1. Cont.

First Author, Year Sex Onset
Clinical Forms

(Ocular/Facial-Bulbar/Limb/
Respiratory)

(+ Present, − Absent)

Vocal Cord
Paralysis or

Stridor
Feeding

Difficulties Gene Involved
Medical Treatment
(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

16 Zafeiriou, 2003
[21] F At birth +/+/−/− − − CHRND P+ N/A

17 Zafeiriou, 2003
[21] F At birth −/+/−/− − + N/A P+ N/A

18 Zafeiriou, 2003
[21] F At birth +/+/+/+ − − N/A N/A N/A

19 Zafeiriou, 2003
[21] M At birth −/+/+/− − − N/A P+ Tracheostomy

20 Zafeiriou, 2003
[21] M At birth +/+/−/− − + N/A N/A N/A

21 Zafeiriou, 2003
[21] F At birth +/+/+/+ − − N/A P+ N/A

22 Zafeiriou, 2003
[21] F At birth +/+/+/+ − − N/A P+ N/A

23 Zafeiriou, 2003
[21] M At birth +/+/+/− − − N/A P− N/A

24 Ioos, 2004
[22] F At birth −/+/+/+ − + RAPSN A+ Tracheostomy

25 Ioos, 2004
[22] M At birth −/−/−/+ − − RAPSN P+ N/A

26 Ioos, 2004
[22] M At birth −/+/−/+ − + RAPSN P+ Tracheostomy

27 Barisic, 2005
[23] F At birth +/−/−/+ − − CHAT P− N/A

28 Barisic, 2005
[23] F At birth +/−/+/+ − − CHAT P+ N/A

29 Muller, 2006
[24] M At birth +/+/+/− − + CHRND P+ N/A

30 Mihaylova, 2008
[25] F At birth +/+/+/+ − + COLQ P+ N/A

31 Mihaylova, 2008
[25] F At birth +/+/+/+ − + COLQ P+ N/A
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Table 1. Cont.

First Author, Year Sex Onset
Clinical Forms

(Ocular/Facial-Bulbar/Limb/
Respiratory)

(+ Present, − Absent)

Vocal Cord
Paralysis or

Stridor
Feeding

Difficulties Gene Involved
Medical Treatment
(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

32 Mihaylova, 2008
[25] M At birth +/−/+/+ − + COLQ P+ N/A

33 Mihaylova, 2008
[25] F At birth +/−/+/+ − − COLQ P+ N/A

34 Mihaylova, 2008
[25] M At birth +/−/+/+ − − COLQ None N/A

35 Mihaylova, 2008
[25] M At birth +/+/−/− − + COLQ P+ N/A

36 Mihaylova, 2008
[25] M At birth +/−/+/+ − − COLQ P+/− N/A

37 Mihaylova, 2008
[25] F At birth +/−/+/+ − − COLQ P+/− N/A

38 Mihaylova, 2008
[25] F At birth +/−/+/+ − − COLQ P+ N/A

39 Mihaylova, 2008
[25] M At birth +/−/+/+ − − COLQ P+ N/A

40 Mihaylova, 2008
[25] M At birth +/+/+/+ − + COLQ None N/A

41 Faber, 2009
[26] M At birth +/−/−/− − − ACHR N/A N/A

42 Faber, 2009
[26] F At birth +/−/+/− − − ACHR N + N/A

43 Faber, 2009
[26] M At birth −/+/−/− − + ACHR N + N/A

44 Faber, 2009
[26] M At birth +/+/−/− − + ACHR N/A N/A

45 Mallory, 2009
[27] F At birth −/−/−/+ − − CHAT P+ Gastrostomy

46 Yeung, 2009
[28] F At birth +/−/−/+ − + CHAT P+ Gastrostomy

47 Ben Ammar, 2010
[29] F At birth +/+/+/− − − DOK7 P− N/A
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Table 1. Cont.

First Author, Year Sex Onset
Clinical Forms

(Ocular/Facial-Bulbar/Limb/
Respiratory)

(+ Present, − Absent)

Vocal Cord
Paralysis or

Stridor
Feeding

Difficulties Gene Involved
Medical Treatment
(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

48 Ben Ammar, 2010
[29] M Antenatal +/+/+/+ − + DOK7 P−, DAP+ N/A

49 Ben Ammar, 2010
[29] F Antenatal +/+/+/− − − DOK7 P−, DAP+ N/A

50 Ben Ammar, 2010
[29] M At Birth −/+/+/− − − DOK7 N/A N/A

51 Ben Ammar, 2010
[29] F At birth −/+/+/+ + + DOK7 P−, DAP+ N/A

52 Ben Ammar, 2010
[29] F At birth +/+/−/+ + − DOK7 P−, DAP+ N/A

53 Jephson, 2010
[30] N/A At birth −/−/−/+ + + DOK7 N/A Tracheostomy and

gastrostomy

54 Jephson, 2010
[30] N/A At birth −/−/−/+ + + DOK7 N/A N/A

55 Jephson, 2010
[30] N/A At birth −/−/−/+ + + DOK7 N/A

Cordotomy and
aryepiglotto-

plasty

56 Jephson, 2010
[30] N/A At birth −/−/−/+ − + DOK7 N/A Gastrostomy

57 Jephson, 2010
[30] N/A At birth −/−/−/+ − + DOK7 N/A N/A

58 Jephson, 2010
[30] N/A At birth −/−/−/+ + + DOK7 N/A Tracheostomy

59 Schara, 2010
[31] M At birth +/+/+/+ − − CHAT P+, DAP+ Tracheostomy

60 Schara, 2010
[31] M At birth +/+/+/+ − + CHAT P+ N/A

61 Schara, 2010
[31] M At birth +/+/+/− − − CHAT P+ N/A

62 Schara, 2010
[31] M At birth +/−/+/+ − − CHAT P+ Tracheostomy

63 Das, 2014
[32] M At birth −/−/+/+ − + RAPSN P+ Gastrostomy and

Nissen
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Table 1. Cont.

First Author, Year Sex Onset
Clinical Forms

(Ocular/Facial-Bulbar/Limb/
Respiratory)

(+ Present, − Absent)

Vocal Cord
Paralysis or

Stridor
Feeding

Difficulties Gene Involved
Medical Treatment
(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

64 Dilena, 2014
[33] M At birth +/+/+/+ − + CHAT P+; DAP+ Tracheostomy and

gastrostomy

65 Webster, 2014
[34] M At birth +/+/+/+ − + CHRNE P+; SA+ N/A

66 Guo, 2015
[35] M At birth −/−/−/+ + + DMD N/A N/A

67 Bauchè, 2016
[36] M At birth −/+/+/− − + SLC5A7 AChEI+ N/A

68 Bauchè, 2016
[36] F At birth −/+/−/+ − − SLC5A7 AChEI+ Tracheostomy

69 Bauchè, 2016
[36] M At birth −/+/−/− − + SLC5A7 AChEI−, SA− N/A

70 Bauchè, 2016
[36] M At birth −/+/+/+ − − SLC5A7 AChEI+ N/A

71 Natera-de Benito,
2016 [37] F At birth −/+/+/+ − + RAPSN P+ N/A

72 Natera-de Benito,
2016 [37] F Prenatal/at

birth −/+/+/+ − + RAPSN P+ N/A

73 Natera-de Benito,
2016 [37] M Prenatal/at

birth −/+/+/+ − + RAPSN P+ N/A

74 Natera-de Benito,
2016 [37] M Prenatal/at

birth −/+/+/− − + RAPSN P+ N/A

75 Natera-de Benito,
2016 [37] F Prenatal/at

birth −/+/+/− − + RAPSN N/A N/A

76 Natera-de Benito,
2016 [37] M At birth −/+/+/+ − + RAPSN P+, DAP+ N/A

77 Natera-de Benito,
2016 [37] M At birth −/+/+/− − + RAPSN P+ N/A

78 Natera-de Benito,
2016 [37] M At birth −/+/+/− − + RAPSN P+, DAP+ N/A

79 Natera-de Benito,
2016 [37] M At birth −/+/+/+ − + RAPSN P+ N/A

80 Natera-de Benito,
2016 [37] F At birth −/+/+/+ − + RAPSN P+ N/A
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Table 1. Cont.

First Author, Year Sex Onset
Clinical Forms

(Ocular/Facial-Bulbar/Limb/
Respiratory)

(+ Present, − Absent)

Vocal Cord
Paralysis or

Stridor
Feeding

Difficulties Gene Involved
Medical Treatment
(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

81 Natera-de Benito,
2016 [38] F Neonatal

period +/+/+/+ − + CHRNE P− N/A

82 Natera-de Benito,
2016 [38] M Neonatal

period +/+/−/+ − + CHRNE P+ N/A

83 Natera-de Benito,
2016 [38] M Neonatal

period +/+/+/+ − + CHRNE P−, DAP− N/A

84 Natera-de Benito,
2016 [38] F Neonatal

period +/+/+/+ − + CHRNE P−, DAP− N/A

85 Shen, 2016
[39] F At birth +/+/+/+ − + ACHR P+, DAP+ Gastrostomy

86 Shen, 2016
[40] M At birth +/+/+/+ − N/A ACHR P−, Quinidine

solfate (N/A) N/A

87 Shen, 2016
[40] F At birth −/−/+/− − N/A ACHR P+/− N/A

88 Shen, 2016
[40] F At birth −/−/+/− − N/A ACHR N/A N/A

89 Bhoopalan, 2017
[41] M At birth +/+/+/− − + DOK7 Alb + N/A

90 Winters, 2017
[42] M Prenatal −/+/+/− − + RASPN N/A N/A

91 Banerjee, 2018
[43] F Prenatal −/−/+/− − + SLC5A7 P−, DAP−, F−, SA

− (died) N/A

92 Banerjee, 2018
[43] M Prenatal −/−/+/− − + SLC5A7 P − (died) N/A

93 Liu, 2018
[44] M At birth +/+/+/+ − + CHAT None (died) N/A

94 Pardal-Fernandez,
2018 [45] M Prenatal, at

birth −/−/+/+ − + SCL5A7 P+/− N/A

95 Silva, 2018
[46] F At birth +/+/+/− − + PREPL N/A N/A

96 Espinoza, 2019
[47] M At birth +/+/+/+ − + RAPSN P+ N/A

97 Helman, 2019
[48] M Prenatal, At

birth −/−/+/− − − GFPT1 N/A N/A
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Table 1. Cont.

First Author, Year Sex Onset
Clinical Forms

(Ocular/Facial-Bulbar/Limb/
Respiratory)

(+ Present, − Absent)

Vocal Cord
Paralysis or

Stridor
Feeding

Difficulties Gene Involved
Medical Treatment
(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

98 Helman, 2019
[48] M At birth −/−/+/+ − − GFPT1 N/A N/A

99 Murali, 2019
[49] M At birth −/−/−/+ + − MUSK None Tracheostomy

100 Murali, 2019
[49] M At birth −/−/−/+ + − MUSK None Tracheostomy

101 Rodríguez Cruz,
2019 [50] M At birth −/−/+/+ − + SLC5A7 P+, SA (N/A) N/A

102 Rodríguez Cruz,
2019 [50] M 1 month −/−/−/+ − + SLC5A7 P−, SA+ N/A

103 Rodríguez Cruz,
2019 [50] F At birth +/−/+/− − + SLC5A7 P+, SA+ N/A

104 Rodríguez Cruz,
2019 [50] M At birth −/+/+/+ − + SLC5A7 P−, DAP−, SA−

(died) N/A

105 Rodríguez Cruz,
2019 [50] M At birth −/+/+/− − + SLC5A7 P−; (died) Tracheostomy

106 Rodríguez Cruz,
2019 [51] F At birth +/+/+/+ + + MUSK P− Tracheostomy and

gastrostomy

107 Rodríguez Cruz,
2019 [51] F At birth +/+/+/+ − + COL13A1 P−, DAP+, SA+ Gastrostomy

108 Rodríguez Cruz,
2019 [51] M At birth +/+/−/− − + COL13A1 None N/A

109 Rodríguez Cruz,
2019 [51] F At birth +/+/+/+ − + COL13A1 P− N/A

110 Rodríguez Cruz,
2019 [51] M At birth +/+/+/− − + COL13A1 P−, SA+ N/A

111 Rodríguez Cruz,
2019 [51] M At birth +/+/+/+ − + COL13A1 DAP+, SA+ N/A

112 Rodríguez Cruz,
2019 [51] F At birth +/+/+/+ − + COL13A1 P+, SA N/A

113 Rodríguez Cruz,
2019[51] F At birth +/+/+/− − + COL13A1 None N/A
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or − No Response)

Surgical
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114 Rodríguez Cruz,
2019 [51] M At birth +/+/+/+ − + COL13A1 DAP+, SA+ Tracheostomy and

gastrostomy

115 Rodríguez Cruz,
2019 [51] M At birth +/+/+/+ − + COL13A1 DAP+, SA+ N/A

116 Rodríguez Cruz,
2019 [51] M At birth +/+/+/+ − + COL13A1 P+, SA+ N/A

117 Rodríguez Cruz,
2019 [51] M At birth +/+/−/+ − + COL13A1 P− N/A

118 Rodríguez Cruz,
2019 [51] F At birth +/+/−/− − + COL13A1 P− N/A

119 Rodríguez Cruz,
2019 [51] F At birth +/+/−/− − − COL13A1 P− N/A

120 Rodríguez Cruz,
2019 [51] M At birth +/+/+/− − + COL13A1 None N/A

121 Rodríguez Cruz,
2019 [51] F At birth +/+/+/+ + COL13A1 DAP+, SA+ Tracheostomy and

gastrostomy

122 Bonanno, 2020
[52] F At birth +/+/+/+ − + CHRND P− (died at 3

months) N/A

123 Bonanno, 2020
[52] F At birth +/+/+/+ − + CHRND P−, SA − (died at 4

months) N/A

124 Della Marina, 2020
[53] N/A At birth +/+/+/− − + CHAT

P (muscular
weakness during

follow-up)
N/A

125 Della Marina,
2020 [53] N/A

Prenatal
(reduced

fetal move-
ments/At

birth

+/+/+/− − + CHAT
P (muscular

weakness during
follow-up)

N/A

126 Della Marina,
2020 [53] N/A

Prenatal
(reduced

fetal move-
ments)/At

birth

+/+/+/− − + CHAT
P (muscular

weakness during
follow-up)

N/A
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Partial Response,

or − No Response)

Surgical
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127 Della Marina,
2020 [53] N/A At birth +/+/+/− − + COLQ E+ N/A

128 Della Marina,
2020 [53] N/A At birth +/+/+/− − + COLQ E+ N/A

129 Della Marina,
2020 [53] N/A

Prenatal
(reduced

fetal move-
ments)/At

birth

+/+/+/− − − CHRNE P+ N/A

130 Della Marina,
2020 [53] N/A At birth +/+/+/− − − CHRNE P+ N/A

131 Della Marina,
2020 [53] N/A At birth +/+/+/− − − CHRNE P+ N/A

132 Della Marina,
2020 [53] M At birth +/+/+/+ − + CHRND P+ N/A

133 Della Marina,
2020 [53] F At birth +/+/+/+ − + CHRNB1 P+ N/A

134 Della Marina,
2020 [53] M At birth +/+/+/+ − + MUSK P+/−, E+ Tracheostomy

135 Della Marina,
2020 [53] N/A At birth +/+/+/+ − + RAPSN P+ N/A

136 Della Marina, 2020
[53] N/A At birth +/+/+/+ − + RAPSN P+ N/A

137 Della Marina, 2020
[53] N/A At birth +/+/+/+ − + RAPSN P+ N/A

138 Della Marina, 2020
[53] N/A At birth +/+/+/− − + RAPSN P+ N/A

139 Della Marina, 2020
[53] N/A At birth +/+/+/− − + RAPSN P+ N/A

140 Della Marina, 2020
[53] N/A At birth +/+/+/− − + RAPSN P+ N/A

141 Della Marina, 2020
[53] N/A At birth +/+/+/− − + RAPSN P+ N/A

142 Della Marina, 2020
[53] F Neonatal

period +/+/+/+ − + CHRNB1 P+, DAP+ N/A
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(+ Response, +/−
Partial Response,

or − No Response)

Surgical
Treatments

143 Della Marina, 2020
[53] M Neonatal

period +/+/+/+ − + MUSK P+/−, DAP+/−, E
+ Tracheostomy

144 Freed, 2020
[54] M At birth −/−/+/+ − + CHRNB1 P+ (died at 56 days) N/A

145 Freed, 2020
[54] F At birth +/+/+/+ − + CHRNB1 P+/−; DAP+ N/A

146 Harrar, 2020
[55] M At birth +/+/+/+ − + ChAT P+ Tracheostomy

147 Shen, 2020
[56] F At birth −/+/+/+ − + MUSK P+ (died at 56 days) N/A

148 Zhang, 2020
[57] F At birth −/+/+/− − + PREPL P+ N/A

149 Lamond, 2021
[58] M At birth −/+/−/+ − + SLC18A3 P+ N/A

150 Prior, 2021
[59] F At birth +/−/−/− − + DOK7 Alb + N/A

151 Prior, 2021
[59] M At birth +/+/+/− − + RAPSN P+

152 Prior, 2021
[59] F At birth +/+/+/+ − + MUSK Alb (walk with

support) Tracheostomy

153 Prior, 2021
[59] M At birth +/+/+/+ − + MUSK Alb Tracheostomy

154 Prior, 2021
[59] F At birth +/+/+/− − + PREPL P+ N/A

155 Ehrstedt, 2022
[60] F At birth −/−/+/+ − + ALG2 P−, SA + N/A

156 De Rose, 2023 F At birth +/+/+/+ + + MUSK Salbutamol since 15
months of age

EALA then
tracheostomy



J. Pers. Med. 2023, 13, 798 15 of 20

The genetic diagnosis was available in 137 patients (87.8%). Among these 137 patients,
the most involved gene was RASPN in 24 cases (17.5%), followed by COL13A1 in 15 cases
(10.9%), CHAT in 14 cases (10.2%), DOK7 in 14 cases (10.2%), COLQ in 13 cases (9.5%),
SLC5A7 in 12 cases (8.8%), MUSK in nine cases (6.6%), CHRNE in nine cases (6.6%), ACHR
in eight cases (5.8%), CHRND in six cases (4.4%), CHRNB1 in five cases (3.6%), PREPL
in three cases (2.2%), GFPT1 in two cases (1.5%), ALG2 in a case (0.7%), DMD in a case
(0.7%) and SLC18A3 in the remaining case (0.7%). In Table 2 we reported clinical features
according to the involved gene.

Table 2. Cases of congenital myasthenic syndrome with neonatal onset reported in the literature.

Patients with
Genetic Diagnosis

(n = 137)

Ocular
Features

Facial-Bulbar
Features Limb Features Respiratory

Features

Vocal Cord
Paralysis or

Stridor

Feeding
Difficulties

ACHR (n = 8) 5/8
(62.5%)

4/8
(50.0%)

5/8
(6.5%)

1/8
(12.5%) 0 3/5

(60.0%)

ALG2 (n = 1) 0 0 1 (100%) 1 (100%) 0 1 (100%)

CHAT (n = 14) 13/14
(92.9%)

9/14
(64.3%)

11/14
(78.6%)

10/14
(71.4%) 0 8/14

(57.1%)

CHRNB1 (n = 5) 4/5
(80.0%)

5/5
(100%)

4/5
(80.0%)

5/5
(100%) 0 5/5

(100%)

CHRND (n = 6) 5/6
(83.3%)

6/6
(100%)

5/6
(83.3%)

4/6
(66.7%) 0 5/6

(83.3%)

CHRNE (n = 9) 9/9
(100%)

9/9
(100%)

7/9
(77.8%)

5/9
(55.6%) 0 6/9

(66.7%)

COL13A1 (n = 15) 15/15
(100%)

15/15
(100%)

11/15
(73.3%)

9/15
(60.0%) 0 14/15

(93.3%)

COLQ (n = 13) 13/13
(100%)

6/13
(46.2%)

12/13
(92.3%)

10/13
(7.7%) 0 7/13

(53.8%)

DMD (n = 1) 0 0 0 1 (100%) 0 1 (100%)

DOK7 (n = 14) 6/14
(42.9%)

7/14
(50.0%)

6/14
(42.9%)

9/14
(64.3%)

6/14
(42.9%)

10/14
(71.4%)

GFPT1 (n = 2) 0 0 2 (100%) 0 0 0

MUSK (n = 9) 5/9
(55.6%)

7/9
(77.8%)

7/9
(77.8%)

9/9
(100%)

4/9
(44.4%)

7/9
(77.8%)

PREPL (n = 3) 2/3
(66.7%)

3/3
(100%)

3/3
(100%) 0 0 3/3

(100%)

RAPSN (n = 24) 9/24
(37.5%)

22/24
(91.7%)

22/24
(91.7%)

14/24
(58.3%) 0 23/24

(95.8%)

SLC18A3 (n = 1) 0 1 (100%) 0 1 (100%) 0 1 (100%)

SLC5A7 (n = 12) 1/12
(8.3%)

6/12
(50.0%)

9/12
(75.0%)

6/12
(50.0%) 0 10/12

(83.3%)

5. Discussion

Herein, we report the case of an infant presenting with congenital vocal cord paralysis
(requiring a tracheostomy) and feeding difficulties in the neonatal period. These features
led us to the diagnosis of CMS. Indeed, we initially found EMG myopathic alteration (as
reported previously) [61–63]. RNS was normal but it was performed only from the distal
muscle; it was not possible to carry out from the proximal muscle (in the literature are
reported decremental responses from proximal muscles) [63]. These findings led us to
investigate the child with a next-generation sequencing approach, targeted to genes causing
congenital neuropathies/myopathies: we identified three variants of the MUSK gene.
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MUSK (OMIM #601296) is a gene encoding for a receptor tyrosine kinase required to
form and maintain the neuromuscular junction. Shigemoto et al. presented in 2008 the first
evidence that muscle-specific kinase (MuSK) antigen can cause myasthenia in animals [64].

MuSK regulates presynaptic differentiation by generating the clustering of Lrp4, which
operates as a direct retrograde signal for presynaptic differentiation. Neuronal Agrin, which
is produced by motor nerve terminals and binds to Lrp4, a member of the low-density
lipoprotein receptor family, stabilizes developing synapses by encouraging additional
interaction between Lrp4 and MuSK and enhancing MuSK kinase activity. Moreover, an
inside-out ligand, docking protein-7 (Dok-7), which is recruited to tyrosine-phosphorylated
MuSK and boosts MuSK kinase activity, stimulates MuSK phosphorylation. Mutations
in MUSK and genes that act in the MuSK signaling system (including DOK7) induce
congenital myasthenia [65].

In recent years, several case reports or case series have described the complex clinical
features associated with congenital myasthenic syndrome in neonatal age, as summarized
in Table 1. Different congenital myasthenia-related genes have been described, encod-
ing for the enzyme acetylcholine esterase, nicotinic acetylcholine receptors, acetylcholine
transporters, choline uptake transporters, oligopeptidases involved in the trafficking of
vesicular Ach transporter, collagen Q (which anchors acetylcholine esterase to the basal
lamina), downstream of kinase 7 (a cytoplasmic adaptor of MusK), and proteins involved
in the formation and maintenance of the neuromuscular synapse (independently of the
acetylcholine receptor clustering pathway such as in the case of COL13A1) [1,51,66,67].

From the review of the literature, it appears that the phenotypic spectrum associated
with MUSK variants is variable and comprises different features [1,49,53,59]. All infants
with MUSK mutations had respiratory symptoms, whereas ocular, facial-bulbar, and limb
features were reported in most patients, as in our infant with three MUSK variants.

The first c.565C>T variant is novel and has never been described in the literature; it
causes the insertion of a premature stop codon (p.Arg189Ter), likely leading to a consequent
formation of a truncated nonfunctioning protein.

The second variant, c.2287G>A, in cis with the c.565C>T, causes the missense sub-
stitution p.Ala763Thr and is classified in ClinVar database as VUS; however, it is already
described in compound heterozygosity with a truncating variant in MUSK gene in two sib-
lings with neonatal respiratory failure secondary to isolated vocal cord paralysis (requiring
tracheostomy in one of them), failure to thrive and feeding intolerance [49].

The third c.2368G>A variant that causes the aminoacidic change p.Val790Met has
already been reported as pathogenic and it has been described in the literature as associated
with congenital myasthenic syndromes [61,68,69].

Our case further supports that laryngeal stridor, vocal cord paralysis, and feeding
difficulties could be the early diagnostic clues of a congenital myasthenic syndrome with
neonatal onset due to a mutation in the MUSK gene. Previously, Jephson et al. reported
six patients with DOK7 mutations presenting congenital stridor and feeding difficulties.
Despite all six children having had neonatal symptoms, the mean age at CMS diagnosis
was 5 years and 9 months in this cohort [30].

Next-generation sequencing will continue recognizing newer CMS genes, enhancing
an earlier diagnosis, and expanding the spectrum of current phenotypes. Furthermore,
early recognition of these disorders is crucial, considering they usually respond favorably
to drugs enhancing neuromuscular transmission [1]. The choice of medication varies with
the CMS subtype, and genetic testing can help guide management. Although the majority
of individuals with CMS benefit from AChE inhibitors (pyridostigmine), some myasthenic
symptoms may remain refractory to treatment. Beta-2-agonists have been described as
effective in several CMS subtypes (in particular in endplate AChE deficiency and in patients
with DOK7 pathogenic variants). Moreover, in patients with CMS responsive to AChE
inhibitors, it may mitigate the detrimental effects on the endplate fine structure caused by
long-term anticholinesterase treatment [70].
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Concerning patients with MUSK variants, salbutamol has been described as an ef-
fective and first-line therapy [67], but the mechanisms by which open-channel blockers
improve neuromuscular transmission are still not understood [66]. In our case, salbutamol
treatment was started at the age of 15 months and is well tolerated to date. Along with
response to treatment, we hope to propose to our patient and her family the opportunity of
decannulation as soon as possible.

The main limitation of data available in the literature is the lack of a genetic diagnosis
in all cases of CMS with a neonatal onset, further reducing the sample of infants with
MUSK variants. Furthermore, the treatment of previously reported cases was not described
in all CMS patients with neonatal onset, due to a short follow-up. Therefore, this case
with a 27-month follow-up, reporting a novel pathogenic variant associated with CMS in
neonatal age and the response to the treatment with salbutamol, is particularly noteworthy.
We suggest testing infants with vocal cord paralysis and feeding difficulties for MUSK and
related CMS genes to avoid a late diagnosis and improve outcomes, given the possibility of
a target treatment.

6. Conclusions

The combination of congenital stridor, particularly in the presence of an apparently
idiopathic bilateral vocal cord paralysis, and poor coordination between sucking and
swallowing may indicate an underlying CMS. These infants should be referred to III-level
centers for neurophysiology and genetic tests earlier as possible because CMS represents a
rare but treatable cause of early-onset muscle weakness, such as in the case of CMS due to
MUSK variants.
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